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Abstract

Recent developments in aerospace design systems are being driven by studies in a number of areas including new software methodologies,
advanced approximation techniques, data archiving and fusion methods, artificial intelligence, and the natural biology and socio-economic
behaviour of species together with the continuing developments in computational hardware. Advances in these areas are leading to
interesting new ways of managing the design process when dealing with increasingly complex systems and also increasingly complex
design organizations. This work covers topics as diverse as the formal optimisation of differential equation models, the management of
workstation clusters in design offices and the re-use of linguistically formulated knowledge. Collectively, such studies allow the production
of problem solving environments, where a wide range of approaches can be readily integrated by the design team to suit the problem in hand.

The ideas discussed in this paper have been formed by the authors’ experiences gained in aero-engine, aircraft and satellite design
optimisation. They are not meant to be exhaustive or prescriptive, but instead present a personal view of some of the challenges that lie

ahead. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Over the last 30 years, the process of engineering design
has been transformed by the introduction of massive
computing power. There has been a move away from
paper-based systems towards 3D solid models and computer
simulations. This has allowed the development of increas-
ingly sophisticated products such as the modern personal
computer, the space telescope and large airliners. It remains
the case, however, that we still desire to produce ever-more
complex engineering systems [1]. Our ability to use compu-
ters to design and predict the performance of these systems
is now being hampered by our methods for producing and
managing the design process and associated computer soft-
ware. Moreover, the software that we do produce does not
easily integrate with existing software and is, additionally,
prone to bugs and errors that are highly expensive to correct.
It also tends to be integrated into systems by software
specialists and delivered ‘shrink wrapped’ to designers,
whereas designers would prefer to mix and match methods
themselves as they tackle each new problem, but without
recourse to writing software in the traditional way. Finally,
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many of the systems we do have are not human centred in
nature and so do not allow design teams to give of their best.
Essentially, we need a ‘paradigm shift’ in engineering
design systems — a new approach to the problem.

Nature by contrast, finds little difficulty in producing
incredibly sophisticated systems. Even the most simple
plant or animal represents a triumph of design that has
been achieved without any silicon based computational
effort. Of course, the most complex systems we are aware
of are the human brains that we all take so much for granted.
The key feature of biological systems is their ability to adapt
and show ‘emergent’ behaviour. The adaptation takes place
on a range of time scales from the very short to the extre-
mely long. Memory can be a very short-term process.
Darwinian evolution can take aeons (although it is worth
recalling that mankind, for example, has only existed for
perhaps 2000 generations). Moreover, this adaptation may
be in response to changes in the environment or to the
presence and behaviour of other species or other members
of the same species. In all cases, however, we see adaptation.
The emergent properties of communities can be startling
in their complexity. Study of a single insect in isolation
would never lead one to expect the amazing structures
that colonies of insects can produce. Equally, the processes
by which humans experiment with sounds when learning
language, although commonplace, are staggering in their
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final results. It is therefore natural to speculate that engi-
neering systems, which also adapt and develop over time
may overcome some of the limitations of our currently
deterministic, pre-planned ‘open loop’ approach to design.

The idea of adaptation in engineering systems and in
particular, engineering software is not a new one. However,
some remarkable progress has recently been made in this
area. The whole idea of artificial life is one that excites the
imagination and offers very significant advances in the way
we engineer the products we need. There are a number of
key technologies that underpin the development of artificial
life. They span genetic algorithms, neural nets, genetic
programming, robotics, knowledge management, modern
control systems design, expert systems, knowledge extrac-
tion, data mining, multimedia (MM) systems, computa-
tional resource management, etc.

This paper discusses some of these aspects and how they
can be used to inspire the development of better paradigms
for engineering design. These paradigms need to accommo-
date the behaviour of human designers but also the compu-
ter systems that they have access to. People cannot be
directed in the same way as computers, and due allowance
must be made for their hopes and aspirations. Equally, it is
becoming clear that it is no longer sensible to assume that
modern design computation can be rigorously policed and
standards rigidly enforced. Systems need to be tolerant of a
multiplicity of codes, standards, processor types, operating
systems and less than perfect software development,
networking and resilience. Only if we can integrate human
aspirations and the explosion of modern computing technol-
ogy in an adaptive and intelligent fashion, we will be able to
design the systems we desire over the next millennium.

