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Abstract

A reduced basis formulation is presented for efficient
solution of large-scale random eigenvalue problems.
The present formulation aims to improve the ac-
curacy of the first-order perturbation method, and
also allow the efficient computation of higher-order
statistical moments of the eigenparameters. In the
proposed method, the two terms of the first-order
perturbation approximation for the eigenvector are
used as basis vectors for Ritz analysis of the ran-
dom eigenvalue problem. Since only two basis vec-
tors are used to represent each eigenmode of inter-
est, explicit expressions for the random eigenvalues
and eigenvectors can be readily derived. A complete
statistical description of the eigenvalues and eigen-
vectors is hence made possible in a computationally
expedient fashion. Numerical studies are presented
for free and forced vibration analysis of a stochastic
structural system. It is demonstrated that the re-
duced basis method gives significantly better results
as compared to the first-order perturbation method,
particularly for large stochastic variations in the ran-
dom system parameters.

Introduction

Linear stochastic differential eigenvalue problems
(SDEPs) are frequently encountered in the entire
spectrum of computational stochastic mechanics;
for example, structural dynamics, stability analy-
sis, fluid dynamics, and aeroelasticity. The ap-
plication areas of solution methodology for ran-
dom eigenvalue problems include stochastic struc-
tural dynamics®, robustness analysis of structural
and control systems?, structural model updating and
damage identification®, and parameter-based statis-
tical energy analysis?.

It is known that spatial discretization techniques
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can be used in conjunction with random field dis-
cretization schemes to represent a linear SDEP in
a finite-dimensional setting as an algebraic random
eigenvalue problem. These representation schemes
have been widely used in the stochastic finite el-
ement method (see, for example, Ghanem and
Spanos®), wherein randomness is treated as an addi-
tional dimension of the problem. However, for many
problems of practical interest, the size of the dis-
cretized equations poses a formidable obstacle to the
application of Monte Carlo simulation schemes for
accurately estimating the statistics of the eigenval-
ues and eigenvectors. Hence, in order to compute
the eigenparameter statistics in a computationally
efficient fashion, the development of approximate
solution schemes has been pursued with particular
vigor in the computational stochastic mechanics lit-
erature.

A recent review of the state of the art! reveals
that the first-order perturbation method appears to
be the most popular technique for approximating
the statistics of the eigenparameters. A detailed
overview of the perturbation method for random
eigenvalue problems can be found in the monographs
of Scheidt and Purkert®, and Kleiber and Hien?.
The popular use of this method can be primarily
attributed to ease of implementation and computa-
tional efficiency. However, the perturbation method
only gives reasonable quality results for the statis-
tical moments when the coefficient of variation of
the random parameters are small. Further, since
the higher-order perturbation terms are computa-
tionally intensive to compute, it is often difficult to
improve the accuracy of first-order approximations
in practice.

Lee and Singh® proposed an approach based on di-
rect matrix products for approximating the first two
statistical moments of the eigenvalues and eigenvec-
tors. It was demonstrated for some simple exam-
ple problems that improvements over the first-order
perturbation method can be achieved. However,
the application of this method to large-scale ran-
dom eigenvalue problems is yet to be demonstrated.
Approaches which focus only on approximating the
statistics of the eigenvalues have been proposed in

the literature; see, for example, Grigoriu®.
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More recently, a hybrid procedure based on
the polynomial chaos expansion and the Monte
Carlo simulation was proposed by Red-Horse and
Ghanem'®. In this method, the eigenvalues and
eigenvectors are represented by a Polynomial chaos
expansion scheme. The coefficients in the expan-
sion are then evaluated as generalized Fourier coef-
ficients via a Monte Carlo simulation (MCS) proce-
dure. This representation allows the computation of
additional statistics of the eigensolution in an effi-
cient fashion. The main drawback of this approach
is the requirement of MCS, which would be compu-
tationally expensive for large-scale problems.

