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This paper is concerned with symmetrization and diagonalization of real matrices
and their implications for the dynamics of linear, second-order systems governed
by equations of motion having asymmetric coefficient matrices. Results in the light
of Taussky’s theorem are presented. The connection of the symmetrizers with the
eigenvalue problem is brought out. An alternative proof of Taussky’s theorem for
real matrices is presented. Diagonalization of two real symmetric (but not necessarily
positive-definite) matrices is discussed in the context of undamped non-gyroscopic
systems. A commutator of two matrices with respect to a given third matrix is
defined; this commutator is found to play an interesting role in deciding simultaneous
diagonalizability of two or three matrices. Errors in a few previously known results are
brought out. Pseudo-conservative systems are studied and their connection with the
so-called ‘symmetrizable systems’ is critically examined. Results for modal analysis
of general non-conservative systems are presented. Illustrative examples are given.
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1. Introduction

Taussky (1959, 1968) and Taussky & Zassenhaus (1959) proved a remarkable result
that every square matrix (real or complex) is related to its transpose via a similarity
transform brought about by a symmetric matrix. In this paper, we establish the
connection of this similarity transform with the eigensolutions of the original matrix
for the real case, extend a few results to a matrix pencil, and examine the implications
of these results in the context of modal analysis of non-conservative systems. Consider
a non-conservative system governed by

Ad+ Bq+ Cq= f(), (1.1)

where A, B and C are assumed to be non-defective n x n real square arrays (i.e. a
sufficient number of eigenvectors exist) and they need not be symmetric. They may
not have the usual interpretation of being the mass, the damping and the stiffness
matrices, respectively. Whenever A™! is used, it will be assumed that it exists.
Asymmetric coefficient matrices appear in problems involving follower forces (see,
for example, Bolotin 1963), gyroscopy, aero-/hydro-elasticity and control effects, etc.

While carrying out modal analysis of system (1.1) using a suitable real transform,
we are interested in two questions.
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(i) How can equation (1.1) be decoupled?
(i) When can equation (1.1) be decoupled?
Concerning the first, there are two main results.

(1) Diagonalization using orthogonality with respect to the two real symmetric
matrices (i.e. using a congruence transform) when B = 0 (Thomson & Tait
1867, article 337; Rayleigh 1894, article 87), when either A or C is positive
semidefinite. When B # 0, simultaneous diagonalization of all three matrices
may not be guaranteed (Caughey & O’Kelley 1965).

(2) Diagonalization using biorthogonality (i.e. using an equivalence transform) if
the matrices are not symmetric (Lancaster 1966; Fawzy & Bishop 1976).

Regarding the conditions for simultaneous diagonalization, the following are the
main contributions.

(1) Rayleigh (1894) realized that ‘. ..in terms of normal coordinates, T and V' (the
kinetic and the potential energies) are reduced to sums of squares’, implying
that two real symmetric matrices, of which one is positive semidefinite, can
always be diagonalized simultaneously.

(2) Caughey & O’Kelley (1965) stated that commutativity of A7'B and A™IC
is the required condition for simultaneous diagonalization when a symmetric
system of matrices is considered and A is positive definite. This condition will
be referred to as Caughey’s condition hereafter. The corresponding normal
modes are known as the classical normal modes.

(3) Liu & Wilson (1992) and Ma & Caughey (1995) obtained Caughey’s condition
when matrix B is assumed to be a general asymmetric real matrix, thus extend-
ing Caughey & O’Kelley’s (1965) result. We shall observe later in this paper
that this extension is not valid as a necessary as well as sufficient condition if
we seek diagonalization by a real transformation.

(4) Rayleigh considered a special case of Caughey’s condition: when one of the
matrices is a linear combination of the other two (see Rayleigh (1894, arti-
cle 97), ‘T, V, F simultaneously reducible’). The corresponding damping model
is known as the ‘Rayleigh damping model’.

Vector g of the generalized coordinates, in equation (1.1), belongs to the so-
called n-dimensional configuration space. Equation (1.1) can also be written as
$ = As + g by defining the 2n-dimensional state-vector s = [q* | ¢*|*. Eigenvalues
of the 2n x 2n state matrix A are called eigenvalues of the system. In the con-
figuration space the A-matrix (see, for example, Lancaster 1966) associated with
equation (1.1) is (A2A + AB + C), whose non-trivial solutions are called the latent
roots and the latent vectors, respectively. Working with the state-matrix has many
advantages and this approach has been very popular with control theorists. However,
we shall not pursue this matter here.

In the next section, Taussky’s theorem is considered and its connection with the left
and right eigenvectors is established. Extensions of this theorem to a pair of matrices
is considered in § 3. The dynamical system Ag+Cq = f is then studied in the light of
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these results. A point to note is that the symmetric generalized eigenproblem Au =
BCu does not necessarily admit real solutions, whereas the symmetric standard
eigenproblem Awu = u does. The general dynamical system Ag+ Bg+ Cq = f is
taken up in §4.

2. Taussky’s theorem and eigenvectors of a real matrix

Taussky & Zassenhaus (1959) showed that for every square matrix A, there exists
a non-singular symmetric matrix S such that AT = S71AS. If A is real, then S is
real-symmetric and if A is complex, then S is complex-symmetric. The result, for
real A, can be presented in another way: for a real square matrix A, there exists a
non-singular real symmetric matrix R = S$~! such that RA is symmetric. It will
be shown here that the equivalence transform VT AU over A, V' and U, being the
right and left eigenvectors arranged column-wise in a matrix, plays an interesting
role in this context.

A proof of Taussky’s theorem for real matrices based on eigenvectors is presented
next. It is assumed throughout that the system is not defective and a full set of
eigenvectors is available. The case of multiple eigenvalues (i.e. the case of degener-
ate systems) is not ruled out, since it is always possible to obtain a set of linearly
independent eigenvectors for the case of non-defective but degenerate matrices. This
means that the set of left as well as right eigenvectors spans C" and, therefore, it is
possible to introduce an invertible linear transform between them:

V=X"U oo X=UT"TV" (2.1)

Although U and V' are non-singular, their real and imaginary parts are rank defi-
cient. If U possesses p number of real eigenvectors and 2g number of complex con-
jugate eigenvectors, then the nullity of Re(U), the real part of U, is ¢, due to ¢
repeated columns for 2 complex conjugate eigenvectors. On the other hand, Im(U),
the imaginary part of U, has p columns of zeros (since there are p real eigenvectors)
and 2¢ non-zero columns, of which half are repeated (after changing the signs), since
they correspond to complex-conjugate pairs. Hence the rank of Im(U) is ¢. Since
the eigenvalues of a matrix and its transpose are the same, the numbers of the real
left eigenvectors and the complex-conjugate left eigenvectors are the same as those
for the right eigenvectors. Therefore, similar statements follow for the real and the
imaginary parts of V. We can summarize these observations as

rank{Re(U)} = null{Im(U)} = rank{Re(V)} = null{Im(V)},

rank{Re(U)} + rank{Im(U)} = rank{Re(V)} + rank{Im(V)}
=rank(U) = rank(V) = (p + 2¢) = n.

(2.2)
Let us construct two real n x n matrices U and V as follows
” R R
V:['Ul|'U2‘"”U;D"Up—}—llvzl)-l-l""vp—i-qivzlﬂ—q] } (23)
U=lug|ug| up| u§+1 |U§J+1 ] ”'U’]l}v]—q ] up+q]

where u; and v; are the ith left and right eigenvectors and the superscripts refer
to the real or the imaginary part. The first p eigenvectors of A are real and the
remaining 2¢ = (n — p) are ¢ pairs of complex-conjugates. U and V have their first
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p columns as the real eigenvectors of A, whereas the real and imaginary parts of the
2¢ complex-conjugate eigenvectors occupy the last 2¢ columns.

