INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2001; 50:2317-2338
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SUMMARY

Flow fields from transversely oscillating circular cylinders in water at rest are studied by numerical
solutions of the two-dimensional unsteady incompressible Navier—Stokes equations adopting a primitive-
variable formulation. These findings are successfully compared with experimental observations. The cell
viscous boundary element scheme developed is first validated to examine convergence of solution and the
influence of discretization within the numerical scheme of study before the comparisons are undertaken.
A hybrid approach utilising boundary element and finite element methods is adopted in the cell viscous
boundary element method. That is, cell equations are generated using the principles of a boundary
element method with global equations derived following the procedures of finite element methods. The
influence of key parameters, i.e. Reynolds number Re, Keulegan—Carpenter number KC and Stokes’
number f, on overall flow characteristics and vortex shedding mechanisms are investigated through
comparisons with experimental findings and theoretical predictions. The latter extends the study into
assessment of the values of the drag coefficient, added mass or inertia coefficient with key parameters
and the variation of lift and in-line force results with time derived from the Morison’s equation. The
cell viscous boundary element method as described herein is shown to produce solutions which agree
very favourably with experimental observations, measurements and other theoretical findings. Copyright
© 2001 John Wiley & Sons, Ltd.

KEY WORDS: hybrid scheme; boundary element method; finite element method; oscillating cylinder;
vortex shedding; Navier—Stokes equation

1. INTRODUCTION

Bodies oscillating in a stationary or unsteady fluid flow and stationary bodies in an oscillat-
ing unsteady flow are fluid—structure interaction problems of immense practical and theoreti-
cal interest in the fields of naval architecture, aerospace, civil and offshore engineering. For
example, a ship or aircraft manoeuvring, a submersible oscillating under prescribed experimental
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conditions to measure fluid actions, cylindrical tubular structures (i.e. offshore platforms, ris-
ers, etc.) subject to current and wave loads, bodies (i.e. bridges, chimneys, etc.) experiencing
steady or wind gust loads, etc. are practical illustrations of fluid-structure interactions, facets
of which are discussed by Duncan [1], Burcher [2], Etkin [3], Sarpkaya and Isaacson [4] and
Faltinsen [5].

In offshore engineering, in particular, bluff bodies in the form of cylinders are extensively
used in construction and, in many ways, they form the comnerstone of developments in oil
extraction from beneath the sea. For such reasons, the interaction between viscous fluid flows
and circular cylinders is of significant importance stimulating extensive experimental and the-
oretical investigations. These aim to understand the underlying complex physical interaction
mechanisms, to simulate the behaviour and characteristics of the fluid flow within the inter-
action process and to model mathematically the fluid actions experienced by circular cylin-
ders. Sarpkaya and Isaacson [4], Faltinsen [5] and Baltrop and Adams [6] provide extensive
overviews of such studies.

The flow past a circular cylinder fixed in a steady stream, the flow experienced by a circular
cylinder in an oscillating flow or the flow generated by an oscillating cylinder in a stationary
or unsteady flow are fluid-structure interaction problems investigated both experimentally and
theoretically. They provide information through observation, measurement and predictions of
the strengths, trajectories and frequencies of generated vortices, the magnitudes of the fluid
actions through lift forces, drag forces, moments and their associated added mass, added inertia
and drag coefficients, etc. Such related information is presented experimentally by Hassan [7],
Bishop and Hassan [8], Maull and Milliner [9], Bearman [10], Williamson [11, 12], Obasaju
et al. [13] and Tatsuno and Bearman [14]. As an example, the latter investigators examined
the viscous fluid flow characteristics around a circular cylinder of diameter D oscillating
transversely with amplitude 4, frequency @ and with a translational motion

x(t) = —A4 sin(2n ft) = —A4 sin(wt)
(1

%(t) = —Aw cos(wt) = —U, cos(wt)

Their experimental findings clearly illustrate the complexity of the vortex patterns generated
which were classified on the basis of the following parameters:

UnT _ (wA4)(2n/w) _ 2n4

Keulegan—Carpenter number KC =

D D D
Stokes’ parameter f = p_Dj (2
© p —ouTl )
A U,D
Reynolds number Re =KC f = @ﬁg _P p

where u represents the coefficient of viscosity and p denotes the fluid density. Figure 1
illustrates the dependence of the various flow regimes on Keulegan—Carpenter number and
Reynolds number or Stokes’ parameter as observed by Tatsuno and Bearman [14].
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Figure 1. Flow regimes defined by Tatsuno and Bearman [14] and also Diitsch et al. [15]. The

principal features of the regions are: (A*) No flow separation, secondary streaming, two dimen-

sional; (A) two vortices shed symmetrically per half cycle, two dimensional; (B) three-dimensional

instability, longitudinal vortices; (C) rearrangement of large vortices, three dimensional; (D)

flow convected obliquely to one side of the axis of oscillation, three dimensional; (E) irregular

switching of flow convection direction, three dimensional; (F) flow convected diagonally, three
dimensional; (G) transverse vortex street, three dimensional.

