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Abstract

Stochastic reduced basis methods (SRBMs) are
a class of numerical techniques for approximately
computing the response of stochastic systems.
The basic idea is to approximate the response
using a linear combination of stochastic basis
vectors with undetermined coefficients. In this
paper, we examine the theoretical foundations
of SRBMs by exploring their relationship with
Krylov subspace methods for deterministic systems.
The mathematical justification for employing the
terms of the stochastic Krylov subspace as basis
vectors is presented. It is shown that SRBMs are a
stochastic generalization of preconditioned Krylov
subspace methods. Subsequently, some approaches
for stochastic generalization of the Bubnov-Galerkin
scheme are analyzed. We also address the issue of
computing a posteriori error estimates of SRBMs.
Some preliminary numerical studies are presented
for examining the accuracy of the error estimates.
The paper concludes with a discussion of ongoing
work on algebraic random eigenvalue problems.

Introduction

The field of computational stochastic mechan-
ics in general is concerned with the development
of efficient numerical schemes for analysis of sys-
tems governed by stochastic partial differential equa-
tions (SPDEs). A fundamental topic in this area
involves addressing issues related to realistic mod-
eling of parametric uncertainty. Given the repre-
sentation of the uncertain system parameters and
the environment either in terms of random fields or
random variables, it becomes possible to integrate
discretization methods for the response and the ran-
dom fields to arrive at a system of coupled ordinary
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differential equations (ODEs) with random coeffi-
cients; see, for example, Ghanem and Spanos'. In
such approaches, randomness is embodied as an ad-
ditional dimension of the problem. For this line of
approach to be successful in practice, it is crucial
to have general-purpose numerical schemes for the
solution of random algebraic equations.

Over the last few decades, researchers in stochas-
tic mechanics have mostly used perturbation or
series expansion methods for solving a finite-
dimensional approximation of the governing SPDE;
see, for example, Kleiber and Hien?. These meth-
ods although general-purpose in scope, have lim-
ited accuracy for large stochasticity. Few papers in
the literature have focused on alternative approaches
which may potentially lead to physics-based, general
purpose methods in the long term future. Some
notable exceptions include the so-called spectral
stochastic finite element method (SSFEM)'? and
variational principles for stochastic systems.* An ex-
cellent discussion on the motivation for additional
work in the area of computational stochastic me-
chanics has been presented by Elishakoff and Ren®.

More recently, Nair and Keane®7? introduced

stochastic reduced basis methods (SRBMs) for nu-
merical solution of systems of linear algebraic equa-~
tions with random coefficients. SRBMs are essen-
tially a family of numerical schemes for computing
an approximate solution to a system of linear alge-
braic equations with a random coefficient matrix and
right hand side. It was proposed that the solution
process (say x(6) € R™ ) can be approximated in a
subspace spanned by a set of stochastic basis vectors
as

x(8) = £0(8)%0(8) + ... Em—1(0)9,,_1(8), (1)

where 1,(8), ¥,(8), ... ,1,,_,(6) € R" denotes a
set of m stochastic basis vectors, and & (@), £1(8),

., Em—1(8) € R" denotes the m random undeter-
mined coefficients in the reduced basis. Note that for
the sake of computational efficiency we will choose
m <<< n. Equation (1) will be referred to as
the stochastic reduced basis representation (SRBR)
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throughout this paper.

In reference®, it was proposed that the terms of
the Neumann expansion series can be deployed as
stochastic basis vectors. An alternative choice in-
volving the use of the first-order Taylor series was
also suggested. The undetermined coefficients in the
SRBR were then computed using stochastic variants
of the Bubnov-Galerkin (BG) scheme. Some ideas
on the extension of SRBMs to nonlinear stochastic
systems were also presented without numerical vali-
dation. In summary, the key ingredients of SRBMs
are: (a) the choice of stochastic basis vectors, and
(b) the BG scheme employed to compute the unde-
termined coefficients in the SRBR. Note that there
also exists an alternative approach for computing the
coefficients of the SRBR; see Appendix A for details.

This paper is concerned with the theoretical foun-
dations of SRBMs. Much of the theoretical analysis
presented in this paper stems from the observation
that the terms of the Neumann series form a pre-
conditioned stochastic Krylov subspace (see the next
section for the definition of a stochastic Krylov sub-
space). In numerical linear algebra, methods based
on the Krylov subspace have a history of nearly 50
years of existence, and they continue to be an area
of extensive research; see Saad and Van der Vorst®
for a historical overview. The literature on this topic
dedicated to the solution of deterministic linear sys-
tems is vast; the interested reader is referred to the
books by Saad®, Axelsson'®, and Golub and Van
Loan'!. Not surprisingly, there are intimate connec-
tions between SRBMs and preconditioned solvers for
deterministic systems. This observation provides us
access to a solid theoretical foundation using which
the theoretical frontiers of numerical stochastic lin-
ear algebra can be extended.