2. The traditional approach

The traditional approach to design has been to view the
process as a sequence of events that are dealt with in series.
Sometimes, this sequence is passed through only once, but
more commonly it is cycled through a number of times.
Traditionally, the design starts with some kind of concept
decision-making. The concept design is then passed to
embodiment design and detail design for refinement before
finally going to manufacturing design and the product
manufacturing process. On many occasions, embodiment
or detailed design has a major influence on the original
concept and it then needs refining and so on. This process
can be illustrated by a design spiral in which a series of
domains are investigated in turn, at ever increasing levels
of detail until the final design has been produced, see Fig. 1.
In whatever framework this process is set out, the key
element is the transition of data from one level of the design
process to the next in an orderly, pre-planned sequential
fashion. Usually this requires standards for the transfer of
data to be rigidly adhered to and also for software to be
compatible with the approach. Moreover, in this process
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Fig. 1. An aerospace design spiral.

individual designers look to take control over only one parti-
cular stage and have little interest in the others. In addition,
engineering specialists like structural engineers or materials
scientists feel ownership of only very limited aspects of the
process. Lastly, this approach does not recognize that design
teams may be spread over different time zones and sites and
over organisations that may use different computer systems
for similar tasks (consider the many finite element or CAD
packages currently in widespread use, even within single
companies).

There are a number of key problems with this approach to
design as systems become more and more complex. For
example, it is not normally possible for the stages of design,
shown in Fig. 1 to proceed in parallel without design-times
becoming too long for current needs. Equally, there is
usually a mismatch between the analysis methods used in
one design stage and those in the next. It is quite common
for the concept design engineer to use very crude methods
for analysing the stresses in a product or the fluid flow
around it while the detailed design team accesses far more
sophisticated tools. Clearly, there is then scope for difficul-
ties when designs are passed between these groups. Another
aspect that limits the design process is the human factors
that come into play when design teams are brought together.
In a world of rapidly changing design and rapidly changing
manpower, it is crucial that the design process is not
disrupted by changes in personnel or in design methodol-
ogy.

In fact, there are a whole host of improvements that
could be sought in the design process and supporting
technologies. The following, by no means exhaustive,
list sets out some of those that have been identified in recent
studies:

e improve quality control;
e facilitate team decision-making;
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e improve design environments;

create a seamless integration between design and

analysis;

understand the product realisation process;

archival and re-use of design history;

determine the impact of decisions;

promote continuous learning;

integration between analysis tools;

enhance creativity and innovation;

reduce development time by maximising parallelism;

improve information infrastructure;

produce globally optimized designs;

manage complexity and risk;

enhance critical thinking and evaluation methods;

integrate product design data;

improve communication of design specifications to

remote sites and companies;

e integrate product and manufacturing process develop-
ment;

¢ integrate large-scale systems.
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It is clear that there is much to do and we must therefore
seek radical new ways of attempting to equip, direct and
structure the design process if we are to produce more
complex designs in faster time-scales. Moreover, we must
draw on a wide range of disciplines if we are to make real
headway. Unfortunately, design research itself has by no
means been as productive as one could wish. We must there-
fore also seek ways to better implement and deliver the
ideas being formulated in the research community. We
must also recognise, however, that any one vision may be
mistaken and so we should aim to progress a number of
visions simultaneously until it becomes clear which one
will offer most benefit in any given situation. Thus, we
must build system demonstrators and deliver demon-
strations of numerous ways of working if we are to be
sure of making steady progress. These must lead to feedback
from practising design staff which is acknowledged and
acted upon — delivering design systems to teams that
have had no part in their development will almost certainly
lead to their being ignored by the very people they are
developed for.