To complement such experimental investigations, several numerical studies of the unsteady
flow around a circular cylinder at low KC values have been presented by, for example, Diitsch
et al. [15], Borthwick [16], Smith and Stansby [17], Justesen [18], Wang and Dalton [19],
Lin et al. [20] and Zhang and Zhang [21].

To model mathematically the unsteady oscillatory force acting on a cylinder, Morison
et al. [22] developed a semi-empirical formulation which has since been extensively used
in offshore engineering. This approach is discussed by Sarpkaya and Isaacson [23] who for
an oscillating cylinder in a stationary fluid expressed the force per unit length in the form,

Fi(t) = —5pDCp x|x| — LpnD?Cr & 3)
whereas, for a stationary cylinder in an oscillating fluid the equation is given by
Fi(t) = —3pDCp x|x| — LpnD?Cy & 4

where Cyy = C; + 1. Here C;, Cy and Cj, denote the added mass, added inertia and
drag coefficients, respectively, and the difference between Cj; and C; arises because of the
change in the defining co-ordinate system used to describe the fluid—structure dynamics. These
coeflicients are determined from experiments or from numerical solutions of the Navier-Stokes
equations. Estimates of their values can be determined using a variety of analysis techniques
and methods (i.e. Fourier, least-squares, etc.) as discussed by Sarpkaya [23] and Sarpkaya
and Isaacson [4].

Stokes [24] first determined analytical expressions for the Cp, and Cy, coefficients provided
that the cylinder flow remains attached, laminar and two dimensional. Tt was shown that the
forces acting on a sinusoidally oscillating cylinder depend on both KC, Re or p and in an
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extension of Stokes’ theoretical approach, Wang [25] derived the following expressions:

3
Co= 22 [capy + ey - ] )
Cy =2 +4(p) 7 + (np)~ (6)

for ReKC < 1 and B> 1. The first two terms in these formulae replicate Stokes’ findings.

The values of these theoretical coefficients agree favourably with experimental findings for
two-dimensional flows as discussed by Lin et al. [20]. However, as illustrated in Figure 1,
such flow regimes are limited and as the KC value increases complex three-dimensional vortex
patterns are generated. Honji [26] observed experimentally, and confirmed theoretically by
Hall [27], a three-dimensional instability on the attached boundary of the cylinder generating
counter rtotating vortex structures along the cylinder’s span. This effect causes an increase
in the predicted coefficient values of Wang as confirmed by Sarpkaya [28] in a comparative
analysis of theoretical findings (based on the Stokes’ and Wang models) and experimental
investigations into the influence of KC value on the occurrence of the Honji instability. Hall
[27] deduced that this occurs at the critical Keulegan—Carpenter number defined by

_ Rey
p

In this present study, the flow characteristics and Cp and C,; coefficient values associated
with a stationary circular cylinder in an oscillating viscous flow and an oscillating cylinder in
a stationary fluid are investigated using the cell boundary element method developed by Tan
et al. [29]. This hybrid approach incorporates both boundary element and finite element meth-
ods since, in the proposed scheme of study, cell equations based on Navier-Stokes equations
are generated using the principles of the boundary element method with global equations ap-
plicable over the whole fluid domain derived following the procedures of the finite element
method. A primitive-variable formulation with an unstructured fluid domain mesh requirement
forms the basis of the hybrid approach. This can be applied to both two- and three-dimensional
problems associated with a single cylinder or arbitrary arrangements of circular cylinders or
other shaped bodies as discussed by Farrant et al. [30, 31]. The application of the proposed
method focuses on two-dimensional fluid—structure interactions incorporating a validation with
experimental vortex shedding flows observed and measured by Tatsuno and Bearman [14],
Kiihtz [32] and a comparison of predictions derived by Diitsch et al. [15] by a finite volume
method.

Ker = 577847141 +0.20557 1 + ) %

2. MATHEMATICAL THEORY

2.1. Governing equations

Figure 2 illustrates a cell idealization of the viscous fluid domain. In each typical cell or ele-
ment Q, bounded by surface ¥, the fluid is assumed incompressible and of constant viscosity.
The Navier-Stokes equations describing the flow velocity v/(x’ ,') and the mean pressure
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Figure 2. Discretization of the fluid domain by an unstructured mesh.

P'(x',t") of the viscous fluid are given by

61)( 1 1
J —_—
o T+ Sl = Sl @ )l =0 (8)
v =0 9)

Here p" and p’ represent the fluid density and viscosity. A prime (') indicates the variable is
a dimensional quantity.

In order to simplify the mathematical expressions in these equations, a tensor index notation
with summation convention is adopted. In the convective term, for example,

o',
CCAVEDY )

!
=1 0x;

where the upper limit of the summation takes the value 2 or 3 for two-dimensional or three-
dimensional problems, respectively.