Another motivation for the present research
comes from a recent theoretical study presented by
Fokkema et al.!? Tt was shown that a wide class of
Krylov subspace methods can be viewed as instances
of an accelerated inexact Newton scheme. This is a
very important observation which may potentially
aid us in the task of design and analysis of mathe-
matically rigorous extensions of SRBMs for analysis
of nonlinear stochastic systems.

In this paper, we present the mathematical jus-
tification for employing the terms of the stochastic
Krylov subspace as basis vectors to compute the so-
lution of a system of linear random algebraic equa-
tions. A stochastic version of Arnoldi’s method is
then presented for computing a set of orthonormal
basis vectors spanning the stochastic Krylov sub-
space. This version of Arnoldi’s method also helps to
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clarify the links between SRBMs and Krylov meth-
ods for deterministic linear systems. Subsequently,
the idea behind using the preconditioned stochastic
Krylov subspace is discussed.

Various approaches for stochastic generalization
of the BG scheme are then analyzed. This analy-
sis shows that the BG scheme can only be imple-
mented in an approximate sense for stochastic prob-
lems. As discussed in reference®, the BG scheme can
be implemented exactly (in a computationally effi-
cient fashion) only for special cases involving 2 to
3 stochastic basis vectors. We show that the BG
scheme commonly used in the literature (see, for
example, Ghanem and Spanos!) is a zero-order ap-
proximation. Further, the present analysis suggests
that, in practice, the order of the approximation can
be potentially improved by including higher-order
terms. Conditions under which this improvement is
possible are postulated.

Next, we consider the problem of efficiently com-
puting a posteriori error estimates for SRBMs. In
contrast to deterministic problems, the error esti-
mates are themselves random functions. Formula-
tions are hence developed for approximately com-
puting error estimates for the first and second or-
der statistics of the computed solution. Some pre-
liminary studies on the accuracy of the error esti-
mates are presented for static response analysis of a
stochastic structural system. Motivated by the hy-
brid stochastic finite element formulation recently
proposed by Ghanem'”, a simulation scheme is then
presented for error estimation as well improvement
of the accuracy of SRBM formulation.

We conclude this paper with a discussion of
ongoing work on solving algebraic random eigen-
value problems using a stochastic reduced basis
representation. The idea of using a preconditioned
stochastic subspace to achieve this goal is outlined.

Preliminaries

We use the following notation throughout this pa-
per. For the sake of generality, all the vector spaces
considered are complex, unless otherwise stated.
Random quantities are indicated explicitly as a func-
tion of @ or 1, and the ensemble average is denoted
as (.). We denote vectors and matrices by lower
case and upper case bold letters, respectively. We
use the notation x* to denote the complex conju-
gate transpose of a vector/matrix (if it is complex),
or the transpose (if it is real). We now introduce
the following definitions which are extensively used
throughout this paper.
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Definition 1: Two random vectors x; (8) and x2(8)
€ €™ are said to be orthogonal in the Hilbert space
of random variables if (x}(8)x2(0)) = 0.

Definition 2: Two random vectors x; (8) and x2(0)
€ €" are said to be orthogonal in an exact sense if
Px;(0)x2(0) =0] = 1.

The reader is referred to reference! for a more for-
mal review of the origins of Definition 1. Definition
2 (which is rather restrictive) is a trivial probabilis-
tic interpretation of the definition of orthogonality
between two deterministic vectors.

Definition 3: The stochastic Krylov subspace of
order m is defined as

Km(B(6),y(8)) = span{y(6), B(9)y(6), B*(8)y(6),

-, BO)™ y(0)}
where B(8) € €"*" is a random matrix, and y (@) €
C" is either a random or deterministic vector.

Definition 4: The stochastic Hessenberg reduction
of a random matrix A(@) € C"*" is defined as
V*(0)A(0)V(0), such that H = (V*(0)A(0)V(0))
is a Hessenberg matrix*, where V(0) € €"*™ is a
matrix of orthonormal random vectors in the sense
of Definition 1, ie., (V*(8)V(0)) = I,; where
I, € R™*™ is the identity matrix.

Why Employ a Stochastic
Krylov Subspace ?

In this section, we briefly address the question
why a stochastic Krylov subspace is appropriate for
computing the solution of a linear random algebraic
system of equations. For a detailed overview of this
argument for a deterministic matrix, the reader is
referred to Ipsen and Meyer.!?

Consider the problem, where given a random ma-
trix A(@), it is required to compute the vector
A(6)71f(0). Let us first consider the notion of the
minimal polynomial ¢ of a random matrix. For a
random matrix, ¢(¢,8) can be defined as the unique
monic random polynomial of minimal degree such

that ¢(A(8),60) = 0.

Let the d distinct eigenvalues of A(6) be denoted
by A1(0),A2(8),...A4(8), and let m; denote the in-
dex of the jth eigenvalue (i.e., the size of a largest
Jordan block associated with it). Then, it follows

“A Hessenberg matrix is a upper triangular matrix
with an additional off-diagonal below the diagonal; i.e.,
Hij =0,t>j+1.