3. Problem solving environments

Recently, much interest has been focussed on what are
termed problem solving environments (PSEs). Note that
although this term is relatively new, the idea behind it is
not, see for example Ref. [2]. PSEs aim to assist engineers to
help them solve the tasks they have to undertake. A design
PSE must be able to handle all of the requirements of a
design team and seamlessly integrate between the stages
of the design process. Moreover, it must be configurable
by the design team itself to suit each new problem as it
is tackled. It is already possible to specify some of the

component parts that such environments will need to
encompass:

e the ability to capture knowledge about and used in the
design process as it happens;

e the ability to provide advice and knowledge to the
designers at appropriate times and at speeds/volumes
the designer can cope with;

e the ability to undertake routine tasks without prompting,
based on the current status of the design;

¢ the ability to support various workflow models that the
team may adopt;

e the ability to deal with design systems integration and
communication issues as well as mathematically based
models (e.g. my code can use your code, my code can use
your data, my program starts automatically when yours
finishes, etc.);

e the ability to deal with multiple data sources, and
complex and changing work flows;

e the use of swarms of communicating but small-scale,
autonomous systems, i.e. intelligent agents;

e the aiding of individual and group decision taking in the
face of uncertainty, i.e. the management of risk;

e human centred, individually customized computing and
interfaces;

e enhanced methods of interacting with computers, e.g.
virtual reality (VR), MM, etc.;

e tele-working and virtual teams using interfaces with
common look and feel;

e interaction with extended enterprise business process
systems;

e the ability to draw on large numbers of heterogeneous,
widely dispersed computing nodes and their software
which can me managed with limited overhead.

Those engaged in design research are focussing on these
issues and how they can be taken forward. It seems clear,
however, that a user-reconfigurable, computational frame-
work encompassing such ideas on a global network will
form the backbone of a good design PSE.

4. The structure of a problem solving environment

In order to place some of these ideas in context, it is helpful
to sketch out the structure of a basic aerospace design PSE. We
can begin this process by describing a number of elements that
are familiar to all those involved in design and which we will
wish to incorporate. First must come the design team itself:
notice that we are here concerned with a group of people and
not the traditional single ‘user’ often seen in many descriptions
of software. Moreover, we accept from the outset that these
people will have differing backgrounds and tasks and will
probably not be collocated or working in the same time
zones. They will also have differing levels of experience and
career aspirations that must be catered for if we are to ensure
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that all can engage creatively in the design process. They may
also disagree on how to proceed at some points in the process
and such conflicts must be resolved in the best interests of the
design and the team.

The databases that hold the description of the current
manifestation of the product (or range of products) being
worked on form another key building block. These should,
however, be considered along with other associated, but
informally structured data (hopefully held in digital format
but also encompassing video, voice and pictorial data, i.e.
MM). Again we do not assume a single database with a
unified electronic product model. Although such a single
model is often seen as desirable by company senior manage-
ment it flies in the face of reality — design teams always
hold multiple, overlapping views of the product(s) and their
design databases often include personal and informal collec-
tions of information and knowledge which we should prop-
erly allow to be included in a good PSE. In fact the value in
experienced staff often lies in their informal stores of knowl-
edge and the associated understanding of where connected
relevant data lies. To build a good, human centred, creativ-
ity enhancing PSE, we must accept these features ab initio
and work with them, not assume they are difficulties that
have to be ironed out in some brave new world.

Next comes a collection of computing nodes connected in
some way via a network of variable and uncertain band-
width. These nodes will be highly varied in type, capability,
reliability and importance to the design process. Moreover,
there will be very many such nodes that can potentially be
called upon, i.e. all those owned by the team, their employ-
ing companies and their partners together with national or
governmental facilities (i.e. certainly thousands and perhaps
tens of thousands). This infrastructure is increasingly being
referred to as ‘the grid’ and it is again far from the homo-
geneous well managed and policed system that management
might desire. Thus, our PSE must be tolerant of such
vagaries and be able to get the best from the system without
depending on perfect reliability, uniform connectivity, zero
latency, etc. In fact, it must be as tolerant of the vagaries of
the grid as humans are of each other. This will partly come
from more sophisticated software agents but aiso from

duplication of processes that are of higher importance.
(We already take this for granted in well managed local
disk store with its RAID systems and robotic tape backup
— we must move processing capabilities to similar levels of
resilience by a variety of means, including migration or
duplication of processes and communication streams.)

