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Abstract

A method for dynamic response analysis of spinning tapered Timoshenko beams utilizing the finite
element method is developed. The equations of motion are derived to include the effects of Coriolis forces,
shear deformation, rotary inertia, hub radius, taper ratios and angular setting of the beam. Modal trans-
formations from the space of nodal coordinates to the space of modal coordinates are invoked to alleviate the
problem of large dimensionality resulting from the finite element discretization. Both planar and complex
modal transformations are presented and applied. The reduced order modal form of equations of motion is
computer generated, integrated forward in time, and the system dynamic response is evaluated. Numerical
results and comparisons with the full order model (FOM) are presented to demonstrate the accuracy of the
reduced order model (ROM). © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The dynamic analysis of spinning structures has attracted several investigators to intensive study
over the past four decades in order to improve their efficiency and dynamic characteristics.
Rotating beams-like components fall into this category of structures and are widely used in various
fields, such as rotating machinery, space satellites and helicopter blades.

A large number of studies were dedicated to study the dynamic behavior of rotating uniform or
tapered Euler-Bernoulli beams [1-7]. Few investigators have tackled the problem of rotating
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beams including rotary inertia and shear deformation effects. Such factors are crucial to the
dynamic behavior of rotating short beams which comprise a basic component in many engineering
applications. Boutaghou and Erdman [8] derived the equations of motion of rotating elastic
structures using Hamilton’s principle with the von Karman geometric constraint to capture the
centrifugal stiffening effect arising in fast rotating structures. They applied this approach in
conjunction with the finite element method (FEM). Kane et al. [9] studied the behavior of
a cantilever beam built into a rigid body that is performing specified motion of rotation and
translation. Chen and Chen [10] used the finite element model presented by Thomas and Abbas
[11] and incorporated the effect of rotation introduced by Carnegie [12] to study the transient
response of a rotating blade of generally orthotropic materials. Bakr and Shabana [13] investi-
gated the behavior of Timoshenko beams in multibody systems consisting of interconnected rigid
and deformable bodies each of which may undergo finite rotations. It was shown therein that the
inclusion of rotary inertia and shear deformation has a significant effect on the dynamic response of
flexible multibody systems. Later, Wei-Hsin and Shabana [14] developed a dynamic formulation
for initially curved Timoshenko beams that undergo finite rotations. To show an application of
their formulation, the authors used a multibody slider crank mechanism with flexible links.

The FEM is the most powerful numerical technique that has great potential and flexibility in
modeling complex and large structures. However, utilizing nodal coordinates in the discretization
process leads to a large number of degrees of freedom of the model, and consequently, results in
a large number of dynamic equations for which a solution becomes impracticable. Moreover, the
use of nodal coordinates results in a dynamic model of widely spread eigen-spectrum that includes
many insignificant modes and consequently, a numerically stiff system is often created which causes
the numerical integration scheme to search inefficiently for a solution or may even fail to find one.

Using modal coordinates alleviates the problem of large dimensionality incurred by using nodal
coordinates, and avoids the inclusion of higher insignificant modes when they do not share an
appreciable amount of the system’s kinetic energy [15]. In general, a subset of eigenvectors which
spans the frequency spectrum of the forcing function are retained as significant modes.

The distinction between significant and insignificant modal coordinates leads to a convenient
formulation of the reduced order model by means of a reduction technique referred to as mass
condensation [16], in which it is assumed that the mass of the structure can be lumped at only
specific degrees of freedom. The disadvantages of this technique is that the banded nature of the
original system may be destroyed and may lead to a much more expensive eigensolution. In
addition, the inertia matrix is sometimes singular because of the presence of massless degree of
freedom which may cause the eigensolver to fail. Several investigations related to mass condensa-
tion have been reported in the literature [16-22].

Hurty [23], Craig and Bampton [24] and Benfield and Hruda [25] used the component modes
to analyze complex structural systems. Based on substructuring, this approach couples various
components of a structure to predict the dynamic behavior of the entire structure. Ojalvo and
Newman [26] presented a matrix-reduction method to predict the frequencies of vibration of large
structures by solving an eigenvalue problem of smaller size than the actual one.