3

that

d d

m = Zm], and ¢(¢,0) = H(t—

j=1 j=1

()™ (2)

Using the preceding equation, we can write

0)=> o) 3)
7=0

where the term ao(6) = H;l:l (—A;(8))™ is nonzero
if the random matrix A(8) is nonsingular.

The minimal polynomial can hence be written as

7(A(0),0) = > a;(0)AT(9) =0

=0

(4)

Since ag(0) # 0, the inverse of A(8) can be written
as

1 m—1 ]

-1 ___ - , J
A0 = - ; a;11(0)A7(8)  (5)
It can be clearly seen from (5) that the inverse of a
nonsingular random matrix lies in the space spanned
by the terms of the minimal random polynomial.
This implies that desired solution vector A(6)~1£(8)
belongs to the stochastic Krylov subspace defined
earlier (see Definition 3). The dimension of the sub-
space depends on the degree of the minimal polyno-
mial of the random matrix. This observation can be

formally stated as follows.

Theorem 1 If the minimal random polynomial of a
nonsingular random matriz A(8) has degree m, then
the solution to A(0)u(@) = £(8) lies in the stochastic
Krylov space K., (A(8),£(8)).

Theorem 1 clearly suggests that K, (A(0),£(9))
provides a stochastic subspace using which a good
approximation for the random vector A(8)~f(0)
can be computed. The next section presents a
stochastic version of Arnoldi’s method for comput-
ing an orthogonal basis of the stochastic Krylov
subspace.

Stochastic Variant of
Arnoldi’s Method

Arnoldi’s method!* is a version of the Gram-Schmidt
orthogonalization procedure tailored to the Krylov
subspace. This algorithm was introduced in 1951 for
reducing a general dense deterministic matrix into
Hessenberg form. Note that this algorithm reduces
to the well-known Lanczos algorithm for the case
of symmetric/Hermitian matrices, i.e., the Hessen-
berg form becomes tridiagonal. In this section, we
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develop a stochastic version of Arnoldi’s method for
reducing a random matrix into the so called stochas-
tic Hessenberg form defined earlier (see Definition
4). The objective is to illustrate connections with
Krylov methods for deterministic systems and to im-
prove the numerical properties of SRBMs.

In this section the compact notation Kp,(0) is
used to denote the mth order stochastic Krylov sub-
space Km(A(0),v(0)). Further, the £2 norm of a
random vector x(8) is defined as

(6)

Let the starting normalized random vector be de-
noted by v1(8) = v1(6)/||v1(0)}|, which is a basis
for K1(8). Arnoldi’s method proceeds by recursively
orthogonalizing the vector v;;1(8) = A(0)v;(0)
with respect to v;(@). This can be written as

I1x(0)]]> = ((x*(8)x(6)))*

Vj+1(0) = A(0)v;(0)—(Hi;v1(0) + ... + Hj;jv;(0))

(7
where H;j = (vi(0)A(0)v;(0)). The new basis vec-
tor is then normalized as

Vi+1(0) = Vj11(0)/|[¥541(0)]]2 (8)

Let V;(8) denote the matrix formed from the j or-
thonormal stochastic basis vectors. Then the de-
composition associated with the stochastic version
of Arnoldi’s method can be written as

A(0)V;(0) = V1 (0)H; (9)

where H; € CUF*I s an upper Hessenberg matrix.

The expectation operations for computing
the L5 norm in the preceding equations can be
efficiently conducted when the terms of the stochas-
tic Krylov subspace are written explicit functions
of the random parameter vector @ (see next section).

Stochastic Basis Vectors

In section, we discuss the idea behind precondition-
ing, and examine issues involved in efficiently com-
puting the terms of the preconditioned stochastic
Krylov subspace. Consider a system of linear ran-
dom algebraic equations of the form

A(0)x(0,n) =f(n), (10)

where A(f) € €™*" is a random matrix, x(8,7),
and f(n) € C" are random vectors. 8 € C? and
7n € €7 denotes the vector of random variables in
the coefficient matrix and the right hand side, re-
spectively.

4

A SRBR of the response process x(8,7) stated
earlier in equation (1) can be written in matrix form
as

where ‘II(07 77) = [’%(0, 7’)7 ¢1(05 77)) e ¢m-1(97 TI)]
€ c'n.xm, and 5(9777) = {§0a§1a e a£m~1} S Cm
denotes the matrix of stochastic basis vectors and
the vector of undetermined coefficients, respectively.

A straight forward choice of basis vectors would
be the mth order stochastic Krylov subspace
Km(A(6),£(n)), Le.,

Yo =f£(n), %, = AO)(), ... .Y, = A" f(n).

(12)

However, according to Theorem 1, the number
of stochastic basis vectors required to approximate
the solution vector could be as high as n. For
the sake of computational efficiency, it is desirable
to choose a small number of basis vectors. In or-
der to arrive at a richer stochastic subspace, the
concept of preconditioning approach becomes use-
ful. A good choice! of preconditioner would be
the deterministic matrix (A(@))~!. The left pre-
conditioned version of (3) can hence be written as
(A(0))""A(0)x(0,m) = (A(6))~£(n).

