An Introduction to Evolutionary Computing
in Design Search and Optimisation

A. Keane
Lecture notes produced by A. Rogers

Department of Mechanical Engineering
University of Southampton
Southampton SO17 1BJ, UK

E-mail: andy.keane@soton.ac.uk

Abstract. Evolutionary computing (EC) techniques are beginning to find a place in engi-
neering design. In this tutorial we give a brief overview of EC and discuss the techniques
and issues which are important in design search and optimisation.

Keywords
Evolutionary computing, design search, optimisation, problem solving environment

1 Introduction

The purpose of this introduction is to present, to a wide audience, some of the ideas
which are important in the application of evolutionary computing (EC) algorithms
to engineering design. This leads on to an area known as design search and optimi-
sation where evolutionary computing techniques are beginning to find real applica-

tions.

Perhaps the first question to ask is: why do we do this at all? The general answer is
that life is becoming more computationally complex and in the field of engineering
we are presented with an increasing number of computationally complex problems
to solve. The computational complexity of optimising these systems challenges the
capabilities of existing techniques and we seek some other heuristics. When we
look around at the real world, we see many examples of complex systems, ourselves
included, which have arisen through evolution. This naturally leads to some desire
to emulate evolution in our attempts at problem solving.

As an example of a computationally complex problem, we can consider designing
aircraft wings — an area from which several of the examples in this tutorial will be
drawn. Alternatively, we may be trying to schedule some process in a factory or
simply trying to fit curves to data. In some senses, all these things are about design,
and by design, we mean the idea that we want to create something. The whole point
to evolutionary computing is the creation of designs, particularly in the domain of
complex problems and environments.

A. Keane

AN
A
’1’{'0'0‘0““‘:\\\\"'\\"5";’;"0"0' S

=50
22K “ QOSSO X ““\\::
= s
77774

Figure 1. Example of an optimisation landscape

It is useful to briefly consider what design is, how it is done and where evolution-
ary computing fits in. We are all surrounded every day by extremely complicated
technology which we generally take for granted. As an example, consider the cars
we drive. Should we have a crash, the airbags will explode and the car will crumple
safely around us because someone has thought about and modeled all the processes
and components involved in that crash. To do this nowadays, automotive engineers
use high-performance computer networks which are highly developed into sophis-
ticated environments. '

Designing complex things such as cars requires us to put lots of things together. It
requires us to know something about what it is we are trying to design, to have some
way of interfacing it to the user and perhaps some type of search and optimisation
routine with resource management. The whole thing may be called a problem solv-
ing environment (PSE) and it is into this environment that evolutionary computing
techniques fit.

In summary, designers in the broadest sense — simply people trying to create some-
thing — increasingly see the need for a PSE. Ideally, these PSEs contain some sort of
search and optimisation and it is here that evolutionary computing techniques find
an application. Thus, evolutionary computing is not used in isolation but as a part of
a design tool which has to be of some utility.

What follows are some introductory remarks on several topics which will be ex-
panded on later in the course of this tutorial.

Search and Optimisation. Two terms which are often used in evolutionary com-
puting are search and optimisation. We can illustrate what these mean by consider-
ing a simple landscape — see figure 1. Optimisation is about trying to walk up a hill
and hopefully, through effectively searching the landscape, walking up the highest
hill.

At its simplest this is all we are trying to do. We have some landscape which we are

trying to walk through. Usually we cannot see the landscape, so the whole business
of evolutionary computing is trying to do this blindfold. This introduces questions

svolution-
mplicated
r the cars
I crumple
processes
engineers
0 sophis-

ygether. It
.ave some
imisation
lem solv-
omputing

ate some-
ne sort of
ques find
s a part of

ill be ex-

\ary com-
consider-
cup a hill
«© highest

ch we are
: business
questions

Evolutionary Computing in Design Search and Optimisation

such as: how do we know we are at the top of the hill and how do we know it is the
right hill?

Resources. Search and optimisation always requires some other piece of code to
be plugged into it — we apply evolutionary computing to something. It is usually a
piece of analysis code and we are trying to capture the intentions of the designer in
this code. Given the computational complexity of the problems we are considering,
computing power dominates this process. Given overwhelming computing power,
most problems can be solved. With finite computing resources we have to be more

careful.