For viscous fluid-structure interaction problems categorized by a characteristic length L’
(e.g. diameter of cylinder, say) and a characteristic velocity U’ (e.g. mean fluid velocity), the
non-dimensional variables of space x, time 7, velocity v and pressure p are defined by

x/ v, v )4
X=15 t=th v=om p= U7
such that (8) and (9) can be expressed in the dimensionless forms:
U+ Qo)+ pj— [Ve(vir + )k =0 (10)
v, =0 (1)

Here v, =1/Re where Re denotes the Reynolds number (= p'U'L’/i).

These equations represent the flow velocity in an inertial or space fixed frame of reference
and are appropriate to the analysis of the fluid-structure interaction between a fixed body and
an oscillating flow. For a body manoeuvring in an incompressible fluid, Price and Tan [33]
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showed that the Navier—Stokes equations formulated in a moving frame of reference attached
to the body are given by

b+ (U + pj— Ve(vik + o)Lk =0 (12)
v j =0 (13)

Here U, denotes the relative velocity between the body and the fluid motion, i.e. Uy =ty —
where f; represents the velocity of the body and/or the fluid mesh attached to the body.
This set of equations is suitable to describe the fluid-structure interaction between a cylinder
oscillating horizontally and a fluid at rest at infinity or pulsating and translating in a stationary
fluid. As can be seen, these two sets of equations are very similar to (10) derived by setting
i =0 in (12). Therefore, for generality, (12) and (13) are used in the following development
of the mathematical model and numerical scheme of study.

2.2. Integral equation

To improve the efficiency and effectiveness of the numerical scheme of study for time-
dependent unsteady flow problems, the non-linear convective term in the momentum equation
is first resolved by a time marching process before the Navier-Stokes equations are trans-
formed into an integral equation (see Reference [29]). The procedure is described as follows:

(1) First-order scheme
In this scheme, the non-linear convective term can be resolved by a time-stepping
process. To maintain an accuracy of the order of Ar in the solution, the equation at
the (n -+ 1)th time step takes the form

£+ Ui+ pj— Vet + 0e)]a =0

where f;=(1/At)[v;, — v;”)], U= U,E") — # denotes the relative velocity at the nth time
step and the # represents the corresponding body velocity. Little additional computa-
tional time is needed to transform the velocity vector field into a space fixed co-ordinate
system by adding the system velocities.

(2) Second-order scheme
To achieve a second-order level of numerical accuracy with respect to At, the equation
for the (n + 1)th time step is similar to the first-order scheme except in this case,

N

fi=(1/2A8) 3y — 41)}") + v;"_l)] and U =20 — oY —

The mathematical theory for the derivation of above formulations can be found in Reference
[34]. 3

Thus, with the appropriate definitions of f; and Uy, these previous schemes can be repre-
sented by the modified Navier—Stokes equation,

fi+ @0 s+ pj— ve(vis + )]k =0 (14)

By means of Gauss’s theorem, an integral equality involving functions v, p and two addi-
tional functions v\ and p can be established on a typical cell {2 bounded by its surface
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¥ with outward normal n (see Reference [35]). This is written as

Aﬁ@ﬂﬁ+%%@lk+nj—ﬁd%r+%ﬂld+Jf%ﬁd9
+ /Q {0 [l j + P+ v 4 + 0 ) k] + pols 3 dQ

Z/[Uj((jknkvjj-l‘R;})—RjU:j] d2+/j;-v;§.d9 (15)
% Q

where the term R; = — pn; 4 v.(v;x + s ; )nx represents the jth component of the dimensionless
traction on the surface > whereas the variable R;'; is defined as

ok * *
st =p;n+ ve(vsj,k + Usk, j )nk

This integral equality holds for any functions v, p,v;" and pJ provided that all the terms
involved are integrable. If functions v and p are reserved to represent the flow velocity and
the mean pressure in the fluid on the cell, respectively, and they satisfy (11) and (14) then the
forms of functions v;* and p can be selected by imposing appropriate conditions to simplify
(15). In fact an examination of the integral equality shows that there would be significant
mathematical simplification by letting v and p’ satisfy the following equations:

O+ Py + (ol + 08 )i = 0y AX — €) (16)
o, =0 (17)

where d,; and A( ) are Kronecker and Dirac delta functions, respectively.
With the functions v, and p} defined by these equations, (15) reduces to,

C(?,)vs(g,t)+/2vj(ﬁ~nv§'}+R§'})d2:/Eij;kjdE—/ijv;kde (18)
where
1 if §€Q
CE)= if EeX

1
2
0 otherwise

In this equation the velocity of the flow in the cell is expressed as a surface integral
of velocity and traction on the boundary, and an additional volume integral involving the
contribution from f; which can be calculated from the values of v; and v\® on the cell
boundary.