Design computing nodes are increasingly used to support
a wide range of analysis codes that are used to predict the
performance of products. Note that although these may be
used to add to our knowledge of the product and its perfor-
mance, their fundamental task is not to change the product,
i.e. they are aids for designers rather than being design tools
per se. Here we retain this appellation for tools that can be
used to alter the design in some computer initiated way e.g.
as can optimisation methods. Analysis codes do, however,
play a central role in design and also consume considerable
quantities of computing resource. One must not, however,
mistake the computational model for the product itself in
this process, nor assume that modelling is a goal in itself:
rather analysis is used by designers to aid in taking decisions
on how to change the design. If the designer is content with
the current product and has no intention of changing it then
analysis ceases to have any relevance to the design process
(unless it is used offline to enhance the capabilities of the PSE
in preparation for the next design). It is worth noting, as an
aside, that by far the greatest effort of university science and
engineering departments in developing computer codes has
been in the pursuit of increasingly accurate analysis codes:
relatively little effort has been expended by comparison on
systems for modifying designs or for helping designers
manage the design process. The current capabilities of modern
contact mechanics finite element analysis (FEA) systems and
Navier Stokes computational fluid dynamics (CFD) solvers
would seem to suggest that enhancements to the design
process will be more readily obtained in other areas, than in
continued further refinement of already astonishingly accurate
tools: the law of diminishing returns is beginning to apply in
the field of engineering computational analysis.

Fig. 2 shows the traditional single user, CAD based version
of these tools (using the commercial CAD systems of CADDS,
Pro-E, I-DEAS, etc.) connected in a conventional form as

User's
Workstation

Corporate Intranet

[ I

Corporate Analysis Compute Compute

CAD System(s) Software Node Node
{ CADDS IDEAS | I Structures Costing }
[ Pro-E etc., J IPerformance efc., I

Fig. 2. A traditional (current technology) software environment.
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hallmark of a PSE. This category of PSE tools includes,
amongst others:

commonly in use today. We may identify some of the weak-
nesses in such systems that make clearer the needs of a good
PSE. In no particular order we may observe that:

there is no system for deciding which member of the
design team has access to which computing facilities;
there is no rational for archiving the results of one design
process to help another, whether concurrent or in the future;
there is no system for ensuring that all members of the team
can have visibility of the work of others;

there are no aids that might suggest what changes the team
might make to improve their design;

the model implicitly assumes that data can be passed
between machines and processes without interruption or
difficulty in interpretation;

e load scheduling and resource management software;

backbone software that is tolerant of heterogeneous hard-
ware environments and that can work in a distributed
environment;

tools to enable individual users to work in personalised
environments;

tools to ensure resilience against computing resource
limitations or failures;

optimisation tools;

computation check-pointing and restarting tools;
approximation and data-fusion tools;

knowledge capture and sharing tools;

information archiving and re-use tools;

MM capabilities;

case-based and rule-based reasoning systems;

tools that allow global and 24 h working;

tools that allow the design team to reconfigure their PSE to
suit the problem in hand without recourse to writing code
(e.g. drag and drop linking).

e the model implicitly assumes that the computing nodes are
fast enough to support the analysis requirements of the
designer.

e & & © ® © © @ o

To address some or all of these needs we require a further class
of objects that do not fit into the previous categories of people,
databases, computing resources and analysis codes. It is the
central tenet of this article that the presence of such additional

modules linked together in a user reconfigurable way is the Fig. 3 shows a reworked version of Fig. 2, where a number of

Team Leader’s
W orkstation

User’s User’s User's
Workstaticn Workstation Workstation
[ I
Multimedia | |
and VR system
[ I I ]
Data-base Design Process Load CORBA
“WAN-“_“T/I—aster Monitor Master ORB
Design | | Design | | Loading Data-fusion
Data-base Archive Data-base System
Optimization
Design Design System
Data-base Data-base I
Optimization | | Optimization
Rule-base Case-base
______ [
| I | 1
Compute Compute Compute Master Compute Compute
Node Node Node Node Node Node
Compute Compute

Slave Slave Node Node
Node Node

Slave efc.,

Node

Fig. 3. An embryonic PSE.
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more advanced tools have been added and wide area network
(WAN) connectivity included, and which now offers some
PSE capability. Moreover, it looks rather advanced when
seen from the viewpoint of most aerospace design systems
as they currently exist.