Laurenson [27] addressed the issue of reduction techniques and indicated the revisions that
should be considered when the FEM is used in dynamic analysis of flexible structures that include
the effect of spinning. In [28], Likins developed a general study in which he provided the governing
equations for flexible appendages and outlined the steps that should be followed in conjunction
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with the FEM formulation in order to reduce the size of the original structure by means of a modal
transformation. Shabana and Wehage [29] extended the coordinate reduction technique to spatial
substructures with large angular rotations. Kane and Torby [30] applied the extended modal
reduction method to solve the eigenvalue problem of a simple rotor problem using state space
formulation to allow for non-symmetric matrices such that damping, and gyroscopic effects may be
treated. However, the authors in [30] did not perform any dynamic analysis. Later, Khulief and
Mohiuddin [31] used the complex modal reduction technique in rotor dynamic response analysis
in which they included the gyroscopic moments and anisotropic bearing effects.

In the current literature, the problem of dynamic analysis of spinning tapered Timoshenko
beams utilizing the actual complex modal reduction has not yet been reported. Tapered Tim-
oshenko beam-like structures are widely encountered in many engineering applications and
represent basic components in rotors and space structures. It is however, the purpose of this
investigation to develop a nonlinear dynamic finite element formulation of rotating tapered
Timoshenko beams. The formulation is based on the principle of virtual work. The nonlinear terms
that represent the inertia coupling between the reference motion and small elastic deformations are
expressed in terms of a set of time invariant quantities (scalars and matrices) that depend on the
assumed displacement field, rotary inertia, shear deformation, setting angle, hub radius and taper
ratios. The use of this nonlinear formulation is demonstrated first by casting the system equations
in state space form in order to accommodate the Coriolis effects. Both planar and complex modal
transformations are presented and applied to obtain a reduced order model. The reduced order
modal form of equations of motion is computer generated, integrated forward in time, and the
system dynamic response is evaluated for different types of external loading conditions. Numerical
examples are presented to demonstrate the validity and efficiency of the developed computational
scheme.

2. The beam element model

Fig. 1 shows a typical rotating tapered cantilever beam model in the deformed state. In this
figure, the (X'Y Z) axes represent a global orthogonal coordinate system with origin at the center of
mass of the hub such that the Z-axis corresponds to the spin axis which rotates with a constant
angular speed ¢ = Q. The (X'Y'Z’) system is defined as a system of local coordinates parallel to the
global (XY Z) coordinate system and rigidly attached to the root of the beam with its origin shifted
by %, from the global (X YZ) coordinate system. The coordinate system (xyz) represents a body
coordinate system that is rigidly attached to the root of the beam and is obtained by rotating the
(X"Y'Z’) coordinate system about X'-axis by an angle y called setting angle. The X, X’ and x axes
being collinear and coincident with the undeformed beam centerline while the y- and z-axis lie
along the principal axes of the cross-sectional area of the beam. The beam undergoes flexural
vibration in a plane fixed in a local system and rotating with the beam. For y = 90°, the vibration is
in the plane of rotation and for i = 0°, the vibration is out of the plane of rotation.

The beam configuration can be defined by a properly generated mesh of finite beam elements.
These beam elements are linearly tapered in two planes while allowing for unequal breadth and
width taper ratios as well as unequal element lengths. Each element has a length [ such that the
length of the beam is the summation of its individual element lengths. Each beam element consists
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Fig. 1. The rotating tapered beam configuration in the deformed state.

of two nodes and each node is represented by four degrees of freedom, a transverse and axial
displacements and torsional and bending rotations; so the beam element has eight nodal coordi-
nates or simply eight elastic degrees of freedom. Effects of Coriolis forces, shear deformation, rotary
inertia, hub radius, angular setting, taper ratios in (xy) and (xz) planes and spinning of the hub are
considered in this investigation.