When the boundary values of the velocity are specified, (18) can be used to determine the
traction R on the boundary and then the velocity field v everywhere in the cell. Thus (18)
defines a relation between the velocity and force on the cell boundary. Since vs*j also depends

on the value of U in the cell as seen from (16), modifications to the values of v}, are needed
during the time stepping procedures as v is continuously updated in the computation.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:2317-2338
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2.3. Fundamental solution

In the context of this paper, the solution of (16) and (17) is referred to as the fundamental
solution of the problem as it describes the response of the system to a point excitation. To
simplify the process of solution of these two equations for vj‘j and p¥, a further approximation
is introduced to replace the convective velocity U (with component U;) in (16) by its mean
value u (with component u;) on the cell. Findings from numerical experiments reveal that
this approximation is superior to the first-order approximation, in which the value of U, at
any arbitrary point in the cell is used for the convective velocity in (16).
With this assumption, the equations defining v} and p; take the following form:

WSy + Pl + eV 6+ Vi) = =0y A(X = §) (19)

vs*]; ;=0 (20)
The solutions of these equations for both two- and three-dimensional cases can be obtained
by means of Fourier transformations as discussed by Price and Tan [36, 33], or Tan [35].

3. NUMERICAL MODELLING

3.1. Idealization

To provide solutions to unsteady fluid-structure interaction problems, the computational fluid
domain is discretized into a large number of cells or elements (see Figure 2) and the integral
(18) adopted to represent the velocity field on the cell in terms of the values of velocity and
traction on the cell boundary.

For simplicity the following discussions are restricted to the two-dimensional time-dependent
case involving only quadrilateral cells with the control points for the unknown functions taken
at the centre of each cell edge. Similar discussions, however, apply to more general cases, i.e.
three-dimensional problems, control points taken at the corners of each quadrilateral, control
points at centres and corner points, etc.

3.2. Cell equations

On the typical cell shown in Figure 3, if the first-order time-stepping scheme is assumed and
the unknown functions v and R on each edge are treated as constants taking their values at
the centre of each edge, the cell integral equation can be rewritten as

4
CE G0+ S ol / (u-nvf + RS dS + — A / v;v} dQ)
[=1
4
— sz.”/ vhdS + /v(") vk dQ (21)
= Jo At

When the co-ordinates of the control point on each edge are assigned successively to &, the
index s allowed to take values 1 and 2 for the two-dimensional case under examination and

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:2317-2338



FLOW AROUND AN OSCILLATING CIRCULAR CYLINDER 2325

[J13

3

»® RO

=

4 ¢ v@ RW yle) @ R4 2

o™, RM

O

1 1 2

Figure 3. A typical cell with ordered notation.

the integrations of v;; and R} completed, the integral equation is replaced by a discretization
involving a set of 8 simultaneous equations on each cell. Thus if the superscript e denotes
the eth cell then the relevant algebraic equations can be expressed in the form

ALYE = AR 4 p© (22)

Here V(© and R are single column arrays constructed from the velocity v and traction
RO values at the centre of each edge (/=1,2,3,4) on the cell boundary. That is

ey RO

v R®
e — v R —

NN I R®

v R®

where 4% and A4 are 8 x 8 matrices and b a vector with 8 elements. These terms are the
results of the integration of v;"j and R} on the cell and can be expressed formally as

aAt Jq

=(n)
v;
(e) — * (e ) J * 40
Ay [/(l)vsjdE], b { t/QvSJd } (24)

where 7" is the averaged velocity of the nth time step on the cell and only the contribution
from the mean acceleration on the cell is included in the equations.
From (22), an expression of R can be obtained in the form

R — c@ple) _ 4@ (25)

1 1
49 [3os+ [ w4 Ran o [ opa0] (23)

where C© and d(® are solutions of the equations

AOCEO = 4O 4Og© — e
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In this formulation, the matrix A% is nearly singular because the flow is incompressible. The
singular value decomposition method (see [37,Section 2.9]) can be adopted to solve these
equations to find C© and d(©.

3.3. Global equations

The action-reaction relation of the traction R and the continuity of the velocity field V across
the control point on the cell boundary require R and V to satisfy the expressions

RO + R =0, VO=v) (26)

Here RO, R, VD and V") are the values of the traction and velocity on the same control
point belonging to different cells.

To construct the global equations for the whole fluid domain from the cell equations, the
assembly process used in a finite element method to obtain the stiffness matrix is adopted
[38, Sections 1.3 — 1.7]. The control points are organized into a consecutive global order after
each point is given a unique control point identifying number. When conditions (26) are
applied to each control point and the contributions from all cell equations to each and every
control point collected, a set of algebraic equations in terms of velocity can be obtained for
the whole computational domain. That is,

DV =F @27)

where V is the array of velocity values on all the control points in the global order, F contains
the contributions of 5 from all cells and D is formed by assembling the cell matrix C©
according to the global order of each control point.