Since U and V' are real square matrices, a real linear transform (say TR) relates
them through V =TRU, ie. 9; =Tru;, j = 1,2,...,n. Since the transforma-
tion matrix is real, vectors superscripted R and I can be combined, and left and
right eigenvectors v; and w,; can be constructed as (vE +ivl) = Tr(ul +iul), s =
(p+1),..., (p+q). For the first p eigenvectors vy = ¥y, ur = ty; and therefore the left
and right eigenvectors are related via vy = Trug, k = 1,2,...,p. Therefore, the real
and the complex left and right eigenvectors are related through a common real trans-
form Ty, i.e. vy = Trur, k=1,2,...,n;0or V = TrU. Comparing this with (2.1) we
realize that X must be real and that XT = Tg. Therefore, the equivalence transform
VT AU takes the foom VT AU = UTTE AU = UT X AU. The well-known biorthog-
onality relations between the left and right eigenvectors are given by VTU =TI and
VTAU = A, where A is the diagonal matrix of eigenvalues. The biorthogonality rela-
tion can now be rewritten as UT XU = I and UT X AU = A. Pre-multiplication by
U7 and post-multiplication by U ™! implies that both X and X A are symmetric.
Since X A and X are symmetric matrices, transposition leaves them unchanged, so
that XA = ATXT = AT X and, therefore, AT = X AX~!. This proves Taussky’s
theorem. Taussky & Zassenhaus’s (1959) original arguments did not involve the left
or right eigenvectors. In a similar manner, A can also be symmetrized by post-
multiplication by another real symmetric matrix, say Y, by expressing each right
eigenvector in terms of the left eigenvectors (details are omitted).

Definition 2.1. A linear mapping X : R™*™ > R™*™ ig called a left symmetrizer
to A if (i) X is non-singular, (ii) X = X7, and (iii) (XA) = (XA)T. A linear
mapping Y : R"X™ s R™*" ig called a right symmetrizer to A if (i) Y is non-singular,
(i) Y = YT, and (iii) (AY) = (AY)T.

That the symmetrizer is not unique, has been recognized by Taussky (1968). How-
ever, the procedure (procedure s) of finding them does (do) not appear to have been
explored in the existing works of various authors. One of the aims of the present paper
is to achieve this: equation (2.1) is the required relationship. Given definition 2.1,
Taussky’s theorem (over the field of reals) can be succinctly rephrased now.

Theorem 2.2. For every real square matrix, there exists a real left (and a right)
symmetrizer.

Lemma 2.3. The inverse of a left symmetrizer of a real square matrix A is a left
symmetrizer of AT and the inverse of a right symmetrizer of a real square matrix A
is a right symmetrizer of AT.

Lemma 2.4. A left symmetrizer of a real square matrix A is a right symmetrizer
of AT and a right symmetrizer of a real square matrix A is a left symmetrizer of
AT,

Proofs of lemmas 2.3 and 2.4 follow easily from AT = X AX ~!. Equation (2.1)
implies that for a right eigenvector w;, there ezists a left eigenvector which is a product
of a left symmetrizer and the right eigenvector, i.e. v; = Xu;. Using lemma 2.3, it
is further observed that u; = Ywv;, where Y is a right symmetrizer. An example
follows.
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Example 2.5 (symmetrizer of a matrix with real eigensolutions). Consider

a real asymmetric matrix
1 2 3

A= 14 5 6
7T 8 9

Eigenvectors of A and AT are calculated and arranged in matrices U and V ensuring
that the sequence of eigenvectors in both matrices is consistent. A left symmetrizer
is calculated according to X = U TVT = XT = VU~! as

1.2014 0.1622  0.1229
X = (0.1622 1.0650 —0.0321],
0.1229 -0.0321 0.8128

2.7108 4.1973 5.6839
XA = 41973 53924 6.5875| = (X A)T.
5.6839 6.5975 7.4911

The inverse of X is a right symmetrizer of A due to lemmas 2.3 and 2.4:

0.8646 —0.1358 —0.1362
Y=X"1=[-01358 09614 0.0585 |,
—0.1362  0.0585  1.2532

0.1846 1.9626 3.7407
AY = [1.9626 4.6151 7.2676 | = (AY)™.
3.7407 7.2676 10.7946

Matrices of left and right eigenvectors are unique only up to independent scaling of
the vectors and their permutations. What is interesting in Taussky’s theorem is the
fact that the complex left and right eigenvectors are related via a real symmetric
transform.

Example 2.6 (symmetrizer of a matrix having complex eigensolutions).
The right and the left eigenvectors of

1 2 -1
A=|3 2 1
4 -2 2

are calculated as

[—0.2653 +0.23371 —0.2653 — 0.23371  0.5071]
U= 02653—-0.23371 0.2653+0.23371 0.8452{ ,
| 0.8505 4 0.16321  0.8505 — 0.1632i  0.1690 |

[ 0.7162 4+ 0.0474i  0.7162 — 0.0474i  0.7071]
V =|-04791 - 0.11361 —0.4791 +0.1136i 0.7071] ,
| 0.2468 + 0.42601  0.2468 — 0.4260i 0

respectively. The two complex matrices are related via a real symmetric transform

0.2324  0.5486  0.7434
X=U""TvT= 0548 0.6249 —05871| = XxT.
0.7434 —0.5871  0.7052
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This transformation matrix is a left symmetrizer of A, since

4.8517 0.0750  1.8030
XA= 00750 35212 -1.0978| = (XA)T.
1.8030 —1.0978 0.0799
The question of uniqueness of symmetrizers is examined now. Suppose X is a left
symmetrizer. If there exists another symmetrizer, say, X, then the non-singularity
of both X and X implies that the columns (or rows) of elther of the two matrices

span R™. Therefore, X and X must be related via a non-singular linear transform
(say, T), i e. X = XT. Since X and X are symmetric matrices,

X=X"= (XT)=T'X = XTA=T"XA.

Since X A is also symmetric, we have

(XA)=ATTTX, ie XTA=A"TTX. (2.4)
Therefore, TY X A = ATTT X . Since X is non-singular, appropriate pre-multiplica-
tion and post-multiplication results in X AX 1 = T-TATTT. But XAX ! = AT,

and, therefore, TA = AT. On similar lines, the set of right symmetrizers can also be
handled. In the following, we use the notation for the commutator of two matrices
A; and Ay as [A1, As], which is given by A1 As — Az Aj.

Theorem 2.7. If X is a left symmetrizer to A, then so is X = XT, where T
is a linear non-singular mapping such that [T, A] = TA — AT = 0. If Y is a right
symmetrizer to A, then so is Y =TY, where T is a linear non-singular mapping
such that [T, A]=TA — AT = 0.

Thus, the set of all the symmetrizers X;, Y; can be generated by solving the
commutator equation: [T}, A] = 0 for T; and substituting into X; = XT; and
Y, =TY.