Current Techniques. What is the current state of the art in engineering design?
Most PSEs now include some sort of hill-climbing optimisation and parallel com-
putation is common. Evolutionary search is known about but it is not generally in
everyday use. The use of meta-computing techniques and resource scheduling are
beginning to be considered as approaches to the problems of limited computing

power.

Representation. Representation is one of the key issués in this work. How do we
represent what it is that we are trying to design? Inevitably people represent their de-
signs with numbers, so the method of encoding between the two is important. How-
ever, an engineer also has a selection of models which can be used which range in
sophistication and cost. It is not simply a question of representation and method but
representation, method, and model which seem to be the most important. Designers
have aspirations, constraints, and varying and multiple objectives. They often don’t
know what they want or cannot express what it is exactly they want. But in general,

they want robust designs.

Classical search methods have been around for at least fifty years and they are well
tried. Crucially, people don’t believe they are likely to lead to any more innovation.
On the other hand, evolutionary computing methods have some advantages but they
have a problem — computational expense. If we come up with an evolutionary com-
puting paradigm which is really very powerful but is too computationally expensive,
it will not be used.

2 A Brief Overview of Evolutionary Computing

The history of evolutionary computing goes back to the 1960s with the introduc-
tion of ideas and techniques such as genetic algorithms, evolutionary strategies and
evolutionary programming [3]. Whilst all differ slightly in their actual implementa-
tions, all these evolutionary computing techniques use the same metaphor of map-
ping problem solving onto a simple model of evolution.

EVOLUTION PROBLEM SOLVING
Individual <«— Candidate Solution

Fitness > Quality
Environment <—> Problem

We have a population which we want to evolve from time step ¢ to time step £ + 1
by selection, recombination and mutation. There is some contention about which of
the two, mutation or recombination, is the more powerful, with there being a whole
history in the German academic community of using only mutation in evolutionary
strategies. To a certain extent though, the ingredients can be mixed and matched.
One is trying to introduce diversity in the designs through mutation and recombi-
nation, and then exploit this exploration through selection of better solutions: bal-
ancing the growth of ideas alongside the selection of ideas. One interesting aspect
is that this balance occurs all the way through but the nature of the algorithms we
use implies that there tends to be a large diversity at the beginning and very little

towards the end.

Hopefully through the correct choice of operators, we achieve a balance between
exploration and exploitation and our solutions steadily get better.

Although a great deal of the evolutionary computing literature concerns compar-
isons of one algorithm to another, some general points about the advantages of evo-

lutionary computing techniques can be made:

Widely applicable.

Low development and application cost.

Easily incorporated into other methods.

Solutions are interpretable.

Can be run interactively and allows incorporation of user-proposed solutions.
Provide many alternative solutions.

‘Whilst they have been shown to be useful in many areas, evolutionary computing
techniques have several disadvantages when compared to some other techniques:

No guarantee for optimal solution within finite time.
Weak theoretical basis.

May need parameter tuning for good performance.
Often computationally expensive and thus slow.

Apart from the computational expense, perhaps that which most directly effects the
acceptance of evolutionary computing is the weakness of their theoretical basis.
With no theory, we are left with a set of rules of thumb for choosing and tuning the

algorithms.

&

G e T

i
3

A

&

een

yar-

iting

s the
yasis.
g the

Evolutionary Computing in Design Search and Optimisation

3 Evolutionary Computing in Design Search and Optimisation

When actually implementing an evolutionary computing algorithm we are presented
with a wide range of choices. Which algorithm should we use? Which operators
should we use? How do we set the parameters? There are a number of books avail-
able which help with these questions [1-4,7]; however, when using these algorithms
in engineering design we have a number of other additional issues which must be

considered.

3.1 Representation

Deciding on a good representation is fundamental to the performance of evolution-
ary computing techniques. The algorithms work on numbers, usually binary, but we
are not trying to design a string of numbers. We may be trying to design a wing, a
communications network or a schedule, and in some way we have to link the two
together. This point turns out to be absolutely critical to the success of the applica-
tion.

It is self-evidently true that we can trade-off the ability of any representation to be
compact, against its ability to represent all possible designs. This is a really fun-
damental decision. Do we want to describe any possible design or do we want to
describe something in a small region around where we currently stand?

If we are using an evolutionary algorithm to design the wing for a jet aircraft, do

we want to think about bi-planes? Probably not. Do we want to consider a wing of

alternative materials? Maybe. Someone has to make these decisions and it cannot be |
done without some domain expertise. Experience shows you need a domain expert

and an evolutionary computation expert together, as it is this critical stage which

often determines the outcome of the project.