Stochastic reduced basis approximation (SRBA)
methods for numerical solution of systems governed
by stochastic partial differential equations have been
proposed by the authors; see, references'!'2. These
techniques are intended for problems where dis-
cretization of the governing equations in space to-
gether with the random dimension ultimately leads
to a linear algebraic system of equations with ran-
dom coefficients. The formulation presented in this
paper is similar in spirit to SRBA methods. How-
ever, the choice of basis vectors and the details of the
formulation are different. The choice of basis vectors
used in the present formulation is motivated by a
method proposed earlier in references!®'* for struc-
tural dynamic reanalysis problems. This technique
was primarily developed for structural optimization
on a limited computational budget®®.

In order to reduce the computational cost of MCS
for large-scale problems, the application of model
reduction schemes has been investigated; see, for
example, Ottarson'®. However, the computational
cost savings using this approach may not be signifi-
cant for problems where the statistics of a large num-
ber of eigenmodes are to be computed. In contrast,
the present formulation involves the construction of
a sequence of reduced-order problems for each eigen-
mode of interest. This is expected to lead to better
efficiency when the statistics of a large number of
eigenmodes are to be computed.

The focus of the present research is to develop a
computationally efficient numerical scheme for solu-
tion of large-scale random eigenvalue problems. Pro-
cedures for discretizing linear SDEPSs in space and
the random dimension to arrive at an algebraic ran-
dom eigenvalue problem are outlined. The two terms
of the first-order perturbation approximation for the
eigenvector are chosen as basis vectors in conjunc-
tion with undetermined random functions for rep-
resenting the random eigenvector of the discretized
SDEP. The undetermined random functions in the
reduced basis representation are determined using

2

Ritz analysis of the random eigenvalue problem.
This leads to a sequence of 2 x 2 reduced random
eigenvalue problems for each eigenmode of interest.
Explicit expressions for the random eigenvalues and
eigenvectors are derived in terms of the random vari-
ables arising from discretization of the underlying
random fields. This enables a complete statistical
description of the eigenvalues and eigenvectors in a
computationally efficient fashion. Numerical studies
are presented for free and forced vibration analysis
of a stochastic structural system. It is shown that
the present method gives significantly better results
as compared to the first-order perturbation method,
particularly for large stochastic variations in the ran-
dom structural parameters.

Problem Statement

Consider a linear stochastic differential eigenvalue
problem of the form :

K(a(x,0))[u(x,0)] = AMO)M(B(x,0))[u(x,0)] (1)
where (a(x,6)) and M(a(x,8)) are stochastic dif-
ferential operators defined on the domain D; x € D
denotes a point on the domain; 8 € 2 belongs
to the Hilbert space of random variables; a(x,6)
and B(x,6) are random fields describing the coef-
ficients of the stochastic differential operators; A(6)
and u(x,6) are the random eigenvalues and eigen-
functions, respectively.

The random fields describing the coefficients of
the differential operators can be discretized us-
ing techniques available in the literature, such as
Karhunen-Loeve (KL) expansion, Polynomial chaos
expansion, and optimal linear estimation; see, for
example, reference!”. Random field discretization
involves representation in terms of a finite number
of random variables, which are amenable to a nu-
merical treatment. Consider the case wherein the
random field a(x,0) is discretized using the mean-
square convergent KL expansion scheme as shown
below :

o(x,0) = (a(x, @) + 3 1t ViFai(x)  (2)

=0
where 4 and o;(x) are the characteristic functions

(eigenvalues and eigenvectors, respectively) of the
following deterministic integral eigenvalue problem,

peai(x) = /Q Roo(x,x2)0i(xr)dx. (3)
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The vector of zero-mean random variables {n{}
are orthogonal, i.e., (nfn7) = uf'd;;; where 6;; de-
notes the Kronecker delta function. Analytical so-
lutions for the characteristic functions of equation
(3) can be readily found for a class of correlation
functions defined on simple domains. Further de-
tails including approximate schemes for solution of
equation (3) for complex domains can be found in
the literature; see, for example, references’!8. Sim-
ilarly, the KL expansion of the random field 3(x,9)
can also be carried out.