A more impressive statement of Taussky’s theorem for real matrices is that every
real matrix can be factorized into two real symmetric factors (Taussky 1968). One
of these two factors can be identified with a symmetrizer (as defined via the left and
the right eigenvectors) or its inverse, since

A=SATS = (XA (X) = (X "H(ATX),

where each term inside the parentheses is symmetric. Symmetric factorization of a
real matrix is, thus, a known fact; its relationship with eigenvectors, however, seems
to have been missing in the literature. There have been attempts to obtain sym-
metric factors of a matrix (see, for example, Inman 1983, appendix). Inman (1983)
constructs ‘the symmetric factors’ by solving simultaneous equations by imposing
the condition of symmetry on the factors in the product. Ahmadian & Chou (1987)
present a fairly involved procedure of calculating symmetric factors of a real matrix.
The approach here reduces this problem to solving the eigenproblem of the matrix
and that of its adjoint, and obtaining the linear transform between the left and the
right eigenvectors. Since symmetrizers are not unique, the possible factors of a matrix
into a product of symmetric matrices is not unique. Sen & Venkaiah (1988a,b) and
Venkaiah & Sen (1988) have approached the problem of computing symmetrizers via
algorithms that operate directly on the rows and columns of the matrix in question.
The set of mappings {T'} = {T : [T, A] = 0} and the set of symmetrizers {X } =
{X : XA = (XA)T} can be shown to have the following mathematical structure:
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(i) the set of all linear mappings {7} which map a given left symmetrizer X to
another left symmetrizer X = XT, together with 0 constitute a ring;

i) the set of all non-singular linear mappings {T'} constitutes a multiplicative
g
group; and, finally,

(iii) the set of symmetrizers X constitutes a commutative semigroup with respect
to the addition operation.

This is true because the set is non-empty due to Taussky’s theorem; and any non-
zero linear combination of two symmetrizers is also a symmetrizer, hence the set is
closed under addition. Elementary group definitions may be found, for example, in
Valenza (1993, ch. 2).

3. Undamped non-gyroscopic systems: two real
square arrays or a matrix pencil

Ma & Caughey (1995) have presented a method of decoupling the governing equa-
tions of vibratory motion based on an equivalence transform when the coefficient
matrices are taken as real square arrays without any assumption regarding symme-
try or definiteness. Their concern appears to be ‘decoupling’ equations of motion in
the configuration space by the use of a real or a complex transform. This method is
essentially the same as that of Fawzy & Bishop (1976). While decoupling equations
in the configuration space, it is often implicitly assumed that the transformation
involves real matrices.

Consider the case when velocity terms vanish, i.e. B is a null matrix. The use of
equivalence transforms (or biorthogonality) VT AU = I and VTCU = A has been
well known in this context (see, for example, Lancaster (1966, theorem 2.1), Fawzy
& Bishop (1976), Wahed & Bishop (1976), Newland (1987) and Meirovitch (1980,
886.7, 6.8) for simultaneous diagonalization in the state space). On this basis Ma &
Caughey (1995) obtained a result: ‘an undamped non-gyroscopic system that is not
degenerate or defective can always be decoupled by equivalence transformation’. If
U and V used for the equivalence transforms are restricted to be in the real space,
then the claim of the result regarding decoupling becomes invalid.

While achieving ‘decoupling’ of coordinates in a manner presented by Ma &
Caughey (1995), one needs to transform the coordinates according to g = Up, and,
according to them, the transformed equation p+ Dp = VT f(t) = P(t) ‘represents
a completely decoupled system’. Complete decoupling must be interpreted as pos-
session of classical normal modes in the sense of Caughey (1960) and Caughey &
O’Kelley (1965). This necessarily means decoupling by a real transformation.

Generalized coordinates p are in the configuration space and they remain coupled
in terms of the real variables. A typical ‘decoupled’ complex equation takes the form:
Pj +djp; = P;. Note that q is real but p and D are, in general, complex. Separating
the real and the imaginary parts of the variables and the parameters as p; = n; +ig;,
d; = X; +182; and P; = r; +1is;, each ‘decoupled’ complex equation becomes

ol B 3 {0 o1

Proc. R. Soc. Lond. A (2001)



2462 A. Bhaskar

This equation represents a set of coupled ordinary differential equations in real vari-
ables n; and ¢;. Eigenvalues of this system are given by ,7(1 2 = X); £142;. Therefore,
decoupling achieved via p; + d;p; = P; is only that of appearance. The requlrement
of non-degeneracy in the theorem of Ma & Caughey (1995) is unnecessary, since
biorthogonality conditions exist for degenerate systems too. Of course, this is not
true of a defective system. If the d; are real, the solution of p; + d;p; = P; is imme-
diate. Otherwise, calculations are considerably involved.

Equations (3.1) can be cast in the first-order form in a four-dimensional state-space
spanned by the variables 7;, 1;, ¢; and ng] This means solving n problems of size
4 x 4 using standard state-space methods. Alternatively, the complex second-order
differential equation can be solved directly by the modal summation:

l n

Q(t) = Z[urpr(t) + a?‘ﬁr(t)] + Z {urpr(t)]' (32)

r=1 r=2l+1

Here, the u, represent columns of U. It has been assumed in (3.2) that there are 2{
number of complex conjugate eigenvalues and the remaining (n—21) are real (positive
or negative). The modal solution is constructed as

at) = QZ%[ / — ) {exr)(iuﬂ);::cp(—iuﬂ) } dr

. {expw) + exp(-ipn) }mm

N {exp(iurt);i;:(p(—iurt) }p,,(o)} u,. + R, (3.3)

where the last term R accounts for contributions due to classical (real) uncoupled
normal modes. Familiar solutions in terms of sines and cosines result when the d,.
are all positive; whereas overdamped and divergence modes contribute to R if any
d, is negative.

(a) Symmetrization and diagonalization of a real matriz pencil

The statement of Taussky’s theorem for a pair of matrices is generalized now in
the following theorem.

Theorem 3.1. Given two real non-defective square matrices A and B of the same
size, there exists a real matrix X such that (X A) = (XA)T and (XB) = (XB)7,
and there exists a real matrix Y such that (AY) = (AY)T and (BY) = (BY)™.

Proof. Biorthogonality relations for the eigenproblems Aw; = v;Bu; and ATv; =
v;Bv; become VTYAU = D4 and VTBU = Dpg, where D4 and Dpg are diagonal
matrices. Since A and B are non-defective, a full set of linearly independent eigen-
vectors can always be found and, therefore, U and V are taken to be non-singular.

Define a matrix X = U~TVT so that the products
XA=U""VIVvTD,U'=U "D, U,
—Ty Ty —T -1 —-T -1 (3-4)
XB=U"V'V 'DgU "'=U""DgU
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are symmetric, since D4 and Dp are diagonal. If U and V' are real matrices, then the
matrix X = U~TVT is real and the proof is complete. If, on the other hand, there
exists at least one complex eigenvector, then X as defined here may be complex. In
that case, matrices X A and X B are complex symmetric matrices: symmetry being
guaranteed due to equation (3.4). Real and imaginary parts of X can be separated
as X = Xg +iXy so that XA = XgA +i1X7A and XB = XgrB +iX;B.

Since X A and X B are complex symmetric, the corresponding real and imaginary
parts must also be symmetric, and therefore Xgr A = (XgrA)', XgB = (XgB)T,
X1A = (X7A)T and X1B = (X1B)T. Hence, either Xg or X can play the role of
X in the statement of the theorem, which proves the proposition. [ |

Based on this result, we propose the following definitions for symmetrizers of a
matrix pencil: the family of matrices (A + aB) generated by changing the value of
the parameter a. For convenience of notation, we shall denote a pencil by the ordered
pair (A, B).

Definition 3.2. A linear mapping X : R™*" s R™*" is called a left symmetrizer
of a real matrix pencil (A4, B) if (i) X is non-singular, (ii) (X A) = (XA)T, and
(iii) (XB) = (XB)T. A linear mapping Y : R™*" s R™X™ is called a right sym-
metrizer of a real matrix pencil (4, B) if (i) Y is non-singular, (ii) (AY) = (AY)T,
and (iii) (BY) = (BY)T.