3. Kinematic relations

Referring to Fig. 2, the global position vector of an arbitrary point P on the beam can be defined
with respect to the global (X YZ) coordinates system as

{Rp} = {Zo} + [ rp}, (1)

where {#,} = [X,, 0, 0]" is the location of the origin of the body coordinate system relative to the
global coordinate system, {Rp} is the global position of the reference point, and {rp} is the vector
from the origin of the body coordinate system to point P in the deformed state. [«/] is the
coordinate transformation matrix that defines the orientation of the beam local coordinates with
respect to the global coordinates. The vector {rp} can be expressed as

{re} = {re,} +{d} = {rp,} + [/ e}, (2)
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Fig. 2. Generalized coordinates of the ith beam element.

where {rp, } = [x,, 0, 0]" is the position vector of the point P with respect to the reference point
in the undeformed state. The vector {d} is the elastic deformation vector which gives the
difference between the deformed and undeformed state vectors {rp} and {rp, }, respectively. The
vector {e} is the vector of elastic coordinates. The matrix [.#7] is the composite matrix of shape
functions [A,], [/ W], [/, ] and [A7,] used to model the axial, bending translation, torsion
and bending rotational deformations, respectively, of the beam element. By substituting Eq. (2) into
(1), one gets

{Rp} = {Ro} + [A1({rp,} + [/ ]{e}). (3)
»Differentiating this equation with respect to time, one obtains
{Ro} = {Zo} + [Nz, } + [#1e}) + [FINT{e), @)

which can be written as
K%

{é}} = [L){q}, ()

Ry} = [, 1%} + [, )({r, } + [H]{e)) [%][JV]]{
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where [.«/,] is the partial derivative of the transformation matrix [.«/] with respect to the
orientation coordinate ¢, while [./;] is a skew-symmetric matrix given by

I7= 0 -1 y
[o1]= [1 0 ] (6)
and [L] is defined as

[L] = [[Z: 1A} + [, )({rp,} + [A{e}) [IANTL, (7)

and

{ay = { {3}}- ®)

The time derivative of the absolute velocity represents the absolute acceleration which is defined as

{R,} = [LN{a} + [L1{g}. &)

4. Inertia forces

The virtual displacement of an arbitrary point on the beam can be written as

6{Rp} = [L]0{q} (10)

and the virtual work of the inertia forces can be written as
o) = | plfialtaRe}av = [ i@y + (e av. a

where p is the mass density and V is the volume of the beam. Eq. (11) can be written as

Wi} = [[IM{4} — {Q.}1%0{q}, (12)

where [M] is the symmetric mass matrix of the beam and is given by

[M] — [[Mrr] [Mrf]
(M1 [Myy]

in which [M,] = [M,;]". The submatrix [M,,] is the mass matrix associated with reference
coordinates, usually referred to as mass matrix due to rigid body rotation, while the submatrix
[M, ] represents the inertia coupling between the reference motion and the elastic deformations of
the beam. The submatrix [M,,] associated with the elastic coordinates is of the kind usually
occurring in linear structural dynamics problems and comprises all the matrices associated with
the elastic generalized coordinates. This submatrix is invariant and can be evaluated once in
advance in dynamic analysis. Unlike [M,], the submatrices [M,,] and [M,,] are implicitly time
dependent since they are function of the generalized coordinates thus resulting in an inertia variant

]: Lp[L]T[L]dV (13)
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model. The elements of the mass matrix [M] are given by

(M1 = a1+ Wi 1+ o 1+ D T} + Dm0} + (0 Tmed(e)h (1)
(M, ] = [ 17 + [, T+ {}TCT, (15)
(M1 = Lp[/VJTM]dV, | (16)
in which
1= | platgrianav 17
1= jvp{gzo}T[&%}Tww]{m}dv, | (18)
1= | )"0} 07, (19)
(] = Lp[JV]T[%]T[&Z’I]{%} av, 0)
[m,.]= pr 1{rp, }dV, 1)
[mec] = jvawfww] av, )
[, ] = mewm&m{@o} av, 3
[m,, ] = LP[/V 11 [, 1{rp, } AV, (24)
(0] = prr[&%nmdv, 05)
[y = [ pLATTr Y. 26)

