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an increase in C,,, results in an increase in w, and viceversa above
the critical value of the derivative. Figure 1 shows the variation for
aircraft F in flight condition 3.

The phugoid frequency remains almost invariant with C,,, until
it reaches a critical value M, = M, Z,/Z,, when it becomes zero.*
At the critical value the phugoid frequency diverges with a slope of
~o0, When M, Z,/U, <M,Z,/Z,, the divergence occurs earlier
at My =M, Z,/ U, and the slope of the curve suddenly changes to
+oo0. Figure 1 shows the change for aircraft C in flight condition 2.

The derivative of w, with respect to C,,, is given by

-
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w, is thus directly proportional to M,. From the definition of
Cong (Ref. 1), it follows that w,, is also directly proportional to Cong -
Figure 1 depicts the variation for aircraft E in flight condition 1.

1t has been shown® that in the speed range of interest of powered
aircraft w), is invariant with respect to changes in the forward speed,
dispelling the commonly held notion that the phugoid frequency is
inversely proportional to the forward speed.

Effect of Aerodynamic Deiivatives on the Phugoid Damping
Unlike the frequency equation, the approximation to damping

[Eq. (2)] is comparatively more complicated. All derivatives except

Cp,> Ci,»,and Cp, seem to be involved. The numerical simulation
shows that the phugoid damping varies substantially only with the
derivatives Cp,, Cu,, Ciny, and Cp, .

From Eq. (2)
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because in practice the second term is much smaller than one. From
the definition of X, (Ref. 1), it follows that 2 ,, increases as Cp,
increases. Figure 1 shows significant change for aircraft B in flight
condition 2.
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The quantity on the right-hand side is sometimes positive and some-
times negative. The numerical simulation indicates that the phugoid
damping remains almost invariant with changes in M, except when
M, approaches the critical value M, = (M, Z,)/Z,. At this value of
M,, w, =0, and the term 2¢,w), abruptly becomes zero. When M,
is less than this critical value, there are two real roots to the phugoid.

The numerical simulation shows that 2¢,w,, is not disturbed by
variations in C,, except at a critical value of C,,, when it be-
haves violently by abruptly changing its slope to £oo. It may be
inferred from Eq. (2) that this behavior is caused by the phugoid
frequency, which becomes zero at M, = (M, Z,)/Z, and becomes
infinite when M, = (M,Z,)/U,.

Figure 1 shows that when C,, , becomes more and more negative
2¢,w, increases in magnitude. The increase is substantial in some
cases and mild in others. Figure 1 shows the variation for aircraft E
in flight condition 1.

Conclusion
The parametric study undertaken in this paper shows that in the

range of interest the frequency and the damping depend only on the *

derivatives Cp,, Cyu,, Cp,, and on C,, . The speed damping deriva-
tive Cp, has no effect on the frequency. The damping increases with

increase in Cp, . Phugoid damping is invariant with change in C,,, .
When M, = (M,Z,)/Zq, the phugoid frequency vanishes. For M,
less than this critical value, the phugoid mode splits into two first-
order roots, with one representing tuck under. Above the critical
value, increase of C),, leads to increase in w,. The phugoid damp-
ing is invariant with change in C,,,. For large negative values of
Cq» @, remains invariant. When M, = (M, Z,)/Z,, the phugoid
frequency vanishes. When M, = (M,Z,/U,), the phugoid fre-
quency becomes infinite. Increase in |C,, | results in decrease in w,
(for negative values of C,, q), and increase in |C,, . results in increase
in 2¢,w, (for negative values of C,, ). The change is substantial in
some cases and mild in others.
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Wave Drag Estimation for Use
with Panel Codes
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I. Introduction