If we again consider our wing design problem suggested above, the classical aero-
dynamics of the wing are based on concepts of wing span, sweep, chord and camber.
The interesting thing about these words is that these are ways which aerodynami-
cists have worked out to describe wings. They are a particular representation of a
wing which is relevant when considering the flow of air over it.

An alternative would be to use the x,y and z coordinates for the surfaces. This
presents the problem that whilst we can describe a wing, we can also describe vir-
tually anything else as well. Moving down the trade-off in compactness, we are
increasing the complexity of the object which we can describe and are thus increas-
ing the domain in which the potential designs can exist. We are making the problem
potentially harder and if we do not need the complexity at this level, we run the risk
of making the problem almost insoluble.

The opposite danger comes from sticking too rigidly to an existing representation.
Through existing design techniques the representation may have become so spe-
cific that it traps the possible solutions into a local optimum and does not have the
generality to describe wing shapes which may indeed be better.

A. Keane

Choices across this sort of domain make a real difference and it is clear that they
cannot be made without some domain knowledge.

3.2 Constraints and Multiple Objectives

Often the objectives of a design are not completely defined. An engineer will of-
ten have multiple objectives and in some sort of hierarchy. Unless this appraisal
of potential designs is somehow formulated and included in the analysis code, the
expectations of the engineer will differ from the designs which our algorithm 18

actually producing.

Constraints are another issue which is yet to be fully addressed. How do we handle
a list of certain criteria which invalidate a particular design? There are a number of
techniques, some of which are discussed by Eiben in this volume (page 13), and we

must decide which one is most relevant.

3.3 Mutation

cal to a lot of these results. It is often said to be there just to ensure

Mutation is criti :
that every part of the search space may be reached. However, successful search
ion without crossover. Indeed

algorithms are often run just using mutation and selecti
evolutionary strategies are predominantly used in this fashion.

¢ making local steps in our landscape. Our
hould mean that we are making
dically different solution.

The idea behind mutation is that we ar
choice of mutation operator and representation s
small changes to our design and not leaping to ara

R

3.4 Recombination

Recombination or crossover allows parents to pass on some of their characteristics
to their children. The motivation being that we can use good parents to develop even
better children. There are many ways of doing this but all involve the combination
of parts of one parent with the complementary parts from another.

There is a trade-off between recombination and mutation which reflects some of the
history of the trade-off between the various communities. Recombination tends to
be seen as more of an exploitation operator and mutation as more of a exploration
operator. Some people would tend to suggest mixing these in, so we do more ex-
ploration at the beginning and more exploitation towards the end. These are more
examples of parameter and algorithm tuning which are dictated by rules of thumb

rather than a solid theoretical basis.

t they

11 of-
raisal
>, the
m is

indle
er of
dwe

sure
arch
leed

Our
king

stics
ven
tion

Evolutionary Computing in Design Search and Optimisation
3.5 Niching

When we initially discussed optimisation, we considered trying to find the single
global optimum in the problem. In engineering applications this may not be the case
and the question has to be asked whether we want the best solution or do we want to
know about a number of areas in the problem space where there are good candidate
solutions? Depending on our aspirations, we may want to impose some form of
niching techniques to allow the population to divide into smaller sub-populations,
each focused around a different part of the problem space.

3.6 Repeatability and Elitism

Evolutionary computing techniques are stochastic and thus no two runs will nec-
essarily produce the same results. Whilst in some applications this is acceptable, it
can be quite discouraging to produce a particular good solution once and never to
be able to find it again.

This leads to many issues concerning the repeatability of evolutionary computing
algorithms. Do we just want to get one very good solution or do we want a good
solution every time? If we were doing process scheduling we might settle for the
former but an automotive engineer designing a car would probably prefer the latter.

Another concern which stems from the stochastic nature of the algorithm, is that a
good solution once found within the population may be lost later in the evolution.
Whilst it always makes sense to keep a record of the best solutions, elitism strategies
ensure that these solutions stay in the population.

3.7 When to Stop?

Having set up the representation and run the evolutionary computing algorithm, the
final decision is when to stop it. Without any prior knowledge, it is impossible to tell
whether the best solution has been reached. The decision most often comes down to
one of time and computing resources.