The stochastic Krylov subspace associated with
the left preconditioned version of (10) coincides with
the terms of the Neumann series

oo

%(0,m) = 3 (-1)* ((A0)) " A6) ~1,,)’

=0

X (A(6))7 £(6,m). (13)

This clearly shows that the method presented
in reference® is a preconditioned stochastic Krylov
method.

Let us now consider the case when the random co-
efficient matrix can be written in the form A(8) =
(A()) + 3%, 0;A%, and the right hand side (rhs)
vector can be written as £(n) = (£(8)) + >0_, n:f?;
where A* € €"*" and f' € C" are deterministic.
Since, we are primarily interested in physical sys-
tems governed by stochastic PDEs, such a represen-
tation of the random coefficient matrix and the rhs
is readily achievable in terms of the random phys-
ical parameters of the system. Note that this rep-
resentation is exact when the coefficient matrix and

"The matrix M is a good preconditioner if M~1A
is close to an identity matrix or a matrix with highly
clustered eigenvalues.
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the rhs are linear functions of the random variables;
e.g., this representation is exact when the Young’s
modulus of a beam member is modeled as a random
variable. Note that the formulation presented here
can also tackle the case when the chaos decomposi-
tion scheme! is employed to expand the coefficient
matrix and the rhs in terms of orthogonal random
polynomials.

Equation (13) can hence be written as

%(0,m) = (-1)’ (<A<0)>‘1 >, &Af)

=0 i=1

P
X (A(0) " {(£(0) + D mif'} (14)
i=1
It can be readily seen that each term of the Neu-
mann series (except for the first term) is a vector of
homogeneous random polynomials. Each term (say

;) can be explicitly written as a function of 8 and
7 as shown below.

$o(0,m) =u, + Z niug (15)

i=1

where u, = (A(0))"f(n)) € €" and uw; =
(A(6))71f" € C" are deterministic vectors.

p q

'7’1(9777)=Zi b%"‘ZﬂjC%j ,
j=1

i=1

(16)

where b} (A(0))'A'n, € C" and c};
(A(8)) 1 Atu; € €™ are deterministic vectors.

A general expression for the kth basis vector may
be written as

P

{bk(ea "I) = Z

11,89, ,ip=1

8:,6i, ...,

q
X bi'clig.‘,ik + Z 77z'm+1ci-“ﬂ?mier1 (17)
im+1=1
where
b”icliz...ik = <A(0)>~1Ah (A(0)>.—1A_Z2 N
(A(6))"'A™u, € C"
and
F iy iy, = (A(0) AT (A(0) A"
L (A@) AR, € T

5

Note that the tensors b* and c* can be recursively
computed using the equations

p
b ( 3 <A<e>>-wk+l> b
k+1=1
¥4
. o
iy = ( Z (A(6)) 1A“°+2) C§1ig...ik+1
k+2=1

The terms of the Neumann series (i.e., our basis
vectors) are in general not orthogonal. However, the
stochastic version of Arnoldi’s method can be read-
ily applied to orthogonalize the basis vectors. Note
that the above explicit representation of the precon-
ditioned stochastic Krylov subspace is crucial for ef-
ficiently computing the L2 norms in the stochastic
version of Arnoldi’s method presented earlier.

A Note on Computational Aspects of Basis
Vector Computation

If the decomposed form of the matrix (A(0)) is
available, then the basis vectors can be readily com-
puted using forward and backward substitutions.
However, note that, increasing the order of the pre-
conditioned stochastic Krylov subspace inevitably
leads to an exponential increase (O(n*)) in storage
complexity. This is true when the higher-order ten-
sors are computed to arrive at an explicit expression
for the response process. Storing the higher-order
tensors in memory may be impossible for systems
with large number of dof and random variables. For-
tunately, if only the first and second-order statis-
tical moments of the solution are of interest, then
the storage complexity issue is of no concern in soft-
ware implementation of SRBMs. This is because
only the statistics of the basis vectors are required
to be stored.

One way to reduce the memory requirements and
computational cost would be to neglect the inter-
action terms in the basis vectors of order greater
than 2. For example, the fourth basis vector may be
rewritten as

¥3(0) = ;H? (b? +§?7h‘°§j) )

(A(6))7TAY(A(0))TIAY(A(6)) T AN(A(6)) ',
cf; = (A(9)) AN (A(6)) T AY(A(6) T AY(A(0)) Y

Using the simplified basis vectors of the form
shown above, the memory requirements as well the
computational complexity of the stochastic subspace
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projection schemes to be presented later can be sig-
nificantly reduced. An alternative approach would
be to use a block version of SRBMs which utilizes a
set of the basis vectors 1(8) and v,(6) evaluated
at a number of points in the parameter space. These
ideas are clearly worth pursuing and the accuracy
of the resulting approximations remains to be tested.