OR transonic wing designs one of the most important elements

in the analysis of aerodynamic performance is the evaluation
of wave drag. A common technique for estimating the wave drag of
a wing consists in summing the centributions at spanwise sections
over the wing. The contribution at each section may be evaluated
using methods derived from an exact two-dimensional analysis in-
volving the flow conditions just upstream of the shock wave."? For
each section of the wing, the equivalent two-dimensional flow condi-
tions are then evaluated from the three-dimensional flow conditions
using simple sweep theory. The major drawback of such a method
is the need for data coming from the three-dimensional flow state
around the wing through experimental measurements or full three-
dimensional compressible flow state calculations. Such an approach
turns out to be not very useful in the context of preliminary con-
cept design, where expensive three-dimensional compressible flow
evaluations are to be avoided, where possible, during design opti-
mization. Thus, toreduce the computational cost of wing wave drag
evaluation in preliminary design, approximate methods that do not
require expensive three-dimensional flow state calculations may be
adopted.
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In Ref. 3, Van der Velden et al. propose a method that predicts
he minimal achievable transonic drag as a function of wing pre-
iminary design parameters. The method is based on a database of
tirfoils designed for minimum dragunder representative specific op-
‘rating and geometric constraints. For a given planform, thickness,
ind load distribution, the equivalent two-dimensional flow condi-
ions on a straight tapered section of the wing are determined using
he sweep angle of the shock. Because the location of the shock on
1e chord for each airfoil in the database is known, the shock sweep
an be determined iteratively for each combination of section and
irfoil. The two-dimensional airfoil drag of the wing section is then
scovered from the database and converted into the correspond-
1g three-dimensional value using a modified version of Boppe’s
weep—taper theory* and the value of the shock sweep. The local
‘ave drag values can then be integrated along the span leading to
ie overall wave drag of the wing.

The described approach is based on the observation that, though
ansonic wings are designed with respect to many operating points,
¢ wave drag at the principal cruise operating point is very close

the minimal achievable wave drag. This is valid in practice for
bsonic long-range transports because they spend most of their time

the cruise operating condition, but it may not be so applicable
r other transport ranges. Moreover, such a hypothesis prevents
wdeoffs of the various components of drag from being investigated.
10ther restriction of this approach is the assumption that during
sliminary design the wing will be déscribed in terms of planform

d thickness distribution, and the detailed shapes of the individual
:tions of the wing will not be available. This means that wave drag
1 not be evaluated directly because it depends on the curvature of
» wing sections, and approximate methods have also to be used for
s prediction of the spanwise loading. Such an approach is common
many concept design tools and, although it has the advantage of
t needing to call on sophisticated computational fluid dynamics
FD) codes, runs the risk of limiting improvements in design, even
mly the overall planform and other major parameters are being
estigated.

n Ref. 5, Robinson and Keane describe an approach to section

deling, where each section is described as a linear combination

a set of orthogonal shape functions derived from a series of a

ercritical transonic two-dimensional aerofoil sections. Such or-

gonal shape functions can be used to construct those foils in
original set of airfoils, when combined together in appropriate
os, or other related section shapes by using other mixes. The
posed method allows for up to six such base shapes to be used
his process, but demonstrates that the shapes and aerodynamic

‘ormance of the original airfoils can be recovered to reasonable

sision with just two functions, which essentially reflect thickness

hord ratio and camber.

he ability to represent an airfoil with just two base function-

ghting parameters offers the possibility of defining an effective

efficient geometric model of the wing sections, well suited to
preliminary design stage. Following this approach, once the
kness to chord ratio, twist, and camber distributions along the

g are known, the full shape of the wing may be defined for

iequent analysis by CFD codes (or any other form of analysis).

+ allows for more accurate design performance estimations and

soff studies to be carried out between the different components

rag. In this work, an approximate method for the estimation of
vave drag of transonic wings described in this way is presented.
aim is to devise an efficient wave drag estimation method for
with panel codes that is especially suitable for the preliminary

; design process.