In practice, depending on the correlation length of
the random fields, a small number of terms from the
KL expansion can be used to represent the underly-
ing random field without significant loss of accuracy.
Using the KL expansions of the random fields, the
stochastic differential operators in equation (1) can
be written as the sum of a deterministic and stochas-
tic operator as

(K? + Kg) [u(x,8)] = A(0) (M + Mp) [u(x,6)]
(4)
where K° and M? are deterministic differential op-
erators, and Ky and My are stochastic differential
operators.

Consider the case wherein the random coefficients
of the stochastic differential operators appear as
multiplicative terms. Further, let the random vari-
ables arising from discretization of the random fields
be denoted by the vector ® = {6;}, i = 1,2,...,p;
where p denotes the total number of random vari-
ables arising from the discretization procedure. Note
that these assumptions are made only for the sake
of notational convenience. Hence, without any loss
of generality, equation (4) can be rewritten as

(lC” + i@d@-) [u(x,6)] = A(6)

=1

X (MO + z": ﬁi/\/lz) [u(x,8)] (5)

i=1
where K; and M; are deterministic differential op-
erators.

A spatial discretization technique such as the fi-
nite element method (FEM) can be used to repre-
sent equation (5) as an algebraic random eigenvalue
problem of the form :

B+ i 943"] x(©)
= (6)

A+ ioim} x(®) = \(®)

i=1

3

where A, B, A%, B € R7%" are deterministic matri-
ces while \(®) and x(©) € R"*! denote the random
eigenvalue and eigenvector, respectively.

For problems wherein the coefficients o and 3 ap-
pear nonlinearly in the differential operators, a Tay-
lor series expansion scheme can be used to arrive
at a form similar to equation (6). A form similar
to equation (6) can be also be readily arrived at for
cases where the stochastic system properties are con-
sidered as random variables. Here, the matrices A*
and B? denote the sensitivities of the system matri-
ces with respect to the random system parameters.

First-Order Perturbation Method

Let A° and x° denote the eigenvalue and eigenvec-
tor, respectively, of the following deterministic eigen-
value problem

Ax° = \°Bx° (7)

Consider the case where the differential operators
in equation (1) are self-adjoint, and the matrices in
equation (6) are symmetric positive definite. Fur-
ther, let the eigenvector of equation (7) be normal-
ized with respect to the matrix B, i.e., x°TBx° = 1.
Note that for simplicity of presentation, the eigen-
mode numbers are not explicitly shown in the equa-
tions that follow. First-order approximations for the
random eigenvalue and eigenvector based on the de-
terministic eigenparameters of equation (7) can be
written as

A(O®) =) 3 6 oA
(©) = +Z i 56, (8)
Jj=1
) = x0+3 8,2
x(@) =x +Z i 56, 9)
Jj=1
where gT)‘j and g—;‘j are the sensitivities of the eigen-

values and eigenvectors with respect to the random
variables, respectively. The eigenvalue and eigenvec-
tor derivatives can be calculated from

A oT (45 _ \oRT) x©
28, x°" (A = XB)x (10)
and
ox O\ )
__ o el oRj il ~ N V] o
(A /\B)aej (/\B +66jB A)x. (11)

There exists a wealth of methods in the liter-
ature for solving equation (11); see, for example,
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references'®~2!1. In the present study, Akgun’s first-
order method?! is employed to approximately solve
equation (11) and compute the eigenvector deriva-
tives. Note that this formulation considers the eigen-
values of equation (7) to be distinct.

Stochastic Reduced Basis
Approximations

The key idea of the present formulation is to use the
two terms of the first-order perturbation approxi-
mation (see equation (9)) as basis vectors for rep-
resenting the eigenvector of the random eigenvalue
problem. The assumption made here is that the ran-
dom eigenvector x(®) can be well approximated in
the subspace spanned by x° and Zle Gi%, i.e., an
approximation for x(®) can be written as

P ox

2(0) = ((®)x° + (:(®) Zeiaf‘,j (12)

=1

where (1(®) and (2(®) are undetermined random
functions. To compute these undetermined func-
tions, equation (12) is used for Ritz analysis of equa-
tion (6), which leads to a 2 x 2 random eigenvalue
problem of each eigenmode of interest. The reduced
random eigenvalue problem can be written as

Ar(©)Z(®) = A\(©)Br(0)Z(0) (13)
where
14
Ar(®) = ¥7(©) [A +Y 64 T(O) € R,
= (14)

Br(©) = 97(0©) [B + i eizsn] T(0@) € R2*2
i=1 (15)

p
¥(O) = [x; i%:l € jRx2 (16)
and Z = {C1(®),C2(@)}T S §RQ><1.