Bubnov-Galerkin (BG) Scheme for
Stochastic Problems

In previous sections, we examined the theoreti-
cal and computational aspects of the preconditioned
stochastic Krylov subspace. This section is con-
cerned with stochastic subspace projection schemes
for computing the undetermined coefficients in the
reduced basis representation. In particular, our fo-
cus is on the Bubnov-Galerkin scheme. This projec-
tion scheme involves formulating a stochastic resid-
ual error of the form

r(6,n) = A(e)‘I’(em)E(om) - f(’?) (18)

When the Bubnov-Galerkin scheme is applied
to deterministic problems, the undetermined coef-
ficients are determined by enforcing the condition
r(6,m) L ¥(0,n). Hence, this scheme is also re-
ferred to as an orthogonal projection scheme. An
alternative scheme involving the use of oblique pro-
jection is outlined in Appendix A. Using the orthogo-
nal projection scheme, the undetermined coefficient
vector Z(8,m) should be computed by solving the
reduced-order system of equations

A(0,m)Z(8,m) =£(6,7) (19)
where A(6,1) = ©*(0,1)A(0)¥(6,7) € C™*™ and
£(8,m) = ©*(0,n)f(n) € €™ are the reduced ran-
dom coefficient matrix and rhs, respectively.

If (19) is solved exactly for any realization of 6
and n, then P[¥*(0,7)r(8,n) = 0] = 1 (see Defi-
nition 2). However, as shown in reference®, this in-
volves the symbolic inversion of A(6,n) to explicitly
represent the coeflicients of the reduced basis as ran-
dom polynomials. This is readily possible only when
2 or 3 basis vectors are used. A more practical fix
to this problem is to employ simulation schemes for
efficiently computing the statistics of the coefficients
of the SRBR.

In the computational stochastic mechanics litera-
ture (see, for example, Ghanem and Spanos'), the
undetermined coefficients in (19) are considered as
deterministic scalars which are computed by solving

6

the deterministic system of equations

(A@,m)==(f6,m)

The preceding equation is derived by using the mea-
sure of orthogonality defined in the Hilbert space
of random variables (see Definition 2). Note that

(20)

the deterministic matrix <A(0, n)> is a square block
partition of the Hessenberg matrix which arises as
a by-product of the stochastic version of Arnoldi’s
method.}

As shown in reference’, equation (19) gives bet-
ter approximations and converges more rapidly (as
the number of basis vectors are increased) as com-
pared to (20). Our objective in this section is to
study the relationship between equation (20) and
the exact stochastic Bubnov-Galerkin scheme given
n (19). We show that equation (20) is a zero-order
approximation for Z(@, 7). An approximate stochas-
tic Bubnov-Galerkin scheme is then presented to im-
prove the accuracy of (20). Conditions under which
the proposed scheme converges to the solution of
equation (19) are postulated. Henceforth, we do not
show the dependence of the random quantities on 7
explicitly unless it becomes important for the sake
of clarity.

Convergence Analysis

Equation (19) can be rewritten as

- - . —1._
=20) = ((A®) +A@®) - (A®)) f6) @
The Neumann expansion series for Z(0) can be writ-
ten as

[e0]

;(—w’ ((A(e)>‘l A0) - Im)i

<A(e)>_1 #(6) (22)

where I,, € R™*™ is the identity matrix.

Setting i = 0 and assuming that f(0) can be re-
placed by its ensemble average, it can be clearly
seen that equation (22) becomes identical to (20).
This suggests that the stochastic Bubnov-Galerkin
scheme used in the literature is a zero-order approx-
imation. Henceforth, we will use the compact nota-
tion BG; to denote BG approximation of order j.

Interestingly, equation (22) suggests how the zero-
order approximation available in the literature can

tThe reader is referred to the text of Saad® for a de-
tailed exposition of this point
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be improved. In particular, we can improve the zero-
order approximation by rewriting (20) as

_ . -1

5(0) = <A(0)> f(9) (23)
Equation (23) may provide a better approximation
as compared to (20) when the coefficient of variation
of £(0) is large. Further, the undetermined coeffi-
cients in the reduced basis will be random scalars
when (23) is used instead of (20).

The conditions under which equation (22) con-
verges for a given realization of 8 are stated below.

Lemma 1:  Equation (26) will converge if
p((A(6))"A(0) ~ In) < 1 or [(A(6))""A(6) -
I.|| < 1 ; where p(B) denotes the spectral radius
of the matrix B.

Remark: In practice, it may be difficult to confirm
when the condition imposed by Lemma 1 is satisfied.

A Posteriori Error Estimation

Using the procedures outlined in the previous sec-
tion, the basis vectors and the undetermined coef-
ficients in the reduced basis can be efficiently com-
puted. This ultimately leads to an approximation
for the solution vector of the form %(8) = ¥(6)E.
This section examines the issue of computing a pos-
teriori error estimates for the reduced basis approxi-
mation %X(0). In contrast to stochastic systems, error
estimates for deterministic systems are readily avail-
able in the literature; see, for example, Golub and

Van Loan!!.