5. Coriolis and centrifugal forces

Using Eqgs. (11) and (12), {Q,} is the quadratic velocity inertia force vector that includes the
centrifugal and Coriolis forces and is defined as

0= {12

0 }f} = - LP[L]T[L']{Q} dv (27)
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where {Q,},, represents the Coriolis forces associated with the beam reference rotation while {Q, } ;
represents the centrifugal and Coriolis forces associated with the elastic degrees of freedom of the
beam. The respective expressions of {Q,}, and {Q,}, are given by

{Qu}p = = 2Q[my, 1" + [my, 17 + {e} [m.. e} — Q*{e}"[Cl{e}, (28)
Qo) = (Ima,e] + [y, 1+ [me.1{e})2* — 20[C1{e}. (29)

6. Equations of motion of the model

The matrix form of the equations of motion of the spinning undamped and tapered Timoshenko
beam can be written in terms of the generalized coordinates as

I:[Mrr} [Mrf] ]{@} + [0 0 :|{§0} — {{Qext}q) + {Qv}(p} (30)
[Mfr] [Mff] e 0 [K] € {Qext}f + {Qv}f ’

where {Q..} and {Q,} are, respectively, the vector of the external applied forces and the vector of
Coriolis and centrifugal forces. The matrix [K] is the stiffness matrix defined as

[K]=[K,;]+ QK] (31

in which [ K/, ] denotes the elastic stiffness matrix while [ K] denotes the stiffness matrix due to the
presence of rotation.

By considering the case of a beam rotating with a constant spin and by neglecting the coupling
between the reference motion and elastic deformation such that ¢ =0, {Qew}, = 0and [M,,] =
null matrix, the equations of motion of the beam can be written as

[M;;1{&} + ([Ksr] + Q*[KD{e} = {Qex}s + {2}y (32)
or
[M;1{e} + 2Q[C1{e} + ([K /] + QK]
— [mee e} = {Qexls + (Imae + [my, Q% (33)

which is the equation of motion describing the in-plane (y = 90°) forced vibration of the spinning
beam. For the out-of-plane vibration, however, the softening term Q?[m,.] is dropped, and for
a setting angle 1, the equation of motion is written as [32,33]

[M1{e} +2Q[C1{e} + (K] + QK]
— [me Jsin® Y)){e} = {Qex}r + ([Ma.c] + [my, 1R, (34)
which can be written in compact form as

[M;;1{8} +2Q[CH{e} + [K1{e} = {0}, (35)
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where the matrices [M ], [C] and [K] are constant coefficient matrices in which the mass matrix
and the modified stiffness matrix are symmetric and the Coriolis matrix is skew symmetric. The
modified stiffness matrix is given by

[K] = [Ksr] + Q([K.] — [me.]Jsin* ) (36)
while the vector

{Q} = {Qext}f + ([m%e] + [mrpne])gz (37)

is the vector of time-dependent external forces and absorbs the quadratic velocity terms [m,, ,]Q?
and [m,, . ]2* The expression of [m,, .] is now given by

[m,,.] = Lp[N]T[Mo]{rpo 1dv, (38)

where [«/,] is a constant transformation which accounts for the angular setting of the beam.
The assembled set of the system equations can be written as

[M;1{e} + 20[C){e} + [K]{e} = {0}, (39)

where [M/,], [C] and [K] are the global mass, Coriolis and stiffness matrix, respectively, while {Q}
is the global force vector of the entire beam obtained by the standard finite element assembly
procedure.

7. Modal reduction schemes

In order to formulate the dynamic equations for the eigenvalue problem, the forcing vector {@}
is dropped from Eq. (39), thus resulting in the following homogeneous part of the dynamic
equation:

[M;,1{é} + 2Q[C1{e} + [K]{e} = {0}. (40)

The truncation operation aims at eliminating the insignificant modes which are, in general, higher
modes that do not contain an appreciable amount of the system’s kinetic energy. In general,
a subset of eigenvectors which spans the frequency spectrum of the forcing function are retained as
significant modes. Moreover, the retained modes must include the first few lower ones in terms of
which the characteristics of the system must be preserved.