5. Existing software systems and their evolution

Study of the software currently available to design teams
reveals an almost organic and often unstated evolution of
traditional packages in the direction of PSE development.
For example, the I-DEAS product marketed by SDRC [3]
increasingly covers the whole range of mechanical engi-
neering tools from 3D CAD through analysis to manufac-
ture. Equally a number of specialist FEA and CFD codes are
now offering design optimisation capabilities. Further there
are a number of advanced optimisation packages currently
available that focus on the development of engineering
designs such as the iSIGHT package by the Engenious Soft-
ware Co. [4]. Alongside these ‘third party’ products a
number of the large international aerospace companies are
producing in house systems for their design staffs. Although
all of these offer some of the capabilities outlined above,
none was designed at the outset to provide the kind of
capabilities described here. They do not allow the kind of
‘plug and play’ capability for re-structuring the way the
systems work that designers desire, nor do they allow
ready integration of a variety of differing information
sources or use across heterogeneous non-resilient comput-
ing environments.

The future development of such systems will no doubt
continue apace but it seems clear that having some overview
of what such systems should ultimately be capable of will
help in this process [5]. Already it seems that adopting a
client/server architecture with distributed and re-usable
modules of the type adopted in the CORBA standards [6]
looks set to be one promising architecture. Another is the
adoption of autonomous agents that engaging in dialogues
with each other before carrying out transactions of some
kind [7]. It therefore makes sense to use these approaches
within research groups that are already studying many of the
other elements of engineering design software, even if they
seem somewhat cumbersome at first sight. This is the
approach being taken in the Computational Engineering
and Design Centre at the University of Southampton.

This process may be illustrated by reference to the
OPTIONS optimisation software tool developed by those
working at Southampton [8]. This tool, which was originally
written in the mid 1980s, is in use within several aerospace
companies and has been used to underpin a number of
research projects. A great deal of the underlying code in
the system is, however, written in Fortran and this must
be accommodated if the system is to be developed for future
use. It is thus typical of many items of legacy engineering
software from this and earlier periods which are still of great

value to the engineering community — although it might be
thought sensible to re-write such codes in modern
languages, economic limitations usually prevent this. It
must thus be deconstructed into usable chunks and wrapped
in more modem clothes, retaining what is good and well
tested from the past and only updating and modifying that
where there will be significant benefit (the same can be said
of many FEA, CFD and related numerical codes). This is
more readily achieved if the initial codes were well struc-
tured to begin with — fortunately OPTIONS is highly
modular in nature and uses a centralised database that
allows this kind of development. Even so the work involved
is not trivial.

Fig. 4 shows the original structure of the OPTIONS code.
Notice that although there is a centralised database here it
does not distinguish between product data and process data,
i.e. things such as the length of a wing are stored in the same
place as the size of the population used in a genetic algo-
rithm search. Additionally, the original system has a parallel
execution module that allows for load-balancing across
clusters of machines using NFS and Unix socket requests.
Both of these aspects are features we would choose to do
without in a modern PSE, instead relying on separate
distributed databases and CORBA modules, respectively,
to provide this functionality.

On the positive side OPTIONS does provide access to a
large collection of integrated search methods that can be
deployed independently or in series, depending on the
problem in hand, including response surface modelling [9]
and multi-objective optimisation [10], alongside the more
traditional single function based search. It also allows for
loose or tight coupling with analysis codes but needs such
interfaces to be hand-built for each new problem code.
OPTIONS has been applied to a number of problems over

User API
Interface

l |

Manual Optimization Data-base Graphics

Search Search Interface Subsystem

l ‘l Data-base

Parallel Stochastic Data-base Manipulation
Job Control | Searches
I | | OPTIVAR
Analysis Searches

Software

L Schwefel
Searches
Misc.

Fig. 4. The original structure of the OPTIONS code.
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Table 1
Initial design parameters, constraint values and objective function values

Lower limit  Value Upper limit  Quantity (units)

100 168 250 Wing area (m?)
6 9.07 12 Aspect ratio
0.2 0.313 0.45 Kink position
25 27.1 45 Sweep angle (°)
0.4 0.598 0.7 Inboard taper ratio
0.2 0.506 0.6 Outboard taper ratio
0.1 0.150 0.18 Root t/c
0.06 0.122 0.14 Kink t/c
0.06 0.122 0.14 Tip t/c
4.0 4.5 5.0 Tip washout (°)
0.65 0.75 0.84 Kink washout fraction
1,91,879  2,00,000 Wing weight (N)
40.0 4235 Wing volume (m®)
4.179 54 Pitch up margin
2.5 2.693 Undercarriage bay length (m)
3.12 D/q (m® — from empirical
code
2.85 D/q (m* — from CFD Euler
code

the years — most recently it has been used to provide a
multi-level or ‘zoom’ capability for concept design of
transonic aircraft wings [11]. In this study a series of analy-
sis codes offering different levels of fidelity were linked
together so that the user may readily change the sophistica-
tion of their analyses as an optimisation run progresses or
construct back-to-back data sets that allow meta-models to
be built that highlight the differences between the codes in
use.