Two commonly used error norms will be consid-
ered in this paper - (1) the residual vector r(0)
A(0)%(6) — £(0) and the error vector Ax(0)
x(0) — x(0).

In contrast to deterministic problems, both error
estimates will be random quantities. Hence, error
estimation entails computing the statistics of r(@)
and Ax(0). Error estimates are derived here for the
case when BGq (see (20)) is used to compute the
coefficients in the SRBR. The approximate solution
is hence available in the form of a vector of random
polynomials. The mean of r(@) can then be readily
computed as

(r(6)) = (A(6)¥())= - (£(8))

(24)

[|{x(8))||> can be used to determine whether addi-
tional basis vectors must be employed to improve
the accuracy of the solution. A note of caution is
advisable here. The residual error only indicates
the extent to which the governing equation is satis-
fied. This may not necessarily be the same as finding

7

an approximate solution which is close to the exact
one. Small residual need not indicate small value of
Ax(8) or vice-versa.

A more useful error estimate would be an estimate
of Ax(0), which can be computed by solving the
stochastic equations

A(6)Ax(0) = r(8) (25)

It can be clearly seen that equation (25) cannot be
solved exactly in a computationally efficient fash-
ion. This not surprising - if we can can compute
the error exactly, we can also solve the governing
equations exactly ! Hence, we have to settle for an
approximation to the error estimate. This practice
is quite common in numerical analysis wherein first-
order estimates are often used. Clearly, the best
way out would be to compute an upper bound on
the error estimate. On the lines of the standard er-
ror analysis procedures available in the literature!!,
it can be readily shown that the following stochastic
inequality is valid

1Ax(6)]] < [lA6)[|Ir(8)]] (26)

This stochastic inequality is intractable, and
would require an approximation. For example, an
estimate of the upper bound of the tail of the ran-
dom right hand side could be used. It is felt that the
theory of stochastic majorization '® could be use-
ful in this context. An alternative approach we are
currently pursuing is to extend some fundamental
results on the pdf of the £5 norm of the inverse
of random matrices; see, for example, Edelman'®,
where it is assumed that the elements of the random
matrix are uncorrelated and Gaussian. It would be
useful if this result can be extended to establish rig-
orous upper bounds on Ax(#), which hold with a
pre-specified probability.

From a practical viewpoint, it is important to
first examine the context in which an error estimate
might be used. In SRBM, error estimates may be
used to decide whether more basis vectors should
be used to improve the accuracy. Furthermore, the
error estimates may be applied to the task of com-

~F
0L

puting error bounds on the statistical moments
the response process. Let us examine the case when
it is aimed to approximate the stochastic equality in

equation (25) rather than an complicated inequality.

A zero-order estimate of Ax(6) can be computed
as

Ax(6) ~ (A(6))"'r(8) (27)

From this approximate equality, we can directly de-

rive error estimates for the mean and covariance of
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Figure 1: 40 Member Frame Structure with Ran-
dom Youngs Modulus

the solution computed by SRBM. For example, the
error in the mean is approximately (Ax). The error
in the covariance matrix A,y can be written as

Acov & (AX(0)Ax™(0)) + 2(Ax(0)x7(0))  (28)

Note that it is not a trivial exercise to establish
the probability that the estimates in (27) and (28)
are correct. However, numerical experience suggests
that they are correct with high (albeit unquantifi-
able) probability. Note that the order of the esti-
mate can be readily increased. From the computa-
tional viewpoint, the expectation operations can be
easily carried out since %(0) and r(@) are available
as a vector of random polynomials.

Some preliminary studies are presented to exam-
ine the convergence of the SRBM when the precon-
ditioned stochastic Krylov subspace of increasing or-
der is employed in conjunction with BGy. The exam-
ple problem considered (see Figure 1) involves a net-
work of Euler-Bernoulli beams with random Youngs
modulus subjected to a deterministic force. This
problem has a total of 180 degrees of freedom and
40 random system parameters. The nominal mate-
rial properties for this system have been taken from
reference.”

Two cases are taken up to study the convergence
rate of SRBM. In case 1 and 2, the standard de-
viation of the Youngs modulus of each element are
taken as 0.05 and 0.10, respectively. Figure 2 shows
the convergence of the £o norm of the mean resid-
ual vector as the order of the Krylov subspace is in-
creased from 2 to 5. It can be clearly seen that the
mean residual error decreases rapidly as the number
of basis vectors are increased. This trend also clearly
suggests that it may be rather difficult to judge the
accuracy of the approximated solution by examin-
ing only the residual error statistics. For example,
in Case 1, when 2 basis vectors are used, the max-
imum error in the mean and standard deviation is

8
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Figure 2: Convergence of Norm of Mean Residual
Error as a Function of Dimension of Preconditioned
Stochastic Krylov Subspace

Table 1: Comparison of Accuracy of the Zero-
order Error Estimate

Order Case 1 Case 2
Appr. Exact Appr. Exact
1 8.0e-05 1.3e-05 1.0e-04 2.2e-04
2 9.8e-07 5.6e-07 1.9e-05 1.8e-05

just of the order of 1%. However, the corresponding
mean residual error norm is of the order of 10%.