4 An Example of EC Design

As an example of the techniques and problems discussed we will consider an actual
case of an evolutionary computing algorithm being used to solve an engineering
problem. Figure 2 shows a photograph from a NASA mission in 1987 as part of a
proof of concept programme to show that astronauts could build structures in space.

One of the problems with these structures is that they tend to have very severe vibra-
tion problems. They are light regular alloy structures in an environment where there

A. Keane

Figure 2. NASA photograph showing an astronaut constructing a boom in space

is no air to provide damping. We started to look at the vibrational characteristics of
structures like these when subject to some vibrational noise at one end [6,5] . The
objective was to use evolutionary computing techniques to design the geometry of
the beam such that the vibrational noise does not travel through it. This is a straight-
forward engineering job which is actually critical to both ESA and NASA who plan
to launch future missions with booms of this type fifty metres in length.

Figure 3. Diagram of simple 2D boom design

s of
The
y of
sht-
slan

Evolutionary Computing in Design Search and Optimisation

[nitially a flat two-dimensional beam was considered. As in the cases discussed
previously, we are combining computational expensive structural analysis routines
with an optimisation technique. Figure 3 shows the initial simple two-dimensional
boom design which we are trying to improve upon.

Figure 4. Final GA optimised 2D boom design

A genetic algorithm was used for the optimisation with population size of 300. It
was run for fifteen generations which ideally would have been longer but for the
high computational cost of evaluating each design. As it was, the complete run took
three weeks of computation using eleven parallel workstations. Figure 4 shows the
best design found by the GA at the end of the run.

Having obtained this design, it was actually constructed and tested for vibrational
performance ~ a check that the improvements predicted by the analysis code could
be realised in actuality. Figure 5 shows a comparison of the initial and final beam
vibrational characteristics. The shaded area in the center, from 100-250 Hz, repre-
sents the range of frequencies over which the analysis code was run and is thus the
range over which the response has been optimised. The interesting thing about this
graph is that the vertical scale is in decades of performance and we have something
like three decades of improvement in the vibration performance. It is not often that
you can improve things by several thousands of percent.

Figure 6 shows the results of applying the same technique to the three-dimensional
boom shown in the photograph. Obviously, whilst it has improved vibration charac-
teristics, it is somewhat harder to manufacture. This illustrates the point that unless
included in the analysis code, one cannot expect all the engineering criteria to be
satisfied.

10

e Initial
T Optimised

Log, [Average Mobility ~2]

L

Frequency (Hz)

Figure 5. Comparison of vibrational characteristics for the initial and optimised 2D boom
design

Figure 6. Final GA optimised 3D boom design

5 Conclusions

Evolutionary computing algorithms have been shown to be of great value in design
search and optimisation. The concept of a problem solving environment clearly in-
creases the utility of these algorithms but the problems of computational expense

1 boom

Evolutionary Computing in Desigﬁ Search and Optimisation 11

must be addressed. This will not come through improvements in hardware as our
rising aspirations continually outstrip the improvement in processor performance.

A short-term goal to address this issue, is to look at a layered approach to models
in order to enhance speed and better represent what the user wants. A more medium
term goal would be the use of meta-computing techniques to fully manage the avail-
able corporate computing resources. Long-term goals — possibly twenty years away
- are fully agent-based environments which would offer seamless integration of op-
timisation techniques, computing resources, and access to corporate databases.’

However this work progresses, over the next ten years evolutionary search using
expensive modelling techniques will doubtless become common-place.

References

1. T. Bdck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evo-

lutionary Programming, Genetic Algorithms. Oxford University Press, Oxford, 1996.

L. Davis, M. Vose, and K. De T ong. Evolutionary Algorithms. Volumes in Mathematics

and Its Applications, Vol 111. Springer-Verlag, Berlin Heidelberg New York, 1996.

D. Fogel. Evolutionary Computation: The Fossil Record. IEEE Press, New York, 1998.

4. D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA, 1988.

5. A.J. Keane. Experiences with optimizers in structural design. In I. C. Parmee, editor,
Proceedings of the Conference on Adaptive Computing in Engineering Design and
Control 94, pages 14-27. PEDC, Plymouth, 1994.

6. A.J. Keane and S. M. Brown. The design of a satellite boom with enhanced vibration
performance using genetic algorithm techniques. In I. C. Parmee, editor, Proceed-
ings of the Conference on'Adapzive Computing in Engineering Design and Control 96,
pages 107-113. PEDC, Plymouth, 1996.

. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Boston, MA, 1996.

58

(U5}