Therefore, for every real, non-defective matriz pencil (A+ uB), there exists a real
matriz X such that X (A + uB)X ™" = (AT + uB7T) for all values of . It means,
then, that every generalized eigenvalue problem involving two real matrices can be
rendered self-adjoint by pre-multiplication with a suitable matrix. An interesting
case for complex matrices is obtained: for every complex matrix Z = A +iB; A,
B non-defective, there exist real matrices X and Y such that XZ = (XZ)T and
ZY = (ZY)T. Note that the pre-multiplier X or a post-multiplier Y required
to symmetrize the complex matrix Z may not be symmetric and, therefore, this
statement is different from Taussky’s theorem for a single complex matrix. Taussky’s
theorem for complex matrices asserts that there exists a complex symmetric matriz
such that its product with a given complex matrix is complex. On the other hand, X
in definition 3.2 is real, but not necessarily symmetric. The origin of lack of symmetry
can be traced to the orthogonality relations of the left and right eigenvector matrices.
In the case of two matrices (or a matrix pencil), the biorthogonality relations are
with respect to matrices A and B and, therefore, X = (U TD4U )AL, The
expression inside the parentheses is indeed symmetric, but a post-multiplication by
A~ destroys this symmetry.

All of the above discussions hold true for a post-multiplier Y which renders both
A and B symmetric. In that case, matrix Y is defined as Y = UV ~1. Other results
similar to the ones presented here in terms of a left symmetrizer matrix X can be
extended easily to the ones involving a right symmetrizer matrix Y. It is interesting
to note that results on the lines of lemmas 2.3 and 2.4 do not hold for symmetrizers
of a matrix pencil. The left symmetrizer and the right symmetrizer of a matrix pencil
are not related via an inverse. This contrasting situation, with respect to the case of
symmetrizers of a single real matrix, is due to asymmetry of the symmetrizers of a
matrix pencil. The expression for a right symmetrizer of a matrix pencil Y = UV !
when combined with X = U~TVT leads to XTY = 1.
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Example 3.3 (symmetrizer of a real matrix pencil). A symmetrizer of the

non-defective matriz pencil (A, C'), where

1 3 1 2
A=14 2 and C=12 1
3 1 1 1

=N
N DN

is calculated using the procedure outlined above as

0.8183 — 0.1573i  0.7573 — 0.1841i  —0.8993 — 0.3953i
X = |-0.1116 — 0.5660i 0.8183 — 0.15731 —0.0305 — 0.0134i
0.7878 — 0.17071  —0.1421 — 0.5794i  0.0305 + 0.0134i

Separating the real and the imaginary parts of X according to X = Re(X) and
X1 =Im(X), we obtain a pair of real symmetrizers to the pencil, since

[1.1494 3.0701 0.3111]
XrA = [3.0701 1.2714 2.1098]| ,
10.3111  2.1098 1.2714 ]

[1.4335 1.4945 0.5342]
XgrC = |1.4945 0.5647 1.46401 ,
10.5342 1.4640 0.5647

i T (3.5)
~2.0796 —1.2354 —2.4480
X;A=|-1.2354 —2.0260 —1.6575|,
| -2.4480 —1.6575 —2.0260]

[—0.9208 —0.8940 —1.3161]
X C = |—-0.8040 —1.3027 —0.9074
|—1.3161 —0.9074 —1.3027

s

are all symmetric. The right symmetrizer Y = UV =1 is calculated as:

0.0305 —0.0134i  —0.0305 + 0.0134i —0.9298 + 0.4087i
Y = [-0.1268 + 0.57271 0.8030+ 0.1640i  0.7725 + 0.1774i
0.77256 + 0.17741  —0.0963 + 0.5593i  0.8335 + 0.1506i

Real and imaginary parts of Y can be separated as Y = Yy +iY7. Matrices A and
C can now be simultancously symmetrized by post-multiplication either by Ygr or
by Yi:

[1.1952 2.1860 3.0548]
AYr = [2.1860 1.1952 0.3263] ,
3.0548 0.3263 1.3171]

[0.5494 1.4793 1.4488]
CYr = [1.4793 0.5494 0.57991 ,
1.4488  0.5799 1.5098
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[2.0595 1.6240 1.2421]
AY: = |1.6240 2.0595 2.4413],

1.2421 2.4413 2.0058
] - (3.6 cont.)
1.3094 0.9007 0.9141

CYr = |0.9007 1.3094 1.2960] .
11.9141 1.2960 0.8873]

While it is true as observed above that every non-defective pair of real matrices
can be rendered symmetric by a suitable pre-multiplication (and post-multiplication),
simultaneous diagonalization by a real transformation is not always guaranteed. It
is a common misconception that Rayleigh (1894) proved that two real symmetric
matrices can always be rendered diagonal by the use of an appropriate congruence
transform. A simple counterexample is enough to show that this is not true. Consider
two real, symmetric, non-singular matrices

1 2 2 5
A= el
It can be checked that this pair of matrices can never be simultaneously diagonalized
by a real congruence transform (the sort of matrices used in ‘classical modal analy-
sis’), because the eigensolutions of the problem Au = 3Cwu are complex. Rayleigh,
of course, did not claim this often wrongly assumed result, because he clearly stated
that the two matrices need to be positive semidefinite.

A celebrated result about simultaneous diagonalization is that (see, for example,
Bellman 1960, pp. 56-57) two real symmetric matrices can be simultaneously diago-
nalized by a real orthogonal transform if, and only if, they commute in multiplication.
This result is generalized in theorem 3.5 to transforms that need not be orthogonal.
A definition is presented first.

Definition 3.4. The matrix commutator of A and B with respect to P, denoted
by [A, B|p, is defined as [A, B]p = APB — BPA.

The commutator [A, B]p as defined here is a Lie product of A and B (with respect
to P), since for a scalar p, the following identities hold for the operation defined here:
(i) p(A+ B),Clp =p|A,Clp + p[B, C|p (linearity);
(ii) [A, B]p = —[B, A]p (skew-symmetry); and
(iii) [A,[B,Clplp +[B,[C, Alplp + [C,[A, Blp|p = 0 (Jacobi identity).

Theorem 3.5. T'wo non-defective symmetric matrices A and B can be simulta-
neously diagonalized by a congruence transform brought about by a real non-singular
matrix if, and only if, there exists a real symmetric positive-definite matrix P such
that [A,B]p =0, i.e. APB = BPA.

Proof. (i) The ‘if part. Given P = P" > 0, there exists a Q such that P = QQT,
ie. AQQTB = BQQTA holds for some Q. Pre-multiplying by QT~and post-
multiplying by Q, we have AB = BA, where A = AT = QTAQ and B = B" =
QT BQ. Since A and B are commuting real symmetric matrices, there exists a real
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orthogonal matrix R such that RTAR = D, and R'BR = D, i.e. there exists a
= QR such that RTAR = D; and RTBR = Ds; D; and D are real diagonal.
(11) The ‘only if” part. Whenever real symmetric A and B are real diagonalizable by

a congruence transform UT AU = D; and UTBU = D, U non-singular; we have
UTAUUTBU = UTBUUT AU, since diagonal matrices always commute. With
P =UUT and carrying out appropriate inversions, the statement is proved. [ ]

The two well known cases of simultaneous diagonalization of symmetric matrices
now become special cases of the ‘if part’ of theorem 3.5, as sufficient conditions.