Next, some studies were conducted to study the
accuracy of the zero-order error estimate for Ax.
The following measure was used as an indicator of
the accuracy of the approximate solution computed
using SRBM

§ = [[{Ax(0))]]oo/|I(2(6) + Ax(6))}]oo

The accuracy of the zero-order error estimate is
compared with a Monte Carlo simulation scheme
(sample size 20,000) which is employed to compute
the preceding error indicator exactly. The results
for case 1 and 2 are summarized in Table 1. The
results indicate that the zero-order estimate is an
‘order of magnitude correct’, and hence it can be
applied to decide whether more basis vectors should
be included to improve the accuracy of the approxi-
mation.

Coupling SRBMs with
Monte Carlo Simulation

In the earlier section, we examined issues involved
in a posteriori error estimation. In this section, we
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outline a simple procedure for coupling SRBMs with
the Monte Carlo simulation scheme. This procedure
is motived by the hybrid stochastic finite element ap-
proach presented earlier by Ghanem.!” To motivate
the hybrid procedure, consider the expression for the
covariance matrix of the “true” response in terms of
the approximate covariance matrix computed using
SRBMs and the error vector Ax(6)

the structural system has high statistical overlap fac-
tor.S Interestingly, the eigenvalue statistics turn out
to be more difficult to approximate as compared to
that of the eigenvectors. This difficulty primarily
arises due to mode switching phenomena typical of
structures with high modal density.

These observations suggest that that formulations
which use a global set of stochastic basis vectors

Cov'r = CovSEBM 1 (Ax(0)Ax*(0))+2(Ax(0)%* (8)) may lead to better approximations for the eigen-

(29)
From previous experience, it is known that SRBMs
give reasonably accurate approximations for the
response covariance matrix. Hence, the contribu-
tion of the terms involving Ax(8) is expected to
be small. This naturally motivates the use of a
simulation scheme to estimate this term, since a
few number of samples will typically be required
to compute the statistics of a random variable
with small variance. In summary, on the lines of
Ghanem!?, a hybrid procedure coupling SRBMs
with the Monte Carlo simulation scheme can be
developed.

Algebraic Random Eigenvalue Problems

In this section, we briefly examine the application of
SRBMs to symmetric algebraic random eigenvalue
problems of the form

K(0)xi(0) = Xi(0)M(0)x;(8), (30)

where x;(0) € €" and X;(8) € € denotes the eigen-
vector and eigenvalue and mode i, respectively. Fur-
ther, the random parameterization of the coeflicient
matrices are assumed to be of the form

K(0) = (K(0)) + 6:K1 + 62Kz + ... +6,K,,

M(6) = (M(8)) + .My + M + ... + 6,M,

where K;, M; € R"*" are deterministic symmetric
matrices, 6; are assumed to be random variables or
orthogonal random functions.

Recently, Nair and Keane!® proposed a stochastic
reduced basis method for approximating the random
eigenvalues and eigenvectors of such randomly pa-
rameterized eigenvalue problems. This method in-
volves the use of two independent basis vectors to
approximate each random eigenvalue and eigenvec-
tor of interest. The eigenparameter statistics were
then computed by solving a sequence of reduced-
order 2 x 2 random eigenproblem for each mode
of interest. Encouraging results were presented for
free-vibration and frequency response analysis of a
network of stochastic Euler-Bernoulli beams.

More recent studies by the author indicate that
the accuracy of this approach may deteriorate when
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value statistics. The fundamental idea here is to
approximate the first m eigenvectors of Eqn. (30)
in a subspace spanned by a set of stochastic basis
vectors, i.e.,

X(6) = ¥(9)C,
where ‘I’(g) = [7/)1(0)7¢2(0)7'¢m(0)] € Cnxm

denotes the matrix of m stochastic basis vectors,
and C = [c1,c2,...,¢y] € €™ is a matrix of
undetermined coefficients, where c; € €™.

The matrix of undetermined coefficients can be
computed by imposing the Bubnov-Galerkin condi-
tion

(K(8) — A\(B)M(8)) T(6)C L ¥(6).

Using the definition of inner product in the
Hilbert space of second-order random variables, i.e.,
(x1,%2) = (x}x2), we arrive at a reduced-order de-
terministic generalized eigenvalue problem

KrC = MzCQ, (31)

where Kpg (T*(OK(O)¥(), Mp =
(T*(O)M(0)T(0)) € C™ ™ are reduced-order
matrices, and @ € C"™*™ denotes the diagonal

matrix of eigenvalues of Eqn. (31).