Before this set of equations can be solved, global boundary conditions need to be imple-
mented. The two most commonly encountered conditions are prescribed traction and prescribed
velocity on the boundary.

4. NUMERICAL RESULTS

4.1. Discretization parameters and convergence

In this study, a selection of viscous flow characteristics, predicted by the cell boundary math-
ematical model, is compared with observations, measurements and other relevant theoretical
findings. Such an exercise provides a measure of verification and validation of the proposed
approach and developed numerical scheme of study; it also provides a degree of confidence
to extend the theoretical model to tackle more complex unsteady fluid—structure interaction
problems as considered by Farrant et al. [31].

Figure 4 illustrates the flow domain surrounding a circular cylinder of non-dimensional
unit diameter. The overall size of the discretized fluid domain adopted in the calculations is
defined by the magnitude of the quantity denoted by % (i.e. h=3,6,9, etc.). Figure 5 shows a
typical unstructured mesh of the fluid domain with each rectangular cell of grid size (Ax, Ay),
where Ax, Ay denote horizontal and vertical dimensions, respectively. In a study to assess the
influence of the domain size, grid dimension and idealization two different sets of boundary
conditions were assumed, each associated with a particular fluid problem. In Figure 4, the
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FLOW AROUND AN OSCILLATING CIRCULAR CYLINDER 2327

(™
I
1]
R
e
]
oo
A

i h I h I

Figure 4. Computational domain definition and boundary conditions for an oscillating cylinder. All the
variables and quantities are non-dimensional. (The indicated positions o, &y, a3, %4 relate to the transverse
measurements of Diitsch et al. [15] illustrated in Figure 10.)

Ay
Az

Figure 5. Typical mesh idealizing the fluid around the cylinder.

boundary conditions (1) and (2) refer to a transversely oscillating cylinder with the far-field
fluid at rest. At the top and the bottom of the domain the same velocity boundary conditions
are assumed. By slight modification of these conditions a numerical towing tank experiment
in which the cylinder translates with a forward speed v=V'(¢) and transversely oscillates with
prescribed motion # =U(¢) as given in (1) can be devised.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:2317-2338
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Table I. Drag Cp and added mass C; coefficients at Re =100 and KC =5
for different time steps.

Boundary condition Domain Grid size
At (Figure 4) size h (Ax, Ay) Cp Cr
0.25000 1 6.0 (0.15,0.15) 1.98 1.48
0.12500 1 6.0 (0.15,0.15) 2.09 1.44
0.06250 1 6.0 (0.15,0.15) 2.10 1.43
0.03125 1 6.0 (0.15,0.15) 2.10 143

Table II. Drag Cp and added mass C; coefficients at Re =100 and KC=5 for different
boundary conditions and domain size.

Boundary condition Domain Grid size
At (Figure 4) size h (Ax, Ay) Cp C
0.06250 1 3.0 (0.15,0.15) 227 1.47
0.06250 2 3.0 (0.15,0.15) 2.24 1.49
0.06250 1 6.0 (0.15,0.15) 2.10 143
0.06250 2 6.0 (0.15,0.15) 2.13 1.44
0.06250 1 9.0 (0.15,0.15) 2.10 143
0.06250 2 9.0 (0.15,0.15) 2.10 143

Table III. Drag Cp and added mass C; coefficients at Re =100 and KC=35
for meshes of different refinement.

Boundary condition Domain Grid size
At (Figure 4) size h (Ax, Ay) Cp Cr
0.06250 1 6.0 (0.20,0.20) 2.12 1.41
0.06250 1 6.0 (0.15,0.15) 2.10 1.43
0.06250 1 6.0 (0.10,0.10) 2.10 1.45
Finite volume method, Diitsch et al. [15]" 2.09 145

*Numerical results derived using the finest mesh in their analysis.

For the fluid flow at Re=100, KC=5, designated two-dimensional by Tatsuno and
Bearman [14] in Figure 1, Tables 1-3 show the variations of the values of the drag coeffi-
cient Cp and added mass coefficient C; with time step Az, domain size k, grid size (Ax, Ay)
and boundary conditions. Overall the computed Cp, C; results show small variations between
themselves even for significant changes to the stated parameter values. To examine the sensi-
tivity of inlet-outlet boundary condition at x= =&, Table Il includes predictions for velocity
boundary conditions, i.e. u=0=v and a mixed boundary condition involving velocity and
traction components, i.e. u=0=R,. From the evidence presented in Table II, it is observed
that provided 4 is sufficiently large the boundary conditions imposed at x = =/ influence Cp
and C; values insignificantly. In all these findings a larger variation of value is exhibited in
the drag coefficient rather than the added mass coefficient which remains relatively constant.