After some algebra, the elements of the reduced
random matrices Ar and Bp can be written using
tensor notation as

A+ 6;a;
sym

fic; + é)iejEij
GiHjGij + Hiejesz'jk
(17)

Ag(®) =

4

1+ 6;b;
sym

6;d; + Biaj Fij

(18)

where typical elements of the deterministic tensors
a,b,c, dE, F, G, H, 9, and R are given in Table
1. In the notation used here, repeated indices imply
summation with respect to the index over the range
of 1 to p. It can readily seen from Table 1 that when
the system matrices are symmetric, the second and
third order tensors in Table 1 will also be symmetric.

Table 1 Elements of Problem Specific Tensors
a; = XoTAiXo bi — XoTBixo
c; = x"TA-g-;—‘l; d; = XOTB%
Ei]’ = XOT.Ai@% Fij = XOTBi%

7

o 9xT A Bx o — oxTpox

Gij = aeiTAaoj H;; = aaiTBae,-
o= OXT i Ox o= O0X7 i Ox
Qijk = 56 A D05, Rijn = 59; B B0

Using this formulation, the eigenvalues of the re-
duced random eigenvalue problem can be computed
by solving for the roots of the quadratic

(a11022 — b35) A2 + (2a12b12 — a11bas — as2bir) A

(19)

2
= ai1022 — Ajy

where a;; and b;; denote the elements of the reduced
random matrices Ag(®) and Br(®), respectively.
For the sake of notational convenience, the depen-
dence of these elements on the random variables is
not explicitly shown. Note that the quadratic in
equation (19) will give two possible values for the ap-
proximate eigenvalue. Clearly, for the fundamental
eigenmode, the root with the minimum value gives
the best approximation. For the higher modes the
best approximation is chosen by selecting the root
which is closest to the higher-order eigenvalue ap-
proximation proposed in reference??, which can be
written using tensor notation as

) B;a; + QZOJE,J - )\O(ez‘bi + 91,9]Fz_7)
™ 1+6;d; +6;b; + 9;0‘]F@J

A° (20)

[N

The selection of the appropriate root based on this
criteria can be carried out by transforming equation
(19) using the substitution A = o + A, which gives
the modified quadratic equation

N2
(a11a92 — b25) (Oé + )\) + (2a12b12 — a11b22 — ag2b11)
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X (a + ;\) = a11Q99 — afg (21)

The best approximation is hence that root of
equation (21) which has smallest absolute value, i.e.,
min «. The random eigenvalue can hence be evalu-
ated as A(®) = mina + A. Using this approxima-
tion for the eigenvalue, the random eigenvector is
approximated such that it satisfies the normaliza-
tion condition with respect to [B + Y_%_, 8;B¢] with
probability one. After some further algebra, an ap-
proximation for the normalized random eigenvector
can be then written as

n _ 0 a1 — )\(@)bu L ) 6X
%X(0®) = —\/—ﬁ [X + (————-‘"(112 — /\(®)b12> ;eza—oi]
(22)
where
_ air — A(®)byy an ~ M@y \?
ﬁ_b11+(M) 12 ( ) baa

a2 — )\(@)blg
(23

Conceptually, the statistics of the eigenvalues and
eigenvectors can be computed using equations (20-
23). However, since the resulting expressions for
the eigenvalues and eigenvectors are highly nonlin-
ear functions of the random variables, analytical so-
lutions for the statistical moments are not readily
possible. Fortunately, the solution of equations (20-
23) requires only a few operations (of the order p?).
Hence, a complete probabilistic description of the
eigenvalues and eigenvectors is within reach using
simulation techniques. The formulation presented
in the section is henceforth referred to as RBA.