The results from using this system to optimize a civil
transport aircraft wing for operation at Mach 0.785 and
a Reynolds number of 7.3 million illustrate its power.
The objective was minimization of wing drag (D/q) as
calculated by a commercial Euler CFD code but using
an empirical (and much faster) alternative code to speed
up the process. The target lift, wing weight, volume,
pitchup margin and root triangle layout were chosen
to be representative of a 220 seat wide body airliner.
The initial design point for this example is summarized
in Table 1, which details the starting values of the design
parameters, the constraint details and the drag values.
Notice that the drag values reported by the two codes differ
by some 9%.

A number of optimisation runs were carried out on this

problem, limited to at most 1000 full CFD evaluations. This
might normally be considered rather a small number of
evaluations for meaningful optimisation of such a problem,
but is not unreasonable for a code taking nearly four hours to
run. This leads to a total run time in serial processing of 24
weeks, or around three weeks using an eight-processor SGI
power challenge machine in parallel.

To begin with, a single level optimisation was carried out
using a genetic algorithm with a population size of 250 for
40 generations using the empirical code, see line 1 of Table
2. This shows that the empirical code allows a design to be
produced which, when analysed by the CFD code, shows
substantial improvements.

Next the best 100 members of the final population of the
10,000 step empirical search were used to form the initial
population of a CFD based GA search, which consisted of
10 generations of 100 members each, see line 2 of Table 1.
This approach results in further improvements, although
they are slight over just using the empirical search. Either
of these results is considerably better than those obtained
from using the same effort on the CFD based search
alone (here 10,000 empirical evaluations cost less than
a single CFD evaluation), see line 3 of the table, although
this final approach also significantly improves on the initial
design.

It is clear that such multi-level approaches work well and
that searches using more approximate methods should be
carried out before transferring effort to more complex ones.
Fig. 5 shows a CFD simulation created using the commer-
cial Euler code linked into this system. Unfortunately,
although powerful and representing a significant advance
over conventional practise, this system does not offer all
the flexibility that design teams would wish for, nor was it
simple to construct.

Fig. 6 shows how we might choose to break down a code
like OPTIONS into CORBA wrapped modules accessing
databases that can be used on a more ‘plug and play’
basis along with the necessary additional modules required
to provide the parallel execution and load balancing that has
been found so useful in the past. Clearly this system is still
far from complete and we are currently developing a
number of further modules to provide enhanced functional-
ity such as data archiving, retrieval and fusion plus case
based and expert system based reasoning (here just dealing
with search methodology). It does, however, conform to the
standards being adopted by NASA in their Computational
Aerosciences program [5].

Table 2

Results of the wing optimisations

No. Search and analysis method Empirical CFD Euler
(D/q in m?) (D/q in m?)

1 GA search, 10,000 empirical code evaluations 275 2.38

2 GA search, 10000 empirical code evaluations followed by 1000 CFD evaluations 2.75 2.37

3 GA search, 1000 CFD evaluations 3.02 2.54
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Fig. 5. The flow-field past a transonic wing body flying at Mach 0.75 computed using the Euler boundary coupled flow solver MGAERO.

These tend to span a wide range of areas and only a limited

6. Future plug-ins for problem solving environments
number can be outlined here.

Having described the basic structure of a PSE it is finally
worth discussing in more detail a number of the areas of 6.1. Model approximation and data-fusion
technology that are currently developing that will enhance

PSE capabilities and that are shown schematically in Fig. 3. One of the central problems with advanced, physics based

= Graphical User
Interface

| | Load
Master

L Compute Node

Compute Node
=
WAN
I
! ; ! . l
CORBA CORBA CORBA CORBA CORBA
Wrapper Wrapper Wrapper Wrapper Wrapper
Database Database Costing Performance etc., Optimization

Manipulation Search
Stochastic OPTIVAR
Searches Searches

Schwefel Misc.