(i) When either A or B is positive (or negative) definite, then its inverse (which
is also definite) assumes the role of P in APB = BPA, and therefore two
symmetric matrices, of which one is definite, can always be diagonalized by a
real congruence transform.

(i) Whenever AB = BA is satisfied, the identity matrix is the positive-definite
matrix P required in theorem 3.5. This is the case of simultaneous diagonal-
ization by an orthogonal matrix.

The condition of theorem 3.5 restricts the admissible combinations of A and B that
are simultaneously real-diagonalizable. All pairs of real symmetric matrices do not
satisfy this condition. While diagonalization is sought by an orthogonal transform
for the well-known result (Bellman 1960), here in theorem 3.5 it is effected by a
congruence transform—if, at all, it is possible. A generalization of theorem 3.5 to
real square matrices (that need not be symmetric) is presented now.

Theorem 3.6. A pair of non-defective real square matrices A and B can be
simultaneously diagonalized by the equivalence transforms VAU and V BU with
V and U real and non-singular matrices if, and only if, there exists a real matrix
R = $:X =Y S, such that [A, Blg = 0, where X is a left symmetrizer and Y is
a right symmetrizer of (A, B); and Where S, and Sy are real symmetric positive-
definite matrices.

Proof. (i) The ‘if’ part. Given that there exists an R with the properties stated
above, the requirement of the if part is the simultaneous diagonalizability of a pair
of symmetric matrices X A and X B or AY and BY . Arguments further to this are
the same as those in the ‘if part’ of theorem 3.5.

(ii) The ‘only if  part. Given non-singular U and V, the equivalence transforms
VAU and VBU can be expressed as congruence transforms by writing V = U X
and U = YVT. The condition of simultaneous diagonalizability of A and B then
becomes simultaneous diagonalizability of X A and X B or that of AY and BY.
Given that this transform diagonalizes, it is clear that X and Y are the common left
and right symmetrizers of A and B. Employing theorem 3.5 for a symmetric pair of
matrices again, the proof follows. |

Example 3.7 (a pair of simultaneously diagonalizable real symmetric
matrices). Consider

1 2 4 5
A=Y wa m[ )
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They are diagonalized simultaneously by a real matrix

-2 4
o-[77 4
ie. UTAU and UTBU are real diagonal matrices, since there exists a positive
definite
10 -
-5 7]

such that APB = BPA. It can be checked that AB # B A and that A is singular,
whereas B is indefinite. Therefore, other known sufficient conditions of simultaneous
diagonalizability are not applicable to this example. Construction of P has required
steps involved in the proof of theorem 3.5.

For an undamped non-gyroscopic multi-degree-of-freedom system, B = 0 and
therefore we are interested in simultaneous diagonalization of A and C. Due to
theorem 3.1 the dynamics of AG+ Cq = f(t), whether or not A or/and C is/are
symmetric, can always be described by the use of symmetric coefficient matrices such
that

SaG+ Scq=g(1).

Here Sy = XA = S}, Sc = XC = SE and g(t) = X f(t); X assumes the role
of a left symmetrizer associated with the matrix pencil (A, C). Symmetrization can
also be achieved by a coordinate transformation according to g(t) = Y'n, where Y
is the right symmetrizer of A and C, resulting in AY 7 + CYn = f(t). Due to
previous discussions, the symmetric eigenproblem Sau = 3Scu does not always
admit real eigensolutions. Such situations frequently arise in the dynamics of non-
conservative systems governed by Ag+Cq = f(t) when the non-conservative effects
are not due to passive dissipation, but due to circulatory forces, control effects, etc.
The eigensolutions of the transformed problem Sau = 3Scwu (achieved by pre-
multiplication by a symmetrizer X) and the original eigenproblem Aw = 3Cwu are
the same. A variety of dynamical behaviour is now possible when §3 is negative or
complex. This is a clear departure from the familiar case of conservative dynamics
when A and C are symmetric and in addition at least semi-definite.

Equations of motion of an undamped non-gyroscopic system in the absence of
circulatory forces are sometimes not derived by the use of Lagrange’s equations,
resulting in asymmetric coefficient matrices. Reorganizing equations of motion (see,
for example, Newland 1989, problem 5.2(iii), pp. 510-511) restores symmetry. It
is not always obvious what the sequence of reorganization should be. The present
method of pre-multiplication by the left symmetrizer achieves this in a systematic
manner. It also follows that conservative non-gyroscopic systems with follower forces
too can be described using symmetric coefficient matrices.

An equivalence transform such as the one described by Ma & Caughey (1995), can
be regarded as a procedure of symmetrization by X, followed by the usual role of the
transformation matrix in the congruence transform. The process of symmetrization
is not unique, since one could choose to post-multiply, instead of pre-multiplying, by
an appropriate matrix, and since symmetrizers themselves are not unique. In the case
of symmetrization achieved by post-multiplication, the matrix of left latent vectors
assumes the role of transformation matrix for congruence transform. Symmetrization
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of a matrix pencil (Ay + C) can be viewed as symmetrization of the pencil (I +
A~IC) for a non-singular A, which is always possible using a symmetric X, the
symmetrizer of C' = A7'C, due to Taussky’s original theorem.

When the eigenvectors of the pencil (Sa,Sc) are complex, true decoupling is
not achieved, as discussed earlier (although a rather unusual set of orthogonality
relations for complez modes exist (see, for example, Meirovitch 1980, §3.6)). Ma
& Caughey (1995) distinguish systems with asymmetric A and C compared with
those with symmetric matrices due to different orthogonality conditions in the two
cases: biorthogonality with respect to the two coefficient matrices in the first case
and orthogonality with respect to coefficient matrices in the case of the latter.

They state: ‘from a strictly mathematical viewpoint, the modes u; are still not the
same as classical normal modes when the corresponding eigenvalues are all positive’.
This line of thought reappears when they discuss their example 1. In another paper
(Caughey & Ma 1993), they state ‘systems governed by equations for which M, C,
K lack any specific symmetry or definiteness will be termed non-classical systems’.
In what follows, we show that this distinction is unnecessary and inappropriate.
Distinction ought to be made on the basis of the character of eigensolutions.

Example 3.8 (non-classical normal modes of Caughey & Ma (1993), Ma
& Caughey (1995) and Ma (1995)). The set of the right and the left eigenvectors

for the system "
oA e - o) o

2 -1 1 1
U= L 1] and V= Ll 2],
respectively. UTAU, UTCU, VT AV and VTCV are all non-diagonal matrices.
However, synchronous free vibration in the two modes is possible and classical normal
modes exist. Ma & Caughey (1995) and Ma (1995), would label them as non-classical

modes, because the eigenvectors are not orthogonal with respect to the coefficient
matrices. This is misleading. Consider the following system:

e )=o) -

This system is symmetric and positive definite and, therefore, must possess classical
normal modes. Equations (3.7) and (3.8) describe the same physical system, only the
order of writing the equations has changed. According to Ma & Caughey (1995) the
symmetric system (3.8) possesses classical normal modes, whereas the asymmetric
description (3.7) of the same system does not. This interpretation of ‘classical normal
modes’ is, in my view, inappropriate.

are calculated as

The following definition of classical normal modes (independent of symmetry of
the coefficient matrices) is proposed now.

Definition 3.9. A dynamical system is said to possess a classical normal mode
if, and only if, the corresponding free vibratory motion is synchronous.

