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In this paper we arbitrarily choose the approach
suggested by Audze and Englais'® to generate an
experimental design. In & dimensions with N samples

an N* grid is generated. The points are then placed
on this grid such that no two points lie along the same
grid line and the quantity

L
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is minimized. Here d i refers to the distance between
points i and j.
For example, with k=2 and N=10 we obtain

8 10 4 6 2 3 9 5 71

1 7 10 6 8 5 4 2 9 3

,_
=
L]

@

—_— N W A LY o

T,

1 2 3 4 5 6 7 8 910

Figure 1

Approximation Methods

The approximation method considered in this paper is
a kriging model. The relationship between inputs x
and observations (responses) y is expressed as

y=fx

where f,(X) represents the high fidelity analysis.

We evaluate this response for combinations of inputs
representing our experimental design and use this
information to construct an approximation

b= ..

The response at x is expressed as
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y=u+ex)

where L, a constant, is the mean of the input

responses and £(X) is a Gaussian random function

. . 2
with zero mean and variance O~ .

We do not assume that the £ are constant as in
regression, but that these errors are correlated. The
correlation between two points being related to some
distance measure between corresponding points. The
distance measure used here is

k
d(x? xP)= 30, =)’

h=1

where 6, are hyperparameters yet to be determined.

The correlation between points x? and x“ is

defined by
R(x(i) , X(J')) - exp[_d(x(i) , xP )] )

When we wish to sample at a new point x, we form
a vector of correlations between the new point
and the previously sampled points

r(x) = R(x,x").

If x is close to x, then these points are correlated
and the predicted response will be strongly
influenced by the response at x@.
Whereas if the points are far apart, the correlation is
small and the predicted response will only be weakly
influenced by the response at x@ .

The prediction itself is given by
Ty -!
y(x)=p+r R (y~14)
where the mean [ is defined by

= "Ry
"Rl
The hyperparameters &, are obtained by maximizing
the likelihood of the sample. This is defined as
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where the variance G2 is given by

o= 1) R (y—1p)
~ .

Another useful quantity is the mean squared error of
prediction
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s’ (x) = 1+rTR“’r+Q:~1iI}:£)—2—
1"R™1

as this gives us a measure of the accuracy of our

prediction at x. The general strategy is shown in
figure 2.

s N
Construct inputs using
DOE

v

Evaluate f,,g, at
these points

v

( Construct
approximations

fes8e
now including
Ja>8a
inside approximation

v

Find x" such that

x = arg min fAe (x)
X

\-

subject to
£.(0<0

Convergence?

No Yes

Evaluate f,(x"), Terminate

g,(x") and add to
model.

Figure 3



Model Fusion

We now fturn our aitention to the use of
approximation techniques in combining a large
number of low fidelity analyses together with a small
number of high fidelity analyses for constructing
approximations that are inexpensive and accurate.

The ge11era1 strategy is to consider the low fidelity
model f, together with only selective calls to f,.

The inputs for calls to f, are again chosen using a
design of experiments approach.

The low fidelity model provides some rough global
information as to the response of the high fidelity
model. The selective calls to f, are then made to
build corrections to the low fidelity model. In this
paper, the knowledge-based approach of Leary et al"!
is used for constructing approximations, the cheap
model being included inside the approximation. In
this way, accurate information about f, at a limited
number of points is combined with the approximate
global information provided by f,, thus increasing
the accuracy of the approximation. The approach is
demonstrated on two simple finite element problems.
The strategy in this case is shown in figure 3.

Example 1

As an initial example we consider the structure
shown in figure 4, subjected to a uniformly
distributed load p,. The length L is here taken as 1

metre. We wish to find the optimal values of x; and
x, (width and height of cross-section) such that the
volume ¥ is minimized subject to

O ax <100000N / m?
and
0.05m<x; <0.1m, i=1,2.