Two modal reduction schemes are established. The first scheme utilizes planar modes obtained
by solving the self-adjoint eigenvalue, while the second scheme invokes the complex modes of the
non-self-adjoint eigenvalue. In each case, a reduced order modal form of the equations of motion is
obtained.
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7.1. Planar modal transformation

In order to obtain the real eigenvalues and the associated planar modes, one must ignore the
Coriolis matrix [C] in Eq. (40). To this end, the associated homogenous adjoint equation can be
written as

[M,,]{é} + [K]{e} = {0}. (41)

Upon solving the self-adjoint eigenvalue problem associated with Eq. (41), one obtains a set of real
eigenvalues and eigenvectors. Let [¢] denote the modal matrix that comprises a selected subset of
the resulting real eigenvectors (planar modes). Now, a transformation from nodal coordinate space
to modal coordinate space can be defined as

{e} = [¢1{n}, (42)

where {1} is the vector of modal coordinates. If a reduced truncated set of significant modes are
retained, the corresponding truncated form of Eq. (39) can be written as

(o1 M, Lp1{i} + 2QLeT [CI 17} + [¢1'[KI[¢1{n} = [$1™{ O} (43)
or simply
(M, 30} + 2Q0C1{0) + [K{n} = {0}, (44)

where [M, ], [C,], [K,] and {0, } are the reduced modal mass, Coriolis, and stiffness matrices, and
reduced modal force vector, respectively. Eq. (44) represents the planar reduced order model
(PROM) using planar modal reduction.

7.2. Complex modal transformation

In this case, the equation of motion (39) is first represented in the state-space form as

[A1{y} + [B){y} = {F} (45)
in which
[0] — [Mff]:|
Al = - X 46
4] I:[Mff] 20[C] (46)
[(M;;] [0] }
= - 47
5] [[0] K] @)

and

vy = {S} (48)

where the matrix [B] is symmetric while the matrix [A] is skew-symmetric. Notice that if the
dimensions of [M ], [K] and [C] are (4n x 4n) where n is the number of nodes, the dimensions of
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[4] and [B] are (8n x 8n). The force vector on the right-hand side of Eq. (45) is given by

w =} )

{0}
The two homogeneous adjoint equations can be written as
[41{3} + [Bl{y} = {0} ‘ (50)
and
(A1} + [BI'{y}' = {0}. (51)
Assuming a solution of the form
{v} = {Flexpliar), » (52)

where {7} is the vector of displacement amplitudes and @ is the frequency of harmonic vibrations
and i =,/ — 1. Substituting Eq. (52) into Egs. (50) and (51), one can write

(4:[A] + [BD{R;} = {0} (53)
and
(AL[AT" + [BIN{Z:} = {0} (54)

where 4; = + i@; denotes the ith eigenvalue associated with right- and left-hand eigenvectors {R;}
and {%,}, respectively. For symmetric [4] and [B], the eigenvectors {R;} and {%;} are equal,
otherwise {R;} and {¥;} are distinct.

Let [R] and [.#] denote the complex modal matrices for the differential operators of Egs. (50)
and (51), respectively. Introducing the transformation [35]

{v} = [R){u}, (55)

where {u} is the vector of modal coordinates. If only a subset of significant modes are to be
retained, the truncated modal form of the equations of motion can be written as

[LTTANR i} + (LT [BIRI{u} = [LT{F}, (56)

where [R] and [ #] contain only those complex eigenvectors that represent a subset of selected
modes. Eq. (56) can be written as

[4. )i} + [B.{u} = {F.}, (57)

where [4,], [B.] and {F,} represent reduced [4] and [B] matrices, and reduced modal force
vector, respectively. Eq. (57) represents the complex reduced order model (CROM) using complex
modal reduction.