Searches Searches

Fig. 6. The modules of OPTIONS broken apart and CORBA wrapped on a WAN.
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analysis codes is the great computational expense they
involve when used to model even modestly complex
systems. It has therefore been natural ever since com-
putational modelling began to develop a range of models
of varying degrees of fidelity. These then enable the user to
vary the degree of effort expended on a calculation by the
appropriate choice of model. Placed in a PSE context it is
possible to re-cast this process. Now the users decide how
important a calculation is by specifying how much of the
available time budget can be spared in this area and some
measure of desired precision. The PSE then samples the
available computing resources and solution methods and
constructs a meta-model of its world so as to suggest a
viable strategy to the users. This strategy may involve the
use of an expensive code in a parallel fashion, it might use
response surface methods together with model updating to
yield an approximate solution or it might aim to fuse the
data coming from a range of modelling tools of varying
complexity. All of these would be backed up by searches
in the available data-structures to see if existing data might
help or even supplant the need for fresh calculations. The
data sources may also provide information on the likely
fidelity to be achieved by the various methods given
previous results.

Preliminary studies in this area by the authors and
co-workers, see for example Refs. [12—14], have indicated
that approximating expensive functions by using knowledge
of the underlying physics is to be preferred but that when
this is not possible ‘black-box’ models can still be very
effective. Such models essentially provide the means to
interpolate in previously calculated data (a form of response
surface modelling) but additionally allow for data from
various computational models to be fused, along with any
prior information about the confidence a designer has in any
particular set of computations. Currently, this model build-
ing and data fusion process can require some experience to
give best results and it would clearly be desirable for any
PSE system to have embedded intelligence either via rule-
bases or case-bases.

6.2. Automated design archiving

During the design process a great deal of computational
effort is expended in various directions. Often the results
from these computations are discarded as the design evolves
and more refined models are adopted. This process can be
extremely wasteful as much of the discarded material can be
used to inform subsequent designs or subsequent design
processes, i.e. it may be that results can be used to seed
new calculations, used to improve ‘black box’ interpolators
of models or allow more informed choices about appropriate
design strategies. One effective way of doing this is to
archive all results as they are produced and then to post-
process these archives in such a way that useful information
can be extracted from them.

The archiving and retreival process is by no means simple

if the resulting systems are to generate more than just an
enormous unstructured collection of data. Schemes need to
be put in place to allow such data to be sensibly tagged as it
is created and then to be managed and phased out over time
once it has been collected, collated and used. A key to the
successful implementation of such strategies is that the
tagging must not require human intervention at create
time — experience shows that design staff are always too
pressed by their main functions to be prepared to expend this
effort, even though it may save them time later.

Subsequent use of archived data then requires an intelli-
gent query system since designers are not expert in the use
of things such as SQL and so ‘query by example’ type
approaches become important as does the ability of any
system to learn the kind of queries that typical users may
desire. Fortunately, a great deal of progress in this field is
being driven by the explosion in internet use and browser
technology. It is thus sensible to interface the data being
archived to some form of advanced mark-up language and
internet browser technology. Preliminary work in this field
using XML has shown great promise, see for example
Wason et al. [15].

Lastly, strategies must be adopted for the gradual
compaction and removal of data over time. This process
cannot simply equate age with lack of utility — rather as
data ages so it must be boiled down and consolidated so that
important key material that has been heavily used is retained
along with information that is particularly difficult to
recreate. Essentially, an electronic version of the old work-
book system that most aerospace companies used in the 50s,
60s and 70s must be put in place, especially for the designs
of products that may have long lifetimes and for which
design audit trails must be maintained (40 year lifetimes
are not uncommon for aircraft designs).

6.3. Load mastering and massively parallel computation

It is increasingly obvious that the only way that really
significant increases in computational speed for design
calculations will be achieved is via the mechanism of
massively parallel systems [1]. Computational facilities
with thousands of compute nodes will require powerful
load mastering software to be developed. Such tools will
need to go far beyond the products currently in use such
as LSF [16]. Such schemes will need to adopt a client/server
approach (and so might be CORBA based) and will need to
hold internal representations of both the available hardware
(including details about interconnection and latency issues)
and of sensible strategies to make use of these. Moreover,
any large system will obviously need multiple load master-
ing facilities and these will need to co-operate with each
other using agent-based approaches [7]. Additionally, it will
not be possible to assume that such systems will have very
high reliability and so multiple, redundant calculations will
be needed, i.e. redundant arrays of inexpensive CPU’s
(RAIC).
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6.4. Multimedia and virtual reality systems