Simplification of the Formulation

This section introduces some approximations to sim-
plify the reduced basis method and to improve the
computational efficiency. As mentioned earlier, p?
operations are required to compute the eigenvalue
and eigenvector of each mode for each realization of
the random variables. Reduction of the operations
count would require simplifying the third order ten-
sors which appear in the expression for A and Bp.
Consider for example a typical term involving third-
order terms such as

a2 = 0;0;Gij +0:0;6, Qi1 (24)

This term can be simplified by replacing the third-
order term with its ensemble average, i.e.,

oo = 0:0;Gij + (0;:6,01) Qijn (25)

5

Similarly, the third-order term appearing in bgs
can also be replaced by its ensemble average. The
expectation operation in equation (25) can be read-
ily computed using the probability density function
(pdf) of the vector ®. This simplification allows for
the solution of the reduced random eigenvalue prob-
lem using only of the order of p? operations for a
given realization of the random system parameters.

An approach based on crossing theory developed
by Grigoriu® could also be applied for analytically
computing the statistics of the eigenvalues of equa-
tion (13).

A Note on Computational Aspects

The steps involved in the present formulation are
summarized below :

Step 1: The first step involves representing the ran-
dom eigenvalue in the form of equation (6). This can
readily be done either by discretizing the underlying
random fields of the governing SDEP, or by com-
puting the sensitivities of the system matrices with
respect to the random physical parameters.

Step 2 : The deterministic eigenvalue problem in
equation (7) is solved for the eigenmodes of interest
and the eigenvector derivatives are computed with
respect to the random variables.

Step 3 : The problem specific deterministic tensors
given in Table 1 are computed for each eigenmode of
interest. The computational complexity of this step
is of the order n?2, since only matrix vector multipli-
cations are involved.

Step 4 : The constants computed in Step 3 are then
used to expedite the statistical analysis of the eigen-
values and eigenvectors via Monte Carlo simulation
using equation (20-23).

It is of interest to note that the statistics of the
eigenvalues and eigenvectors of each eigenmode can
be computed independently of each other. This en-
ables the possibility of exploiting massively paral-
lel computing systems for solving large-scale random
eigenvalue problems.

Demonstration Examples, Results
and Discussion

Numerical studies are presented for free and forced
vibration analysis of the network of stochastic Euler-
Bernoulli beams with random Young’s modulus and
mass density shown in Figure 1. The structure is
modeled using 4 elements for each beam member,
which leads to a finite element model with a to-
tal of 210 dof. The axial and flexural rigidity of
each structural member are modeled as EoA(1 +6;)
and EoI(1 + 6;), 1 = 1,2,...,20, and the mass
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density of each member is modeled as p,(1 + 6;),
i =21,22,...,40. 6; are considered as uncorrelated
zero-mean Gaussian random variables with standard
deviation oy, while EoA = 6.987 x 10 N, Eol =
1.286 x 102> Nm?, and p, = 2.74 kg/m. This leads
to a total of 40 random system parameters for this
problem.

‘ L=05m

)

Figure 1 : Network of 20 Euler-Bernoulli Beams
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Three cases are considered to compare the accu-
racy of the methods for increasing values of oy. The
value of oy is kept at 0.05, 0.15, and 0.25 for case
1, case2, and case 3, respectively. Numerical stud-
ies were conducted to compute the statistics of the
first 20 eigenmodes, and the transverse component
of the displacement response at node 9 in the region
of 0-500 Hz. The structure subjected to transverse
harmonic excitation at node 1.

~¥- Mean Using RBA
-~ Mean Using PM1
- Std Using RBA
-~ 8td Using PM1

Percentage Error
n
o
T

P

05+ // iy yrd 1
P )‘ j{ y ‘\ _'y_/’z // 6\ «-3—44 &
B R e N i Ve o SN PV S
2 4 6 8 10 12 14 16 18 20
Eigenmode Number

Figure 2 : Comparison of Errors in Mean and
Standard Deviation of Eigenvalues for Case 1,
oy = 0.05

Monte Carlo simulation using exact eigensolution
with a sample size of 10000 is used to generate
benchmark results against which the reduced basis

6

formulation and first-order perturbation method are
compared. The benchmark results are referred to as
exact results throughout the discussion. For the re-
duced basis approximation (RBA) method, the inte-
grals for the response statistics were computed using
a sample size of 10000. The same sample size was
also used to compute the forced response statistics
using the first-order perturbation method (PM1).
For PM1, the statistics of the eigenvalues can be
computed analytically, since a linear approximation
is involved. Note that the pdfs have been normal-
ized with respect to the mean value predicted using
exact MCS.