We consider a high fidelity model consisting of 100
finite elements and a low fidelity model consisting of
just four elements. In this example the objective
(volume) is cheap to compute whereas the stress
(which forms one of the constraints) requires a finite
element analysis. It is the maximum stress that we
model here.
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Clearly the “expensive model” here is not so complex
that optimization is impractical. We therefore observe
that the minimum occurs at

x; =0.05m
x5 =0.083379m

the minimum volume here is

v =0.010065m>.

This provides us with a benchmark for assessing the
accuracy of the results obtained using approximation
methods. Of course in a practical situation, this
information will not be available.

The design space, objective and constraints for the
low fidelity model are shown in figure 5, figure 6
shows the same information for the high fidelity
model. Note here that the low fidelity model gives an
inaccurate result due to the fact that it under-predicts
stress.
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poor. As the model is updated using successive
approximations, predictions become more accurate
and we begin to converge to the correct minimuim,
The algorithm terminates when either
1) the maximum allowable number of calls to
f. is reached or

2) we have convergence.

Now consider the knowledge-based model, this
approximates the high fidelity model by including the
low fidelity model in the approximation. Results of
optimization in this case are given in table 2.

High fidelity objective and constraint
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start with just three expensive model evaluations

using the algorithm due to Audze and Englais™,
Table 1 shows the initial points and successive
optima using a kriging model. Here we model the log

of the maximum stress.

Point X =107 | x, x107) |V a0
DoE 1 5.0 5.0 0.6036
DoE 2 7.5 10.0 1.8107
DoE 3 10.0 7.5 1.8107
min 1 5.0 8.702 1.0504
min 2 5.0 8.395 1.0134
min 3 5.0 8.361 1.0093
min 4 5.0 8.352 1.0082
min 5 5.0 8.347 1.0076
min 6 5.0 8.345 1.0073
min 7 5.0 8.344 1.0072
min 8 5.0 8.343 1.0071
Table 1

It is clear that the initial approximation is prone to
some error so the first minimum obtained is relatively

f Point X <1072 | x, x1072) V

| DoE 1 5.0 5.0 0.6036 |
| DoE 2 7.5 10.0 1.8107

| DoE 3 10.0 7.5 1.8107

| min 1 5.0 8.3379 1.0065

| min 2 5.0 8.3379 1.0065

Table 2

Now observe the increased accuracy when also using
the low fidelity model. The initial approximation is
extremely accurate and we immediately focus near
the. optimum. Successive approximations again
converge to the correct point. Convergence is quicker
than in the previous case due to the extra information
provided by the low fidelity model.

The longer-term goal is to produce inexpensive and
accurate approximations to real world engineering
systems in order to aid the use of optimization at the
preliminary design stage. We will be interested in
modeling spoked structures such as the one shown in
figure 7. In this case it is the tail bearing housing of
an aero-engine.

Figure 7



Example 2

This example considers the use of approximation
methods applied to an idealization of a spoked
structure with simple boundary conditions. The initial
configuration together with the loading and
constraints are shown in figure 8.

Figure 8

The structure is supported on the outer ring as shown,
here the displacements are constrained to be zero. A
pressure is exerted on one section of the inner ring as
shown. These have been chosen for illustration of the
method.

Such structures are typically designed subject to
stress and stiffness constraints. We here consider
stiffness. The goal is to reduce the weight of the
structure by varying the thickness of the rings and the
spokes such that the maximum displacement remains
below a certain value. The design variables are the
inner thickness

0.1<x, 212,
the spoke thickness
0.1<x, 230
and the outer thickness
0.5< x5 <8.0.
The radius of the outer ring is 200 units and the

radius of the inner ring is 100 units. The depth of the
rings is also taken as 100 units. We constrain the
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design to have a maximum displacement no greater
than 0.1 units.

Admittedly, the present dimensions and boundary
conditions are somewhat unrealistic. However, the
goal here is simply to demonstrate the use of the
approach on such structures.

Two models are considered, a low fidelity finite
element model, shown in figure 9, consisting of 30
shell elements and 792 degrees of freedom and a high
fidelity model, shown in figure 10, consisting of 1134
elements and 21816 degrees of freedom.
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o

Figure 9

Figure 10

An approximation to both f, and f, is considered
here. Computing f, is cheap and the approximation

is here based on over 1000 evaluations. The
evaluation of f, is more expensive and the



approximation here is based on only limited
information.