Eqs. (44) and (57) represent truncated models using planar and complex modal transformations,
respectively. In general, a subset of eigenvectors which spans the frequency spectrum of the forcing
function are retained as significant modes. Deciding on which modes to retain is not clear in most
situations of dynamic response analysis. As a minimum requirement the retained modes must span
the low-frequency subsystem in addition to any higher modes spanned by the frequency spectrum
of the forcing function.
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Table 1
The first six frequency parameters of rotating uniform Timoshenko beam (r,/L) = 0.02, %, = 0, and y = 0°
Q A Planar modes Complex modes Ref. [34] Exact value [34]
0 Ay 3.5026405 — 3.5026 3.5026
Az - 21.4733106 — 21.4698 21.4698
A3 47.8319424° — — —
A4 58.2278625 — 58.1498 58.1498
As 78.5959016° — — —
Ae 109.5477733 — 109.0275 109.0275
3 A1 4.7822099 + 4.7820661i 4.7947 4.7803
I 22.7669495 + 22.7662115i 22.7551 22.7599
A3 47.8319424* + 47.8326614:* — —
A4 59.5481442 + 59.5485000i 59.4491 59.4681
As . 78.5959016° + 78.5959016:° —_ —
g 110.955603 + 110.9553748i 110.3938 110.4310
6 A 7.3361371 + 7.3359489i 74261 7.3319
A 26.2642362 + 26.2603567i 26.2243 26.2488
As 47.8319424* + 47.8362932:* — —
Aa 63.3232643 + 63.3238549i 63.0795 63.2386
As 78.5959016° + 78.5959016:° — —
Ae 115.0581358 + 115.0569796i 114.1630 114.5177
12 A 13.1098091 + 13.1086071i 13.5513 13.1046
Aa 37.0098113 + 36.9702018i 36.8870 36.9790
A3 47.8319424> + 47.87606271* — —
Ag 76.3662737 + 76.3620135i 75.3810 76.2744
As 78.5959016° + 78.5959016i° — —
A 129.9673985 + 129.9582997i 127.3653 129.3472

*Torsional frequency parameter.
®Axial frequency parameter.

8. Results and discussion

A dynamic analysis of a rotating doubly tapered Timoshenko beam including the effects of hub
radius and setting angle as well as Coriolis forces is presented. The explicit expressions for the spin
and frequency parameters as well as taper ratios are given by

Q= QLZ/\/E0 /pA, spin parameter,

A =wL%/pA,/EI, frequency parameter,
v, = L/L,, taper ratio in y-direction,

v, = L/L,, taper ratio in z-direction,

where E is the modulus of elasticity while A, and I, are, respectively, the root cross-section area
and the root second moment of area of the beam. The quantity w represents the natural frequency
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Table 2
The first six frequency parameters of rotating tapered Timoshenko beam (ry/L) =0.02, Z, =02, v, = 0.15, v, = 0.30
and ¥ =0°

Q A PROM CROM Planar modes Complex modes
Full order, Eq. (41) Full order, Eq. (50)
3 A + 5.049132153934i + 5.049132153685i 5.04914842149 + 5.04913215368i
Aa +21.110851583289i + 21.110850569280i  21.11103531306 + 21.11085056969i
A3 + 52.869520080270i* 4 52.869430842066i*  52.86999026431° + 52.86943083971:
Aa + 58.130064927498i + 58.129994370448;  58.12925650161 -+ 58.12999438200i
As + 87.021011701338i> 4 87.021011701338:>  87.02101170134° + 87.02101170133:®
Ag +98.1391903197959i  + 98.138925800453i  98.13896566779 + 98.13892580477i
6 Ay + 7.576869248334i + 7.576869240697i 7.57696312507 + 7.57686924070i
Ao + 24.536378624075i + 24.536374261454i  24.53729836613 + 24.53637426119i
A3 +56.655771464603*  + 56.655383495854i*  56.66165977388* + 56.65538349613:*
la + 58.136641257080i + 58.136360306186i  58.12925650161 + 58.13636030465i
As +87.021011701338>  + 87.021011701338:>  87.02101170134° + 87.02101170133:®
As + 102.249603879632i  + 102.248487815539;  102.24877875310 + 102.24848781632i
12 A + 13.479261044529i + 13.479260800269i  13.47989501503 + 13.47926080025:
As + 34.942738507006i + 34.942718742592i  34.94960255375 + 34.94271874317i
A3 + 58.137062774181*  + 58.135963731111i*  58.129256501612 + 58.13596373427
la + 69.611000889220i + 69.608986807598i  69.61042062471 + 69.60898680510i
As + 87.021011701338®>  + 87.021011701338>  87.02101170134° + 87.02101170133:®
g + 117.063000811815i  + 117.057630050464i  117.06044738541 + 117.05763005734i

*Torsional frequency parameter.
® Axial frequency parameter.

of the beam. L is the length of the beam while L,, and L,, are its untruncated lengths in the y-and
z-directions, respectively.