More complex ways of interacting with design systems
are continuously emerging and it seems clear that both MM
and VR systems will play an important role in future PSEs.
Such systems should act as unifying agents that serve the
designer/design team by pulling together all the various PSE
resources and presenting information in a more meaningful
way. They should also hide complex PSE system details
from the designers thus allowing them to focus more on
real engineering problems. Any MM or VR software will
need natural language processing capabilities to support
interactive Q and A sessions with the users: moreover it is
desirable that such systems ask intelligent questions of the
users. It is clear that advanced systems that support user
interaction should have direct access to all design and
process databases (local as well as distributed). They should
be capable of intelligent retrieval of previous designs,
related problems, issues, etc., and weave then into a ‘design
story’ before presenting information to the user. For this
purpose they might use a case-based retrieval and reasoning
system (see for example Ref. [17]). They must also allow
co-viewing of design documents (even as they are being
modified) through the use of shared databases. At the
same time they should allow the designer/design team to
work on different parts of the design object as well as at
different levels of complexity. The implementation of such
an MM-VR system would typically require use of ‘immer-
sive’ technology and availability of high bandwidth links for
real time support.

6.5. Intelligent search and optimisation

Increasingly designers prefer to specify product goals
rather than product features. Thus a natural way of working
is to use goal-oriented software to help manipulate a design
to produce a better one. Optimisation methods do this and
have been available for very many years but have, until
recently, not been heavily used by the design community.
This situation is rapidly changing because computing power
now allows increasingly accurate analysis codes to be
deployed in this way, see for example the work reported
by Jameson [18] in a recent theme issue dedicated to opti-
misation. Even so, it remains difficult for everyday
designers to make use of this technology. First, they often
find it difficult to connect together all the elements they need
to correctly create a model, where changes in design deci-
sions can be automatically reflected in computed goals.
Secondly, even when they do they often cannot muster suffi-
cient computational resources without recourse to signifi-
cant efforts in connecting together the available computing
power. Thirdly, even if these first two hurdles are overcome
they often lack the required expertise in the use of search
methods such as genetic algorithms, simulated annealing,
etc., and therefore have little confidence that extensive

computational runs will produce worthwhile results as
opposed to just burning up compute cycles.

When seen from a PSE perspective the aspiration must be
for the designer to be able to specify the things that might be
changed, potential goals (often more than one) and
constraints together with a time or resources budget. The
PSE then should respond by suggesting strategies that may
solve this problem and analysis modules that may be used to
link together the goals and free variables. Moreover the
selection of appropriate modelling techniques should be
dealt with as described above, i.e. an appropriate mix of
fused and re-used data with sensible and sparing use of
new computational runs. The design team could then
probe the PSE as to why the strategies being suggested
have been chosen — probably the PSE would use a mix
of case-based reasoning and expert system knowledge to do
this and could then play back previous examples or expert
opinion as to the choices made. The team’s analysis experts
might then wish to refine the exact choices of analysis meth-
ods being adopted before authorizing the chosen strategy.
Having started a process the PSE should monitor its own
progress by comparison with previous similar work, using
its case-base, and adjust its own strategy on the fly, either
with or without consulting the team. Such ideas may seem
somewhat far-fetched but they do not require any tech-
nology not already deployed somewhere in the world of
computing today. What is needed is the effort to integrate
them into usable design systems.

7. Conclusions

In this paper, an attempt has been made to set out some of
the ways in which the evolution of software paradigms is
leading to the development of a new generation of systems
to aid design engineers. These systems are termed PSE and
their aim is to provide a flexible means whereby the engi-
neer spends more time thinking about and solving the
current and future design problems and less on moving
data between disparate and disconnected analysis codes
with few ideas on how to improve a product. Moreover,
such systems will need to place a strong emphasis on a
human centred team-working approach that allows the
people in the team to give of their best. Such systems will
perhaps be best measured by the demise of internet jokes
which give spoof dialogues of the difficulties people have in
dealing with their PC’s! The goal must be to have systems
that people hardly notice rather than ones that they have to
fight and manipulate with cunning dodges to achieve their
goals.
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