The finite element analysis itself is performed using
the ABAQUS" package. Note it would be better to
use f, directly (rather than an approximation) and

this will be done once a successful interface is
completed. Meanwhile a very accurate approximation
to f, is considered.

Initially, 10 space filling points are constructed using
the Audze and Englais" algorithm.  An
approximation is first constructed using /. alone.

The convergence is shown in table 3.

As before, we also look at the knowledge-based
approach and convergence here is shown in table 4.

Again using the low fidelity model increases the rate
of convergence allowing results to be obtained with
fewer calls to the high fidelity model. The
displacement of the low fidelity model at the best
current point was 0.0975 units again indicating some
misalignment between the two models. It is this
misalignment that is successfully modeled.

Also shown in these tables are the actual
displacements at the current best points, the
constraint of 0.1 units is active and our approximate
displacement gradually becomes more and more
accurate (approaches 0.1).

Point | x X, X, 7 | disp.
min- 1 12 0.1 38067 364607 0.1256
min 2 1.1793 134813 3.6562 623000 0.0988
min 3 1.1776 1.2980 3.6468 613833 0.1013
min 4 12 2.5945 23872 531420 0.1141
min 5 1.1926 2.1189 27516 549151 0.1072
min 6 1.1997 2.3881 2.7768 568766 0.0999
min 7 11917 2.3869 2.7790 568479 0.1008
min 8 1.2 23817 27750 568170 0.10002
min 9 12 23833 2.7746 568220 0.10005
Table 3
Point X X, X3 vV disp.
min 1 12 2.3293 27893 566900 0.10033
min 2 12 2.3500 2.7893 568116 0.09997
min 3 1.2 2.3483 2.78% 568021 0.09999
min 4 1.2 23482 27894 568021 0.10000
Table 4
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To compare the results globally we also evaluate f.

at many points (m) in the design space to assess the
overall accuracy of our initial approximations. The

correlation coefficient, defined by r2 where

r= Sxy /'\/SXXS){V >

)13 N oa moo
Se = 7959 =X 7)) 1 m,
i=]

i=]

moo mo
S_vy = (zy(l)y(l) '“(Zy(l))z)/m)
i=l

i=]

m . . m (i biid i
Sy =390~ 3NS y P/ m,
i=l

i=] i=]

provides an indication of the overall accuracy. This
coefficient varies between zero and one. The closer to
one, the better the prediction.

For the model based on f, alone, we obtain
r?=3x107*
indicating a very poor global prediction.

Using the knowledge-based approach gives a
correlation coefficient of

r? =0.9998

Figure 11



Discussion and conclusions

The use of variable fidelity models in overcoming the
computational  burden = associated  with  the
optimization of complex high fidelity models has
been described. This approach is seen to increase the
accuracy of approximations. Once an approximation
is constructed, an optimization is performed and we
resample at the optimum of the approximation, then
build a new approximation. In this way, as our
optimization proceeds, our approximation becomes
more accurate in points of interest.

The efficiency of the approach in the examples
described was due to the fact that there was good
correlation throughout the entire design space
between the models of varying fidelity. Thus the
knowledge-based approach quickly allowed us to
home in to the correct point. This approach suffices if
the two models have roughly similar sorts of
behavior; it is reasonable to expect this as the two
models are representing the same physical system.

If there is less global correlation between the two
models, a better strategy may be to combine the
knowledge-based methods with an expected
improvement criterion, see Jones et al’ for a
description of expected improvement.

Additionally, it might be the case that derivatives of
the response are available cheaply from a finite
element analysis. If such information is available it
can be incorporated into a kriging model'®. The
application of these methods using derivatives within
the context of multi-fidelity approximations is
another area which we plan to investigate.

Finally, the application of these approaches to
complex structures with realistic geometries and
boundary conditions will be addressed.
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