Therefore, existence of classical normal modes, real eigenvectors or synchronous
motion are all synonymous. A normal mode (classical or otherwise) of a system gov-
erned by equation (1.1) with B = 0 is always given by a right eigenvector. When it
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is complex, the asynchronous (or non-classical) mode is obtained by a linear combi-
nation of the two complex conjugate modes. Eigenvectors of the adjoint problem (or
the left eigenvectors v;) do not enjoy any such interpretation readily. They do not
represent normal modes of this system and their association with this system is only
mathematical. In fact, they represent normal modes of a different system! Therefore,
the ‘adjoint modes’ appear to have little dynamical importance.

A further simplification (when B = 0) to the symmetrical representation of equa-
tion (1.1) as Sag+Scq = g(t) is possible by noting that both coefficient matrices are
real symmetric. Either §4 or S¢ can be diagonalized using a real transform leaving
the other matrix symmetric, which gives us the simplest possible canonical represen-
tation of (1.1) as Dag + Scq = h(t), where D4 is diagonal and S¢ is symmetric.
Since definiteness of §4 or S¢ has not been assumed, the entries on the diagonal of
D 4 will, in general, have mixed sign.

(b) Pseudo-conservative systems

Pseudo-conservative systems are non-conservative systems with B = 0 if the free
vibratory motion is synchronous. A and C are assumed to be general square arrays.
Pseudo-conservative systems possess synchronous stable modes or ‘synchronous’
unstable divergent modes.

Huseyin & Leipholz (1973) studied this class of systems, which they called sym-
metrizable systems because the eigenstructure of this class of (non-conservative)
problems is very similar to that of the symmetric (and conservative) systems. They
called a system pseudo-conservative if the matrix A~'C is symmetrizable, there
being no restriction on the symmetry of A or C (see, for example, Huseyin 1978,
§4.2). A real asymmetric matrix is called symmetrizable if it can be expressed as a
product of two real symmetric matrices, one of which is positive definite (Huseyin
1978, §1.4), the concept being familiar in the context of operators (Taussky 1968).

The use of the term ‘symmetrizable systems’ requires care. While Huseyin (1978)
means, by this term, a system Ag + Cq = f with symmetrizable A~1C, Ahma-
dian & Inman (1984) call a symmetrizable asymmetric system ‘one which is similar
to a symmetric system’. Now symmetric A and C' do not necessarily mean a sym-
metrizable A~1C, and worst, since every Ag + Cq = f can be cast in a symmetric
form, we shall abandon the use of the term ‘symmetrizable systems’ in favour of the
term ‘pseudo-conservative’ or ‘real diagonalizable’. For matrices, we continue to call
a ‘symmetrizable matrix’ one that is similar to a symmetric matrix.

If one of the two symmetric factors of a real matrix is positive definite, it has been
shown (Taussky 1972) that the eigenvalues are real, i.e. symmetrizable matrices
possess real eigenvalues. The converse (Sen & Venkaiah’s (1988b) remark ‘is not yet
proved’) follows easily from UTXU = T (see the paragraph before definition 2.1),
since

X =U"Tu! (3.9)

has the form QTQ, where Q@ = U~ is real if the eigenvalues have to be real and,
therefore, X must be positive definite.

For symmetric A and C, any of the conditions A > 0, C >0, A < 0, C <0,
A0, C<0,A >0 C >0 guarantee classical normal modes. The converse is
not true, i.e. pseudo-conservative systems may possess indefinite symmetric factors
of A71C (see, example 3.10). Pseudo-conservative systems are also possible when
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neither A=1C nor C 1A may exist. In those cases, a criterion based on A~'C being
a symmetrizable matrix will not be applicable, whereas theorem 3.5 or theorem 3.6
will be (e.g. example 3.7 had A singular).

Example 3.10 (a pseudo-conservative system with indefinite symmetric
factors of A~1C). Consider a system (1.1) with

01 -1 3
B =0, A—[l 0} and C—[3 _1}

It can be checked that neither of the two matrices is definite and their eigenvalues
have mixed sign.

Therefore, A~1C has two indefinite symmetric factors, A™! and C. The two
matrices are, however, simultancously diagonalizable by a real matrix

since UT AU = diag(—1,1) and UTCU = diag(—4,2). Therefore, the system is
pseudo-conservative having two synchronous stable modes with frequencies 2 and V2.

When the eigenvalues are positive, the normal modes are classical, whether or not
the coefficient matrices are symmetric. The conclusion of Ma (1995) in this context,

in free vibration, all components of an undamped non-gyroscopic struc-
ture can perform harmonic vibration with identical frequency if the asso-
ciated eigenvalue problem. .. possesses positive eigenvalues. The natural
frequencies are simply the square roots of these positive eigenvalues, and
the mode shapes can be determined from the corresponding complex
eigenvectors. Unlike classical modal vibration, the system components
generally vibrate with different phase angles

is misleading. While it is true that natural frequencies are the square roots of positive
eigenvalues, the deduction of the type of possible free vibratory motion is wrong.
Corresponding to a positive eigenvalue (necessarily real), the eigenvector must be
real (with the exception of degenerate systems) and the motion must be synchronous
(i.e. in or out of phase).

Complex eigenvectors may be associated with real eigenvalues for a real eigenprob-
lem when degeneracy exists. This is not due to asymmetry of matrices, rather it is
associated with degeneracy of modes, and could be observed in otherwise perfectly
well-behaved positive-definite systems. This case is discussed below.

(¢) Non-classical modes for conservative non-gyroscopic positive-definite systems

Non-classical modes are usually attributed to the presence of (non-classical) damp-
ing and/or gyroscopy as well as to asymmetries induced in the coefficient matrices
due to control, aerodynamic effects (such as those in aeroelasticity) or follower forces.
They have also been traditionally attributed to the inability to decouple a set of
coupled differential equations using a real transformation. We illustrate by means of
example 3.11 that this need not necessarily be true.
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Example 3.11 (non-classical modes for conservative non-gyroscopic sys-
tems: degeneracy). Consider (1.1) with A = I3 and B = 0. The stiffness matrix
C' and the set of eigenvectors of the eigenproblem Cu = yAu are

R -2 1 0.8619 —0.0839 0.5
C =1 -2 6 —v/2| and U= 03504 —0.6142 —0.7071
1 =2 5 —0.3664 —0.7847 0.5

The system is non-defective, since a full set of eigenvectors exists. Eigenvalues are
all positive implying the existence of three classical normal modes. However, non-
classical modes are not ruled out, since, for example,

w={1 05484+ 0.25861 —0.2244 + 0.3658i}

satisfies Cu = ~vAwu. Since the eigenvector is complex, asynchronous harmonic
motion is possible in a non-classical normal mode. The origin of this is in the degener-
acy of modes: eigenvalues are (1,1,2). A complex eigenvector of the kind associated
with a degenerate system is genuinely complex: no scaling (real or complex) will
render it real.

(d) Distribution of the latent roots of (\2A + C) on the complex plane

The latent roots of (A\2A + AB + C) always appear in complex conjugate pairs
(unless they are purely real) whether or not B = 0, since they are eigenvalues of a real
matrix A, the state matrix. This amounts to a mirror symmetry of the set of latent
roots about the real axis. When B = 0, the latent roots of (A\2A + C) are related
to the eigenvalues of Cu = yAw via v = —\%. Since v; = —)\? = —r; exp(£if;), we
always have four values of A; for each pair (7;,%;). They are given by

)\;,2,3,4 _ i\/;:j exp(£if;/2) = +o; + @;.

Therefore, the four values of A possess a mirror symmetry about both real and imag-
tnary azes and they lie in all the four quadrants if they do not lie on one of the
axes.