In a wide ranging computational investigation, additional results were further substantiated.
Namely, boundary conditions (1) and (2) produce similar predictions for each set of chosen

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:2317-2338
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Figure 6. (a) Flow visualization of the streakline pattern generated by a transversely oscillating circular

cylinder at Re = 81.4, KC = 11.0 in two-dimensional flow regime A as observed by Tatsuno and Bearman

[14]; (b) overall numerical simulation comparable with the visualization in (a); (¢) numerical simulation
at different stages over a half-cycle illustrating the vortex shedding mechanism.

parameter values and, secondly, the observed flow characteristics associated with a cylinder
oscillating in a stationary fluid and those for a stationary cylinder subject to an oscillating
flow showed very close agreement confirming the study of Garrison [39]. Such studies provide
assurance that the numerical schemes of study produce convergent results and this is further
confirmed by the finite volume investigation of Diitsch et al [15] who determined drag and
added mass coefficient values of Cp=2.09 and C;=1.45, for Re=100 and KC =5. These
latter values were obtained using the finest mesh in their analysis and they lie within the range
of data shown in Tables I-IL It is interesting to note that although favourable comparisons of
predicted results are demonstrated between the cell boundary element approach and the finite
volume method, the computational domain used herein is smaller and incorporates a coarser
mesh than used by Diitsch et al. [15].

Thus, from the presented evidence on accuracy of computation and convergence of solution,
in subsequent calculations for transversely oscillating cylinders, it was decided to take the
following grid dimensions: Ax=0.15= Ay; to discretize the fluid domain # =9 for symmetric
flow regimes (i.e. see Figures 6 and 7) and h=15 for asymmetrical flows (ie. C, E, F in
Figure 1) to capture details of the more complex flow behaviours (see Figure 8); to utilize

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:2317-2338
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Figure 7. (a) Flow visualization of the streak-
line pattern generated by a transversely oscillat-
ing circular cylinder at Re = 165.79, KC =3.14 in
two-dimensional flow regime A* as observed by
Tatsuno and Bearman [14]; (b) overall numerical
simulation comparable with the visualization in
(a); (c) numerical simulation at different stages
over a half-cycle illustrating the contra-rotating
crescent like flow observed.
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Figure 8. (a) Flow visualization of the streak-
line pattern generated by a transversely oscil-
lating circular cylinder at Re=210.0, KC=6.0
in three-dimensional flow regime E as ob-
served by Tatsuno and Bearman [14]; (b) over-
all two-dimensional numerical simulation compa-
rable with the visualization of three-dimensional
flow in (a); (¢) numerical simulation at different
stages over a half-cycle of a stable V-type vortex
street which is sharper than observed in (a) due
to the confinement of the two-dimensional flow.
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a uniform unstructured mesh (see Figure 5); to adopt approximately 80 time steps per cycle
and velocity boundary condition (1). That is, the mathematical modelling of the experiments
performed by Tatsuno and Bearman [14], Kndrnschild [40] and Diitsch et al. [15].

The results for the convergence tests of the present method in the oscillating cylinder flow
problems are consistent with similar tests carried out for other flow problems including driven
cavity flow, backfacing step channel flow and vortex shedding flows, etc. The details of these
investigations and more comparison with other methods can be found in Tan et al. [29] and
Farrant et al. [30, 31].

4.2. Observations and numerical simulations

As illustrated in Figure 1, Tatsuno and Bearman [14] through an experimental visualization
study provide an extensive categorization of the flow regimes around an oscillating circular
cylinder over a range of Re and KC numbers. Three such examples are shown in Figures
6(a)-8(a) of the streakline patterns at Re=814, KC=11.0 in regime A, Re=165.79,
KC=3.14 in regime A* and Re=210.0 and KC=6.0 in regime E. They confirmed the first
two flow fields as two-dimensional and these cases are on either side of the f=35 line
shown in Figure 1. Kndrnschild [40] independently substantiated these findings. Case E is on
the B =35 line and is deemed a physical three-dimensional flow (see Figure 1).

Figures 6(b)-8(b) illustrate the equivalent computed streakline patterns to Figures
6(a)—8(a). These streaklines were simulated by releasing 40 massless particles at each time
step into the computational domain. The overall impression gained by comparison of the
respective figures indicates close similarities. The particles used to compute the streakline
patterns are passive markers. This method is equivalent to the experimental electrolytic pre-
cipitation method used by Tatsuno and Bearman [14].

Figures 6(c)—8(c), 9(a) and 9(c) illustrate the vortex shedding mechanisms in the numerical
simulations during various stages of the cycle for cases A, A* and E.

Figures 6(b), 6(c) and 9(a) show symmetric and periodic vortex shedding. In this regime
two contra-rotating vortices are formed symmetrically behind the cylinder during each half-
cycle. These vortices stay behind the cylinder at the end of each cycle and as the cylinder
reverses direction, the vortices are convected towards the cylinder. The vortices do not survive
into the next half-cycle agreeing with the observations of Tatsuno and Bearman [14].