1e work described here uses the airfoil representation for wing

on parameterization of Robinson and Keane.5 The aim is to

1ate the wave drag of a three-dimensional wing just using data
ng from accurate two-dimensional flow analyses. The desire is
aluate the contribution of each section of the wing to the over-
ave drag by reconstructing an equivalent two-dimensional flow
wterized by the same Jocal wave drag value. To define how such

Juivalent two-dimensional flow might be reconstructed, com-

ible two-dimensional flow analyses of several profiles derived
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from transonic wing sections have been performed. Mach number
distributions around the two-dimensional profiles have then been
compared to those around the complete three-dimensional wing to
understand under what geometric and flow state conditions the wave
drag values match. This study is described in Sec. II. Then, in Sec. 111,
an equivalence between the three-dimensional and two-dimensional
wave drag values is derived based on the application of simple sweep
concepts and equivalent camber distributions of the local spanwise
wing sections. Finally, in Sec. IV, the method is applied to compu-
tation of the wave drag.of a transonic wing and a comparison made
with a more accurate evaluation based on data coming from a full
compressible three-dimensional flow analysis.

II. Three-Dimensional and Two-Dimensional
Wave Drag Evaluations

Consider an’ aircraft wing at a Reynolds number of 7.3 x 108,
Mach number of 0.785, and angle of attack of 1.52 deg. The wing
geometry data are given in Table 1.

The envelope of the wing has been constructed using 18 sec-
tions uniformly distributed along the wing span, as shown in Fig. 1.
Each section has been defined as a linear combination of two or-
thogonal functions, according to the strategy described in Ref. 5.
These functions represent the ¢/c distribution and the camber of
the section. Once the spanwise distribution of these functions along
the wing is known, the full geometric description of the wing may
be constructed for subsequent analysis by the CFD codes. In this
case, the thickness to chord ratio distribution is input, whereas the
camber distribution is found by prescribing a spanwise lift distri-
bution that minimizes the sum of wave and induced drag, also fol-
lowing the approach outlined in Ref. 5. A full three-dimensional
flow state evaluation has been performed for this design using the
MGAERO three-dimensional Euler solver® followed by application
of Lock’s second-order method! (also known as the Engineering
Sciences Data Unit method?) to provide a wave drag estimate from
the resulting flow information. This wave drag estimation uses rela-
tions based on the Mach number immediately upstream of the shock

Table1 Wing geometry data

Quantity Value
Wing area, m? 168
Aspect ratio 9.07
Kink position 0.313
(fraction of span)

Sweep angle, deg 27.1
Inboard taper ratio 0.6
Outboard taper ratio 0.51
Root t/c 0.15
Kink ¢/c¢ 0.122
Tip /e 0.122
Wash out at tip, deg 4

) L ' L 1
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Fig. 1 Wing sections.
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Fig. 2 Case 1, Mach number distributions over the equivalent two-
dimensional section and wing section.

together with the mean aerofoil surface curvature over the region
upstream of the shock. The three-dimensional code also provides a
complete set of output flow variables values for each section of the
wing.

First, consider a section of the wing located at 37% span. This
section is characterized by a t/c value of 0.122, a camber weight-
ing parameter 8 of —0.160, and an angle of attack of —0.069 deg
(downwash angle included). The solid line in Fig. 2 represents the
Mach number distribution over the section taken from the three-
dimensional Euler solution (case 1). Here the supersonic region
over the upper surface ends near the trailing edge through a weak
shock. In this case the wave drag is almost negligible, its value
being only 0.45 counts. In an attempt to find an equivalent two-
dimensional flow, consider a section with equivalent effective val-
ues of ¢/c, C/, and flow conditions characterized by effective Mach
number, that is, from simple sweep theory. In this first case, the
same camber as that for the three-dimensional wing section has been
used. The two-dimensional flow solution has been computed with
the two-dimensional MGAERO solver, using its internal angle-of-
attack control feature to provide the desired section lift coefficient.
The dashed line in Fig. 2 represents the corresponding Mach num-
ber distribution. A well-defined shock wave can be identified on
the upper surface of the equivalent section for the two-dimensional
analysis, corresponding to a value of the wave drag of 29 counts.
The resulting value of the angle of attack is —2.69 deg, far from its
value in the three-dimensional flow of —0.07 deg. Clearly, the two-
dimensional section is not a good match for the three-dimensional
flow.