The beam is of 1.0 m length and is divided into 12 equal finite Timoshenko beam elements for
which Poisson’s ratio v = 0.3, shear correction factor k = 5/6 for rectangular cross-section and
(r¢/L) = 0.02, in which r, represents the radius of gyration at the root of the beam. The ratio of the
modulus of elasticity to the shear modulus of rigidity (E/G) is equal to 2.6 while the mass density is
taken to be 7850 kg/m?3.

The total number of degrees of freedom of such a beam is 52. When the boundary conditions are
applied to a cantilever beam, the size of the system matrices given by Eq. (40) becomes of order
(48 x 48). The planar or real eigenvalues are computed by using Eq. (41) in which the system matrices
are of the same order as that of Eq. (40), resulting in 48 real eigenvalues. The complex eigenvalues are
computed by means of Eq. (57) where the system matrices are of order (96 x 96), thus resulting in 48
conjugate pairs of pure imaginary ones which represent the natural frequencies of the beam.

A dynamic analysis program was developed to automatically generate and assemble the system
matrices of Eq. (40), carry out the desired modal reduction transformations; either PROM or
CROM and integrate the reduced models forward in time to predict the system’s time response.
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Table 3
The first six frequency parameters of rotating tapered Timoshenko beam (r,/L) = 0.02, Z, = 0.2, v, = 0.15, v, = 0.30
and ¥ = 90°

Q Ai PROM CROM Planar modes Complex modes
Full order, Eq. (41) Full order, Eq. (50)
3 A1 + 4.053373944092i + 4.053372643662i 4.06227844676 + 4.05337264366i
Az + 20.889002324294 + 20.888562341903i  20.89783181468 + 20.88856234191i
A3 + 52.781755104172i*  + 52.777726404445i*  52.78577401953* + 52.777726404351
N + 58.129256501613i +58.129256501613i  58.12925650161 + 58.12925650161i
As +87.226990132167i*  + 87.226984878754i>  87.02101170134° + 87.22698488229:°
As + 98.095630178560i + 98.089550833854i  98.09400288027 + 98.08955083396i
6 A1 + 4.589939427536i + 4.589934274646i 4.63057237392 + 4.58993427463i
A2 + 23.757861694816i + 23.755860854642i  23.79609053463 + 23.75586085465i
A3 + 56.329607576606i*  + 56.3125070368251*  56.34671473899* + 56.31250703719:
A + 58.129256501613i + 58.129256501613i  58.12925650161 + 58.12925650161i
As + 87.845692792588i®  + 87.845665549014i*  87.02101170134° + 87.84566555003:°
Ae + 102.080136305463i  + 102.054603065903i 102.07604893610 + 102.05460306457i
12 A + 5.939149617108i + 5.939126948960i 6.15047330004 + 5.93912694899i
Aa + 32.641045128181i +32.630161418860i  32.83561434480 =+ 32.63016141854i
A3 + 58.129256501613i* 4 58.129256501613i*  58.12925650161° + 58.12925650161:*
A4 + 68.495204370256i + 68.413340343162i  68.58026115351 + 68.41334034459i
As 4+ 90.306308639939i®  + 90.306191709469i*  87.02101170134° + 90.30619170937:®
As + 116.458667406070i  + 116.338562887832i 116.45589814815 + 116.33856288364i

*Torsional frequency parameter.
bAxial frequency parameter.

Table 1 shows the first four frequency parameters of a cantilever uniform Timoshenko beam
rotating at different speeds using both planar and complex modes. The comparison of these
frequencies shows an outstanding agreement with the numerical and exact frequencies presented by
Nagaraj [34].