The pair —o; £@; results in a stable damped oscillatory mode and the pair
+0; £ @; results in an unstable (oscillatory) flutter mode. When +; is real, there are
two possibilities. When +y; is positive, a pair A; = Fiw; is pure imaginary. This results
in the well-known case of neutrally stable in- or out-of-phase oscillatory motion with
w; cyclic frequency and constant amplitude. When +; is negative, two real values of
A; are found: one positive and one negative. They correspond to an unstable divergent
mode or a stable overdamped mode, respectively. Both of these are non-oscillatory.

The doubly symmetric distribution of eigenvalues about the real and the imaginary
axes results in a special character of the normal modes of A¢g + Cq = 0. These
attributes are summarized here.

(1) The asynchronous flutter modes and asynchronous damped modes accompany
each other; divergence modes and overdamped modes accompany each other.

(2) The accompanying modes (flutter, divergence, overdamped and underdamped
oscillatory) are such that they possess identical frequencies and characteristic
time-scales of decay/growth.
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(3) Tt is impossible to observe classically damped oscillations or synchronous flut-
ter.

Characteristic time-scales of decay/ growth can be defined using the real part
0f2)\ The half-life is given by 7'1/ =1In2/|o;| and the doubling time is given by
7@ =m2 /oj. Alternatively, the Telaxation time defined as 7; = 1/]o;| could be used.

j
A complex conjugate pair of eigenvalues (\j, \;) = 0; +i@; can be expressed as

(Aj, Aj) = —Gjw; ii(\/ 1- Cf)w]a
where the ‘natural frequency’ w; and the ‘damping ratio’ (; are defined as

wi=M\A =02 +@ and 2w = —(N +Xy) = —20;.
Given these definitions and that the magnitude of real and/or imaginary parts is the
same for all the four A, result (2) follows easily.

The third of the results above rules out synchronous flutter and classically damped
motion when B = 0. This is easily proved by realizing that both these cases require
the eigenvector w in the eigenproblem Cu = yAw to be real, ie. v to be real.
When this is so, the resulting behaviour is oscillatory with constant amplitude or
non-oscillatory divergence-overdamping, as discussed above. When B # 0, other pos-
sibilities exist (see, example 4.7 for synchronous flutter). ; = 1 defines the bound-
ary between underdamping and overdamping. In an analogous manner, we find here
that ¢; = —1 defines the boundary between the oscillatory (flutter) modes (when
0>¢ > —1) and the non-oscillatory (dlvergent) modes (when (; < —1). This is
because ); is real when |(;| > 1, since the imaginary part of (A;, A;) equals

S

Example 3.12 (accompanying modes of an undamped non-gyroscopic
system).

5269 4160 7622
920 7012 2625
6539 9103 475

7361 7564 2470
3282 9910 9826
6326 3653 7227

A= and C =

Eigenvalues of A~'C are calculated as {v;} = {—1.4091,0.7073 4 0.1924i}. Six
eigenvectors of the state matrix are

[—0.0229  0.0229 —0.4375F0.4914i  0.3781 4 0.5384i |

0.4014 —0.4014 0.3139 £0.1537i —0.0778 F 0.34071

W = —0.5035 0.5035  0.1470 £0.0205i —0.0137 F 0.1478i

0.0272  0.0272  0.4666 ¥ 0.31551 —0.4140 £ 0.3819i
—0.4764 —0.4764 —0.1661£0.24891 0.2803 7 0.10461

| 0.5976  0.5976  —0.0341 +£0.1224i —0.0800 F 0.0052i |

and the six ); are calculated as {);} = {$1.1871 F0.1134 £ 0.84861 }. Note the
four complex values and the types of associated free vibratory motion. The two
real eigenvalues correspond to two non-oscillatory modes: an overdamped mode
and an unstable divergence mode. Rescaling columns of W reveals that the first
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three elements of the first column and the second column are the same, equal
to {1,—17.5373,21.9979}T corresponding to the two non-oscillatory accompanying
modes. The third and fourth columns can be rescaled similarly, and the first three
entries turn out to be the same, equal to {1, —0.4918 & 0.2009i, —0.1719 +0.1461i} T,
and they correspond to the two accompanying oscillatory modes.

4. General non-conservative systems: three real square arrays
A result for n simultaneously diagonalizable real square matrices is proved first.

Theorem 4.1. If a common equivalence transform
VYA U =D;, Vi=0,1,...,n,

U and V non-singular, diagonalizes a set of real, non-defective matrices Aq, A1, ...,
A,,, then there exists a real matrix X such that (X A;) = (X A;)T,Vi=0,1,...,n.

Proof. Define V = XTU, i.e. X = U~"V7T. Thus it is given that UTX A;U =
D, Vi=0,1,...,n. Pre-multiply and post-multiply both sides by appropriate matri-
ces to get

XA, =UTDU'=(XA)", i=0,1,...,n. (4.1)

If the matrices U, V used in the equivalence transform are real, the proof is immedi-
ate. If they are complex, X can be written as a sum of its real and imaginary parts
on both sides of equation (4.1); separation of real and imaginary parts completes the
proof. It can be further shown that, under the conditions of theorem 4.1, there also
exists a real matrix Y such that (A4;Y) = (4;Y)". &

It is trivial that real matrices that can be simultaneously rendered real diagonal by
a common transform can also be rendered real symmetric by a common transform,
since the diagonal form is also a symmetric form. What is not obvious is that the
simultaneously diagonalizable matrices (the transform used for diagonalization need
not be real) possess a common real transform that renders all the matrices symmetric
on pre-multiplication. An interesting feature of the above result is that even when
U and V are complex, X = U~TVT is real!

Example 4.2. (simultaneous diagonalizability by a real or a complex
equivalence transform implies simultaneous symmetrizability by real pre-
multiplication). The complex matrices

V=[4mé—n-42é+ﬁ’ U:{4wé—0‘”5é+J

simultaneously diagonalize the three real matrices
1 2 11 15 1
M—&J, M‘&J’ M‘L5J
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since
T B —2-4+i 0
1% AlU—0.4{ 0 ol
T o 1-—3i 0
VAU = 0.2[ 0 14 3i°

T4 g |10
VA3U~{O _J.

The common real symmetrizer
T |1 —0.2
X=U"V = [0 0.4

renders A1, A; and Aj simultaneously symmetric:

1 3 3 4 11

It can be similarly shown that real matrices that are diagonalized by a common
(real or complex) equivalence transform possess a common real right symmetrizer.
Therefore, if a non-defective system governed by equation (1.1) can be decoupled
by the use of a real equivalence transform, then there exists a real matriz X such
that the dynamics are described by Sag + Spq + Scq = g(t), where the coefficient
matrices Sy = XA = (84)%, Sg = XB = (Sp)" and S¢ = XC = (So)*
are symmetric, the right side vector is given by g(t) = X f(t). It is also readily
seen that if a symmetrizer of the matriz pencil (A~'B, A~'C) is symmetric, then
the system governed by equation (1.1) can be described by one having symmetric
coefficient matrices.

For symmetric-definite systems, Caughey’s commutativity condition is necessary
and sufficient for the existence of classical normal modes. On the other hand, for
an asymmetric system (1.1), Caughey’s condition is only necessary. If three real
matrices A, B, C are simultancously diagonalized by a real equivalence transform,
VI(A, B,C)U = (D4, Dg, D) and if A is assumed to be non-singular, then

AT'BAT'C =UD}'DpD'DU,

XA =0.4[

and similarly
AT'CA™'B=UD,'Dc:D;'DgU".

This proves the necessity of Caughey’s condition.