An important problem which arises here is how
to choose a set of stochastic basis vectors. One ap-
proach which we are currently pursuing uses the pre-
conditioned stochastic subspace

v(9)

(K(6))™! | M(8)X,A° — f:ejxjxo

J=1

where X, € R™*™ and A° € R™*™ are the matrices
of eigenvectors and eigenvalues of the deterministic
H 0 — o o
eigenvalue problem (K(8))x9 = AZ(M(0))x?.

An attractive feature of this subspace is that the
basis vectors turn out to be linear functions of the
random variables appearing in the parameterized co-
efficient matrices, i.e., the matrix of basis vectors can

$The statistical modal overlap factor can be defined
as 0i/{Ai+1 — Ai), where o; denotes the standard devia-
tion of the ith eigenvalue.
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be written in block form as

P
() =X, + Y 6;A,

=1

where A; € €™*" is a deterministic matrix which
can be written as

A; = (K(9)™H (M;X,A° - K;X,).

It can be seen that it will require modest memory
O(mnp) to store the basis vectors in explicit form.
Further, the elements of the reduced-order matrices
in Eqn. (31) can be efficiently computed for this
choice of basis vectors.

If the basis vectors are rich (i.e., the first m eigen-
vectors of Eqn. (30) has significant components
along it), then the solution of Eqn. (31) leads to
a good approximation for the stochastic invariant
subspace X(8) = ¥(0)C. We can hence write ap-
proximations for the first m random eigenvalues of
Eqn. (30) as

<o T(OKO)T(O)c
Ai(0) = T (0)M(0)¥ (0)c;’

=1,2,...m,

where c¢; € €™ denotes the eigenvector of Eqn. (31)
corresponding to its ith eigenvalue.

Similarly, the statistics of the eigenvectors can be
computed, which may then be used to compute the
forced response in the time or frequency domain.
Studies which are currently underway?® suggest that
such a line of approach may hold the key towards
developing a general purpose capability for analy-
sis of linear stochastic structural dynamical systems.

Concluding Remarks

In this paper, we have outlined some ongoing re-
search efforts towards developing a theoretical foun-
dation for stochastic reduced basis methods intro-
duced in references.” The present research is ex-
pected to have important ramifications from the the-
oretical as well as practical point of view. From the
theoretical perspective, this paper establishes the
connection between Krylov methods for determinis-
tic systems and stochastic reduced basis methods. It
was shown that such a line of approach may greatly
aid the design and analysis of new algorithms for
analysis of stochastic systems.

From the practical perspective, we have shown
in this paper that error estimates can be efficiently
computed for SRBMs. Further, the stochastic ver-
sion of Arnoldi’s method presented here can be used
to improve the numerical stability of the computa-
tions. The error estimates developed in this work
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can be employed to adaptively select the appropri-
ate number of basis vectors required to achieve a de-
sired level of accuracy in the solution. The objective
behind this is to provide the analyst with error esti-
mates of the statistical moments, so that the Monte
Carlo simulation scheme does not have to be run to
judge the accuracy of the results. A simple proce-
dure for coupling simulation schemes with SRBMs
has also been outlined.

We have discussed ongoing work focused on ex-
tending SRBMs to algebraic random eigenvalue
problems. A preconditioned stochastic subspace was
presented for approximating the stochastic invariant
subspace. The potential advantages offered by this
line of approach was briefly outlined.

To summarize, this paper outlines some avenues
for further research into physics-based approaches
for stochastic system analysis. It appears that
much remains to be done before this area reaches
the maturity level of its deterministic counterpart.
Since the emphasis of the present work is on
establishing the theoretical foundations of SRBMs,
we have chosen to omit a full-scale numerical
validation of the ideas developed here. A future
work will present such a systematic computational
study to assess the performance of the formulations
presented here on realistic test problems. Finally, it
is hoped that the understanding gained from this
program of research will contribute to a new genera-
tion of tools for computational stochastic mechanics.
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Appendix A

An alternative approach for computing the unde-
termined coefficients in the SRBR is to directly min-
imize the £ norm of the residual error vector r(6),
which essentially involving enforcing the condition.

r(6,m) L A(0)¥(6,7). (A1)
Hence, Z(0,n) can be computed as
2(6,m) = H(8,n)*£(6,m) (42)

where
H(0,n)" = (T*(0,7)A*(0)A(0)T(8,n)) " (A3)

and B
£(8,m) = ¥ (0,m)A"(0)f(n) (44)
Using Definition 1, the undetermined coefficients
can be computed as

E = (H(8,m)) " (£(6,m)) (45)

It can be readily seen from the above equation
that computing (H(8,7)) is much more involved as
compared to the projected matrix in the Bubnov-
Galerkin scheme. However, comparing the accu-
racy of the residual minimization technique vis-a-
vis the BG scheme would be an interesting exercise.
The interested reader is referred to Saad® for a de-
scription of the generalized minimal residual method
(GMRES) and the quasi-minimal residual method
(QMR) for deterministic linear systems.
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