Next a case has been considered where the camber value is al-
lowed to change to find a two-dimensional flow characterized by
the same wave drag value as the flow over the three-dimensional
wing section. To achieve this the camber weighting function value
B has been varied from —0.15 to 0.10 (case 2). The value of the
camber function weight for which the two-dimensional flow best
matches the three-dimensional wave drag value is approximately
—0.08, with an angle of attack of —1.54 deg. For higher or lower
values of the camber function, well-defined shock waves appear
on the upper surface of the section (near the trailing edge for low
B/high camber and the one-third chord point for high f/low cam-
ber). Figure 3 shows the two-dimensional matching Mach number
distribution (dashed line) compared with the three-dimensional dis-
tribution. The variation of camber allows for a choice of a section
with the same wave drag as the section of the three-dimensional
wing, the angle of attack being somewhat different from its value in
the three-dimensional flow. Table 2 summarizes the matching case.

Next, the sweep angle of the wing is changed from the preceding
value of 27 deg to a value of 20 deg, while conserving the total
lift coefficient (case 3). The three-dimensional MGAERO solution
then gives an angle of attack of 0.90 deg. The section located at near

Table2 Case 2 data

Wing section Matching section

Quantity (three-dimensional) (two-dimensional)
Mach number 0.785 0.718

t/c 0.122 0.133

Cl 0.5968 0.7133
Camber function value -0.160 -0.08

Angle of attack, deg ~0.069 —1.538
Wave drag (counts) 0.45 0.47

Table3 Case 4 data

Quantity Wing section  Matching section
Mach number 0.785 0.753
t/c 0.122 0.127
loy) 0.603 0.657
Camber function value —0.159 —0.047
Angle of attack, deg —-0.50 —1.14
Wave drag (counts) 19.8 20.5
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Fig. 3 Case 2, Mach number distribution over the matched two-
dimensional section and wing section.

midspan has been considered. The angle of attack of this section
is equivalent to —0.22 deg. Figure 4 shows the Mach number dis-
tributions of the wing section obtained from the three-dimensional
flow solution (solid line) together with that obtained from the two-
dimensional flow solution with idefitical camber (case 3, dashed
line). This time a better-defined shock wave appears in the three-
dimensional solution as its strength grows with decreases in sweep
angle of the wing (M > 1.2), despite the reduced value of the angle
of attack. In fact, the local three-dimensional wave drag value is
19.3 counts, whereas the two-dimensional solution produces an even
stronger shock with a wave drag of 80.9 counts. A similar study as in
the preceding case has then been conducted by varying the camber
function for the two-dimensional section in the range ~0.16-0.01
(case 4). The three-dimensional wave drag is matched for a value of
the camber function of approximately —0.047 and an angle of attack
of —1.14 deg. The matching Mach distribution is also reported in
Fig. 4 (symbols). Table 3 summarizes the data for this case.

II. Geometric Equivalence

Table 4 gives the values of the two-dimensional flow angle of
attack obtained when varying the camber weight function values j
in the range considered in each of the preceding cases together with
the corresponding three-dimensional flow values. It appears, from
an analysis of these data that the value of 8 for the two-dimensional
section for which the two-dimensional and three-dimensional wave
drag values best match, 8,4, is a weighted sum:

Bag = BBurd=a3a + Pra)/2 (1




J. AIRCRAFT, VOL. 38, NO. 4:

ENGINEERING NOTES 781

Table4 Cases 3 and 4 angles of attack and camber weighting functions

Three- )
Quantity dimensional Two-dimensional
Case 3
o —0.069 -2438 -2014 -1.538 -1.366 -0.991 -0.116  0.603 1.268
B -0.16 -0.15 -0.11 -0.08 -0.07 —005 0.00 0.05 0.10
) Case 4
o —0.219 ~-2781 -2.668 =223 -2306 -1.141 -1.132 -0.605 -0427
B -0.16 -0.160 —0.149 -0.115 -0.103 -0.047 -0.035 -0.001 0010
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Case 3, Mach number distributions over the equivalent two-
ional section, matched two-dimensional section, and wing sec-

Bw2d =asay 1S the value of 8 for which the angles of attack
and By is that of the wing section. For cases 2 and 4 this
a produces, respectively,

Baa = (3 x 0.006 — 0.16)/2 = —0.071 2)

Boa = (3 x 0.023 — 0.16)/2 = —0.046 3)
ralues should be compared with those of —0.08 and —0.047
1 earlier for these two cases.