Example 4.3 (Caughey’s condition is not sufficient for the existence
of classical normal modes if the coefficient matrices are not symmetric
definite). Consider A = B = I, and

1 1
o4
in equation (1.1). Clearly, [A~*B, A~*C| = 0 is satisfied. However, all the modes

are complex, since

WT_F +Ho—14+i _111]

1 F 1

where W is the 4 x 4 matrix of eigenvectors.
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Equation (1.1) can be cast as I§ + B¢ + Cq = 0if A is non-singular. Ahmadian &
Inman (1984) prove that a ‘symmetrizable’ system possesses classical normal modes
if, and only if, Caughey’s condition holds. With their definition of a symmetrizable
system (quoted here in §3 above), the result becomes invalid.

We now study the implication of Caughey’s condition [B C’] = 0. Suppose X is
a symmetrizer of B, so that X = X and X B = (X B)T. Given the commutativ-
ity of B and C, we conclude that C must be a transform (see theorem 2. 7) that
generates another symmetrizer according to X’ = X C. But a symmetrizer, by defi-
nition, is itself symmetric, hence both X’ and X are symmetric. Pre-multiplying by
X throughout we have X ¢ + X Bqg+ XCq = 0. Therefore, if Caughey’s condition
holds, then the dynamics of the system (1.1) with asymmetric coefficient matrices
can always be described by means of three real symmetric coefficient matrices.

Theorem 4.4. A general dynamical system governed by equation (1.1) possesses
classical normal modes if

(a) A7'B and A~'C commute in multiplication, and

(b) the symmetrizer matrix X that exists due to (a), i.e.
X(A,B,C)= (A", B",C")(x™),
is definite, i.e. X > 0 or X < 0.

The two conditions together form a set of sufficient conditions for the existence
of classical normal modes. The proof follows from the fact that the existence of a
common definite symmetrizer renders the problem to one considered by Caughey &
O’Kelley (1965) and that SpSy'Sc = ScS,'Sp & BAT'C = CA™1B. While
condition (a) of theorem 4.4 is necessary, the second condition is not.

Liu & Wilson (1992) state ‘... a damped system, whether symmetric or not, can be
transformed into an equivalent undamped one, if and only if the Caughey condition
is satisfied. However, equation. .. [the equation that describes Caughey’s condition
in their paper|...cannot be simply used to determine if a non-symmetrical general
damping matrix can be decoupled’. These two statements juxtaposed to each other
appear to be in conflict: the ‘only if’ part of the first statement is incorrect.

Caughey & Ma (1993) state that ‘the non-classical system. .. can be decoupled if
and only if the coefficient matrices. .. are diagonalizable and pairwise commutative’
(see Caughey & Ma 1993, theorem 1). This is not correct. To show this, choose two
arbitrary non-singular matrices, U, V', and three arbitrary diagonal matrices, Dy,
Dy, D3, and construct matrices A, B and C such that

UD\V=A, UDV =B and UD3V =C.

Clearly, U~! and V~! diagonalize all three coefficient matrices A, B and C by the
use of an equivalence transform. Theorem 1 of Caughey & Ma (1993) then requires
that AB = BA. In other words, UD\VUD,V = UD,VUD,V is required,
ie. DI\WDy = DyWD;, where W = VU is required for arbitrarily chosen U,
V, Dy, D,!

Example 4.5 (counter example to theorem 1 in Caughey & Ma (1993)).

-1 0 (3 22 —28 1.2
V=2 -3 (§)| and U=|-3 3 -1
-1 2 -1 1.2 —0.8 0.2
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Table 1. Possible types of normal modes in a second-order system

oscillatory
synchronous asynchronous  non-oscillatory
stable classically non-classically overdamped
0; <0 damped damped
0< (<1 0<¢gG<l G >1
neutrally conservative conservative trivial
stable non-gyroscopic gyroscopic static
o; =0 ¢GG=0 ¢G =0 state
unstable classical non-classical divergence
o; >0 flutter flutter
-1<( <0 -1<¢ <0 ¢ < -1

(i) that the first n elements of the 2n-dimensional vector are real, implying the
classical nature of the flutter mode, and

(ii) the last n elements of the 2n-dimensional vector are 0.5 + 0.8660i times the
first n elements of this vector (n = 2 here).

The second observation, particularly in the context of damped passive systems, is
not new (Newland 1987, 1989). Using an appropriate scaling (in this case by dividing
the second column of W by 0.5+0.8660i), one could reduce the last n elements of the
second column to be real. This shows that by an appropriate scaling, either the first n
or the last n elements of an eigenvector corresponding to a classical normal mode can
be made real. This holds for classically damped (i.e. stable) systems too. The whole
of the 2n-dimensional eigenvector will be real when, in addition, the corresponding
eigenvalue is real; which is the case with classical undamped modes.

Analogous to the damped modes, I propose to call the synchronous flutter modes
the ‘classical flutter’ modes and the asynchronous flutter modes the ‘non-classical
flutter’ modes. A summary of the mathematical attributes of the possible normal
mode motions is presented in table 1.

5. Conclusions

A proof of Taussky’s theorem based on left and right eigenvectors was presented.
Tt was shown that the matrix of left eigenvectors is related to the matrix of right
eigenvectors via a symmetric matrix (also known as a symmetrizer) which appears
in Taussky’s theorem. The mathematical structure of the transforms that relate
symmetrizers was explored and it was shown that they form a multiplicative group.
A systematic procedure of finding symmetrizers (and, hence, symmetric factors) of
a real matrix was presented.

It was shown that a real non-defective matrix pencil can always be rendered sym-
metric by means of pre-multiplication by a real (but not necessarily symmetric)
matrix. On this basis we conclude that the governing equations of motion of an
undamped non-gyroscopic system can always be cast in terms of two real symmetric
matrices even in presence of circulatory/follower forces. The so-called symmetrizable
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matrices were critically examined. It was noted that pseudo-conservative systems
do not necessarily need to possess positive-definite coefficient matrices: a fact not
recognized in the literature.

The well-known result of simultaneous diagonalization of two real symmetric matri-
ces by a real orthogonal transform was generalized to diagonalization by a general
real transformation. It was noted that the required necessary and sufficient condi-
tion is the existence of a positive-definite matrix with respect to which the given
matrices, whose diagonalization is in question, must commute; the classical result
being a special case when this positive-definite matrix is the identity matrix. Finally,
the result was generalized to simultaneous diagonalization of two real asymmetric
matrices by a real transform.

Distribution of the latent roots of the quadratic eigenvalue problem associated
with undamped non-gyroscopic systems was studied. It was observed that the latent
roots fall symmetrically about both real and imaginary axes. As the damping ratio
equal to 1 defines the boundary between overdamped and underdamped modes; it
was shown that the damping ratio equal to —1 defines the boundary between diver-
gence and flutter. It was proved that flutter modes accompany damped oscillatory
modes, whereas divergence modes accompany overdamped modes for undamped non-
gyroscopic systems. It was further shown that the accompanying modes have identical
frequencies and time-scales of growth/decay.

General non-conservative systems governed by equations of motion having three
coefficient matrices were studied. It was also shown that Caughey’s condition (when
the coefficient matrices are asymmetric) is a necessary condition for classical modes
to exist; however, it is not sufficient. Several examples (and in some instances coun-
terexamples, to point out an error) were presented.

I thank Dr Debashish Ghose, Department of Acrospace Engineering, Indian Institute of Science,
Professor P. C. Dumir, Department of Applied Mechanics, and Dr V. Venkaiah, Department of
Mathematics, Indian Institute of Technology, New Delhi, for very useful discussions. Suggestions
by the unknown referees are gratefully acknowledged.
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