The first six out of plane and in-plane frequency parameters of a cantilever tapered Timoshenko
beam at different spin parameters where v, = 0.15, v, = 0.3 and %, = 0.2 are shown in Tables
2 and 3, respectively. These frequency parameters, based upon reduction orders PROM = 6 and
CROM = 6 compare favorably with the corresponding full order model FOM = 48. Although the
reduced problem is only of order 6 ( full order 48), for Q = 3, the error in the fundamental frequency
parameter in Table 2 is negligible for both PROM and CROM compared to the value obtained
from the FOM of Eq. (54). The results manifest an excellent agreement between the ROM and
FOM solutions. Consequently, it can be ensured from these results that the ROM preserves the
characteristics of such structures.

Figs. 3-9 show the dynamic behavior of a rotating tapered cantilever Timoshenko beam for
whichv, = 0.2,v, = 0.1 and %, = 0.1 and rotating at a constant speed of £ = 3000 rpm for various
types of input loadings applied at the midpoint of the beam.
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Fig. 3 shows the out-of-plane flexural deformation w of the tip nodal point of the beam where the
midpoint of the beam has been excited by an impulsive load of magnitude of 50 N in the vertical
direction. The PROM two-mode solution matches perfectly the CROM two-mode solution,
however both do not match the plot of FOM. The legend CROM on Figs. 3-9 represent the two
identical responses of either CROM or PROM. It can be seen from Fig. 4 that when the retained
modal coordinates have been increased to 5, the plots corresponding to the ROM still do not
match exactly with the corresponding FOM plot. This is because the impulsive loading is known to
excite higher modes of vibration. A further increase in the retained modes to 10 was sufficient to the
response of the FOM, as shown in Fig. 5.

Fig. 6 shows the flexural deformation of the tip nodal point due to exciting the midpoint of the
beam by a sinusoidal input F(¢) = 500sin (511.465¢t)N, where Q = 511.465 rad/s is equal to the first
natural frequency of the beam. As anticipated, resonance occurs as shown by both the two-mode
solution and the full order solution. Fig. 7 shows a beating phenomenon when the forcing
frequency of the previous applied load has been shifted to 450 rad/s. In both cases, the two-mode
solutions were sufficient to obtain a perfect agreement between the ROM and the FOM.

Fig. 8 shows the flexural deformation of the tip nodal point of the beam described before under
the same load conditions but for a forcing frequency of 9500 rad/s which falls between the fifth and
sixth mode. In this figure, one can easily distinguish between the reduced order model and the full
order model because the retained modes spectrum does not contain the forcing frequency. This
renders the reduced order model “blind” to the exciting frequency and when the retained modes
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have been increased to 6 it is clear that the reduced model matches perfectly with the full order
model as shown in Fig. 9.

9. Conclusions

The equations of motion of a spinning tapered Timoshenko beam have been derived using the
principle of virtual work. These equations include the effects of Coriolis forces, shear deformations,
rotary inertia, hub radius, taper ratios and angular setting of the beam. The eigenvalue problem is
solved for both full order model FOM and reduced order model ROM. Comparison is made
between the two models. Based on the results of this investigation it can be concluded that the
dynamic characteristics of such beams are preserved in modal reduction.

Two reduced order models using modal reduction have been successfully applied to the analysis
and prediction of the vibrational response of a spinning tapered Timoshenko beam. The reduction
process results in retaining a set of significant modes which account for almost the total amount of
the kinetic energy content in the system. In general, the lower modes spanning the lower end of the
frequency spectrum, in addition to other modes which span the frequency spectrum of the forcing
function are retained as significant modes. Several types of excitation such as impulsive and
sinusoidal loadings have been applied to the beam. The few retained modes are shown to preserve
the exact behavior of the rotating beam for different parameter variations.

Based on the results of simulation, and within the numerical facts presented in this investigation,
it can be concluded that planar modal reduction and complex modal reduction maintain the same
order of comparison for this type of structures. The former is considerably easier to apply, the later
is more realistic. However, for complex structures the complex modal reduction would be expected
to produce more accurate results.
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