Estimation of Wave Drag for a Transonic Wing

lustrate this process, the results described in the preceding
are next applied to the estimation of wave drag for the com-
msonic wing having the parameters already noted in Table 1.
» automate the search for equivalent two-dimensional flows,
of flow analyses of two-dimensional profiles of unit chord
have been performed with the two-dimensional version of
tAERO solver. A range of different flow conditions and /¢
tions have been considered corresponding, respectively, to
>f Mach number of 0.7, 0.75, 0.78, and 0.8 and ¢ /c ratios of
).1,0.125, and 0.15, while allowing the camber weighting to
:d in the range —0.5-0.6 in 12 steps, and C/ in the range 0-0.8
ps. For each of these combinations, the value of the angle of
s recovered (using the internal angle of attack control feature
AERO to provide the given lift coefficient), together with the
f wave drag (using Lock’s! second-order method). Having
ich a two-dimensional database, a look-up table approach is
zd to find the equivalent three-dimensional wave drag. This
‘h enables the value of 8 that matches the three-dimensional
«ction angle of attack to be found by interpolation for given
, and Mach number and then the value of wave drag coeffi-
gain by interpolation, once the equivalent camber function
has been derived from Eq. (1). The wave drag coefficient is,
mputed on a basis of flow conditions and geometric quanti-
iving from two-dimensional equivalence considerations, that

spanwise distance / wing semispan

Fig. 5 Local Cp,.

is, from sweep theory, using two-dimensional profiles of unit chord
length. The local wave drag coefficient C p,, of the three-dimensional
wing is then given by

Cpw =C}, cos’® A/c 4)
where C},, is the wave drag coefficient of the matched two-
dimensional profile, A is the sweep angle of the shock on the upper
surface of the wing (here taken parallel to the outboard trailing
edge), and c¢ is the local chord length. The local wave drag coeffi-
cients can then be integrated along the span leading to the overall
wave drag coefficient of the wing. Figure 5 shows the local wave
drag coefficients as computed by this approximate method (dashed
line) compared with those from using the flow data values of a full
three-dimensional analysis (solid line).

The approximate Cp,, of each section has been computed using
the local C/ and angle of attack of a three-dimensional flow solu-
tion produced using a panel code.” Moreover, the local angles of
attack have been defined by taking into account the local twist and
a downwash angle simply computed from an elliptic spanwise lift
distribution.

Notice that the drag coefficient is underestimated in the middle of
the semispan and slightly overestimated toward the root and the tip.
The overall drag coefficient predicted by the approximate method
is 9.7 counts, just 1.7 counts higher than the accurate value from the
full three-dimensional solution.

The entire procedure for the wing wave drag evaluation can thus
be summarized as follows:

1) Solve the flow for the wing configuration under consideration
using a noncompressible flow solver (panel code) and recover the
spanwise loading distribution and the angle of attack.

2) For each spanwise wing section a) compute Machyy, Clyy, and
t/caa, using the sweep angle of the shock (assumed parallel to the
outboard trailing edge); b) compute the angle of attack a3, using
the section twist and a downwash angle based on the equivalent
elliptic spanwise loading distribution (a better estimate of the section
downwash angle may be made using a sine series decomposition of
the actual loading distribution®); ¢) pick up Bas=a3ey from the
look-up table using t/caq, Machyy, Clag, and aay as input data; and
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Table 5 Drag coefficients values

Euler drag (counts) Panel drag (counts)

Mach  Sweep
no. angle,deg Cpy Cd (Cpw/Cd)% Cpw Cd (Cpuw/Cd)%

0.785 25 150 177.0 8.7 17.1 1887 9.1
0785  27.1 8.0 1714 47 9.7 1764 5.5
0.8 300 167 1756 95 15.1 181.7 83
0.8 35 7.6 165.9 4.6 8.7 172.7 5.1
0.85 30 26.1 175.9 14.8 25.7 159.4 162
0.85 35 3.5 1476 24 4.8 152.8 3.1
0.9 35 29.7 151.5 19.6 23.9 147.4 162

d) compute By, from Eq. (1) and then pick up Cp,, from the look-up
table using /¢4, Machyy, Clyy, and By as input data.