Figure 7(b) and 7(c) illustrate computed streakline patterns during a cycle for case A* i.e.
Re=165.79, KC=3.14. The computed velocity field for this regime at a specific instant in
the cycle is illustrated in Figure 9(b). No vortex shedding occurs in this symmetric regime
confirming the experimental findings. Large regions of contra-rotating crescent like flow are
observed on both sides of the cylinder.

According to the classification of Tatsuno and Bearman [14], Figure 8(a) belongs to regime
E and is three dimensional in form. The two-dimensional flow calculation at Re=210.0,
KC=6.0 is illustrated in Figures 8(b) and 8(c) and they suggest that the three-dimensional
flow feature is not too strong although a slightly sharper V fluid shedding formation is shown
in the simulation. This is a regime where the flow sheds with temporarily stable V-type
vortex streets as illustrated in Figures 8(b), 8(c) and 9(c). In this regime intermittent changes
of direction of convection and switching of the flow field triggered by small disturbances
were observed by Tatsuno and Bearman [14]. However, no artificial disturbances (e.g. see
the discussion of Zhang and Zhang [21]) were added in the present computations to simulate
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2 R S T U NN N

(a) Re=81.4, KC=11.0, Ut/D = 250.21 (b) Re=165.79, KC=3.14, Ut/D = 59.64

(¢) Re=210.0, KC=6.0, Ut/D = 465.00

Figure 9. An enlargement of the velocity field at a presented instant in
the vicinity of the transversely oscillating cylinder for the flow regimes
illustrated in Figures 6(c)—8(c).
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Figure 10. Comparison of the velocity components at four cross-sections at constant x

values of oy,0,03,04 as illustrated in Figure 4. These results relate to a phase posi-

tion 180° computed by discretization utilizing (a) a coarse mesh (see Table III, row 1);
(b) a medium mesh (see Table III, row 2).

this mechanism and vorticity convection occurred only on one side of the cylinder with no
switching of the flow field.

To further validate the proposed theoretical and numerical approach, computations were
compared with measurements taken by Diitsch et al. [15] at Re=100 and KC=5.0 for the
velocity components (u,v) at prescribed phase angles and at different cross-sections in the
flow measured from the centre of the cylinder. Figure 4 indicates the four transverse positions
of measurement o, oz, a3, 04. Figure 10 illustrates such a comparison at these cross-sections
behind and ahead of the cylinder. The excellent comparison between these findings and the
experimental and numerical results of Diitsch et al. [15] further confirms with confidence the
applicability of the mathematical model to fluid—structure interaction problems defined by low
Reynolds number and Keulegan—Carpenter number.

4.3. Predicted forces and coefficients

To illustrate the influence of Reynolds number and Keulegan—Carpenter number on force
and coeflicient values a series of computations were undertaken along the =35 line shown
in Figure 1 for 0<KC<S8. This range covers two- and three-dimensional flow regimes and
therefore, for KC values greater than approximately 5 along =35 the predicted values can
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Figure 11. In-line force computed over Figure 12. In-line and lift forces computed
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Figure 13. Time history of (a) in-line force and (b) lift force computed at Re =210 and KC=6.

only be approximations to the physical flow reality. As indicated in the introduction, the KC
parameter in effect compares the distance the cylinder moves relative to the cylinder’s diame-
ter. When the KC value is small inertial forces dominate, the time for diffusion of vorticity is
insufficient and the flow remains attached. With increasing value of KC, the boundary layer
separates, vortex formation and shedding occurs and drag forces become important. Vorticity
is now transported by convection as well as diffusion as discussed by Kiihtz [32].

For illustration purposes, Figures 11 and 12 show the variation of the drag (F) and lift (F3)
force components over a cycle at Re =100, KC=5 and Re =210, KC =6, respectively. The
information is computed directly by the cell boundary element method and through analysis
using the Morison equation (3) after determining Cp and C; values by Fourier analysis. As
to be expected, a reasonable agreement exists between the drag force component from the
two analyses. The individually calculated time force histories of the components illustrated in
Figure 12 are shown in Figures 13(a) and 13(b). The initially zero-valued lift force component
indicates a symmetric flow field before the presence of the lift force is experienced which
significantly lags the drag force. For the two-dimensional flow regime at Re =100, KC=5
the lift force component F, remains zero or very near to zero over the cycle confirming a
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Table IV. Drag Cp and added mass C; coefficients for =35 at different regimes.

KC 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 8.0
Regime A A* A A* A* A A C E Ft
Viscous cell boundary element method
Cp 10.0 5.13 3.56 2.83 243 2.18 1.94 1.84 1.75 1.74
Cr 1.37 1.36 1.35 1.33 1.32 1.30 1.29 1.23 1.14 1.05
Finite volume method, Diitsch et al. [15]
Cp 104 5.39 3.72 2.98 — 2.28 1.97 1.82 1.73 1.72 - 1.73
Cr 137 1.36 1.35 1.34 — 1.31 1.30 1.30 1.17 1.14 — 1.15
fCycle averaged after flow instability.
4 T T T T T 1 . T T T T T T T
101 % 4
3 7 - ) % T
Cum & LA A TR CuP S X o Cp \é\
2 4 & i x& -
Wang (Analytical) 3
--v-- Wang (Analytical PRI ; *
e  Kuhtz (Exp.) 24 : x:é Egzsl)yncal) Al -3 s i
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Figure 14. Variation of (a) inertia coeffcient Cj; and (b) drag coefficient Cp with Keulegan—
Carpenter number KC for §=35.

symmetric flow field and the drag force is the only significant component. In both cases a
reasonable correlation exists between the Morison type approach and results derived from the
cell boundary element approach.

Table IV presents information on the drag Cp and added mass C; coefficients from the
series of computations over KC number. These coefficients for KC>5 were obtained by
Fourier analysis of the cycles after periodic states were established. This table also includes a
comparison with the findings of Diitsch et al. [15] for 0SKC <S8, =35 using a finite volume
method. In flow region F (KC=8.0) a time-averaging process is applied to the cyclical data
after the occurrence of flow instability. All these data are included in Figures 14(a) and 14(b)
together with the experimental results of Kiihtz [32], who presented the data in this inertia-drag
coefficient format and analytical solutions of Wang [25] derived from (5) and (6). From this
limited evidence, the agreement between experimental drag data and cell boundary element
method or finite volume method predictions are favourable although for the added inertia
coefficient the predicted values lie below the experimental data. Furthermore, the information
illustrates the restricted accuracy of the series expansion as performed by Wang and confirms
the limited applicability of such an approach as discussed by Chester [41].
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Rigtiand

(a) (b)
Figure 15. The simulated streakline patterns generated by two oscillating circular cylinders at

Re=100, KC=5 in (a) tandem arrangement and (b) side-by-side arrangement. The gap clearance
between the two cylinders is D in both cases where D is the diameter of the cylinders.

Table V. Key parameters for two oscillating cylinders at Re =100 and KC=35.

Two cylinders in tandem Two cylinders side-by-side
Single
Parameters cylinder Left Right Bottom Top
Cp 2.10 1.77 1.77 2.63 2.63
Cr 1.43 1.25 1.25 1.30 1.30
F 0.0 —0.10 0.10 0.0 0.0
B 0.0 0.0 0.0 0.30 -0.30

4.4. Two oscillating cylinders

The cell boundary element method has also been used in multi-body problems and the applica-
tion is straightforward since this method works with unstructured meshes. Examples presented
here involve two identical cylinders oscillating in synchronization with parameters Re =100
and KC=5 based on the diameter D of the cylinders. Two arrangements with the cylinders
in tandem and side by side are considered and in both cases the gap between the two cylin-
ders is the same as the diameter of the cylinders. That is, the distance from centre to centre
of the cylinders is 2D. The simulated streakline patterns predicted using the cell boundary
element method are presented in Figure 15 ((a) for the tandem arrangement and (b) for the
side-by-side arrangement). As can be seen in Figure 15, the streakline pattern of the tandem
arrangement appears to be similar to the single cylinder case in the same regime whereas the
side-by-side arrangement produces a very different streakline pattern.

The drag Cp and added mass C; coefficients and time averaged values of in-line force F
and lift £, are shown in Table V for each cylinder in different arrangements. The C; values
in both the two cylinder cases are lower for each arrangement when compared with the C;
value of a single cylinder, whereas the Cp values show a different trend. The values of F;
and F, in Table V suggest that the two cylinders are subject to a net repulsive force in the
tandem arrangement and a net attractive force in the side-by-side arrangement. The results
also show that the interactions between the two cylinders are significant in both arrangements
under the given conditions.
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5. CONCLUSION

The cell boundary element method developed by Tan et al. [29] and modified herein to study
oscillating cylinders or manoeuvring bodies has proven successful, reproducing the detailed
characteristics of experimental observations, correlations with theoretical predictions presented
by others and experimental measurements of drag and lift coefficients over a range of Re,
KC numbers for fixed Stokes’ parameter f=35. This has been achieved by adopting an
unstructured mesh to idealize the fluid domain and a primitive-variable formulation to con-
struct a hybrid approach involving boundary element and finite element methods. Through
developments of suitable numerical schemes of study associated with the cell boundary el-
ement method integrated with the relevant boundary conditions for transversely oscillating
cylinders or a cylinder fixed in oscillating flows, the presented computed unsteady flows pro-
vide a measure of verification, validation and confidence in the proposed overall approach
when compared with other experimental and theoretical findings.
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