3) Integrate the wing section wave drag coefficients along the
span for the overall wave drag coefficient of the wing.

It seems that despite the various approximations involved in the
evaluation of the local angles of attack, this approach does not prej-
udice the prediction of the wave drag via two-dimensional values.
Numerical experience has shown that a variation in the angle of
attack up to 1 deg gives errors in the wave drag values of just a few
counts.

Wave drag values computations for different wing configurations
over a wide range of geometries have confirmed that the agreement
between the Euler-based method and the Panel-based method of
estimation is maintained over a range of Mach numbers. Table 5
gives values of the wave drag and the overall drag for Mach number
and sweep angle varying, respectively, from 0.785 to 0.9 and from
25 to 35 deg, as predicted by the two methods. As may be seen, the
difference between the wave drag values lies in the range 0.4-2.0
counts, except for the case with Mach number of 0.9 and sweep
angle of 35 deg, where the difference rises to 5.9 counts. It is clear
that, at such sweep and Mach number, flow conditions are highly
three dimensional and that the drag estimates of the panel-code-
based method are beginning to be misleading. Nevertheless, in all
of the cases, the relative wave drag values of the two methods with
respect the corresponding overall drag values differ by no more than
3.4%. ' :

In Ref. 9, the method described in this paper has been integrated
into a multilevel optimization methodology for the preliminary con-
cept design of transonic wings. The methodology was mainly char-
acterized by the use of different flow analysis levels, ranging from
an empirical model through a linearized potential method to an
Euler method. The utility of the method has been twofold. First, the
method has supplied a reliable wave prediction capability to the lin-
earized potential code. Second, the method has been employed as a
design tool for defining a camber variation along the wing that may
be used to minimize the sum of induced and wave drag. When used
in this fashion, the method allows for tradeoffs of induced and wave
drag without calling either of the CFD codes. More precisely, the
wave drag is evaluated using a lift distribution based on the camber
data and an angle of attack based on an estimated lift curve, whereas
the induced drag is found by simply integrating the lift. Numerical
results demonstrate the ability of such an approach to lead to good
wing shape designs, thus demonstrating the effectiveness and ro-
bustness of the proposed methed for evaluating the wave drag of
transonic wings.

Y. Conclusion

A new method for estimating the wave drag of swept three-
dimensional wings in transonic flows has been described. This may
be used in conjunction with panel codes during concept design stud-
ies. Using simple sweep theory and information on the wing shape,
the method evaluates the contribution of each spanwise wing sec-
tion to the overall wave drag by reconstructing an equivalent two-
dimensional flow characterized by the same local wave drag value.
Then a routine applying data derived from the offline analysis of all
of the possible two-dimensional sections in use (by an Euler code)
estimates the wing wave drag. This makes use of spanwise loading
distribution and angle of attack calculated by the panel code or from
suitable approximations. The effectiveness of the method has been
assessed by comparison with a more accurate wave drag evaluation
method based on data coming from full three-dimensional com-
pressible flow analyses. The differences between these approaches
have been shown to be in the range of just a few drag counts.

Aimed at providing a reliable wave prediction capability to lin-
earized potential codes, the method is especially suitable for the
preliminary concept wing design process, where analyses based
on expensive three-dimensional compressible flow evaluations are
avoided if at all possible. Moreover, because curvature information
of the wing sections is taken into account, the method allows tradeoff
studies of the various drag components to be carried out, thus en-
abling sophisticated definition of the wing shape in the early stages
of the design process.

No doubt the approach proposed would not work so well at
higher speeds or extreme sweep angles when only a full, compress-
ible three-dimensional analysis can accurately describe the flow
conditions.
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