20 30

Mode 2

0.95 1 1.05 11

1.05

Mode 3

0.85 1 1.05

Figure 3 : Comparison of pdf of Eigenvalues for
Case 1, oy = 0.05, solid line - Exact MCS, dashed
lined - RBA, dotted line - PM1

A comparison of the errors in the mean and stan-
dard deviation of the eigenvalues for Case 1 using
RBA and PM1 are shown in Figure 2. The pdfs of
the first four eigenvalués are shown in Figure 3. It
can be seen that when the standard deviation of 7;
is 0.05, highly accurate results can be obtained for
the first two statistical moments of the eigenvalues
using the approximate methods. The accuracy of
the RBA is seen to be better than PM1 for most of
the eigenmodes of interest. The skew and kurtosis of
the eigenvalues computed using exact analysis and
RBA are shown in Table 1. Since PM1 uses a linear
approximation of the eigenvalues, it gives a skew of
0 and kurtosis 3 for all the eigenvalues. The results
in Table 1 indicate that for small values of oy, the
eigenvalue pdfs can be approximated by a Gaussian
distribution.
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Table 1: Comparison of Skew and Kurtosis for

Case 1, 05=0.05
Skew Kurtosis

Exact RBA Exact RBA

0.0457 0.0457 3.0884 3.0884
0.0089 0.0090 2.9429 2.9429
0.0420 0.0418 3.0137 3.0133
0.0027 0.0037 2.9758 2.9696
0.0232 0.0091 2.9549 3.0760
0.0332 0.0116 3.0064 3.2708
0.0313 0.0099 2.9573 3.3629
0.0322 0.0271 2.9868 3.1280
0.0558 0.0469 2.9494 3.1620
0.1581 0.1946 3.0274 3.2662
0.1084 0.0927 2.9779 3.2767
0.0392 0.0397 2.9548 2.9868
0.0282 0.0323 3.0133 3.0674
0.0336 0.0341 2.9345 3.0379
0.0295 0.0524 3.0585 3.2162
0.0451 0.0172 2.9799 3.2175
0.1446 0.1039 3.1210 3.8941
0.0253 0.0244 3.0044 3.5012
0.0086 0.0334 2.9614 3.4200
0.0375 0.1058 2.9634 3.4374

Mean Displacement Response
3

10° 1 I

L I

- - RBA
- PMi

— Exact MCS

! I L

0 50 100

150 200
F

L
250 300
requency (Hz)

350 400 450 500

Figure 4 : Comparison of Mean Displacement
Response for Case 1, 09=0.05

The mean and standard deviation of the forced re-

sponse computed using RBA and PM1 are compared
with the exact results in Figures 4 and 5. It can be
observed that the RBA shows excellent correlation
with the exact results for both statistical moments
of the forced response. In comparison, the errors

7

in PM1 are rather high at some frequency points.
These trends indicate that the eigenvector statistics
computed using RBA is more accurate than PM1.

10 T T T T T y T T

-— Exact MCS
- - RBA i
PM1

i

ol

Standard Deviation of Displacement Response

’0’9 L I i I !
0 100 150 200 250
Frequency (Hz)

300 350 500

Figure 5 : Comparison of Standard Deviation of
Displacement Response for Case 1, 69=0.05

0
S

T T T T T T T

~%- Mean Using RBA
~&- Mean Using PM1
-~ Std Using RBA
~g~ Std Using PM1

25+

n
(=3
T

3]

Percentage Error
&

y

/
/

4

2 4 6 8

0%

S0 12
Eigenmode Number

14

Figure 6 : Comparison of Errors in Mean and
Standard Deviation of Eigenvalues for Case 2,
ag =0.15

A comparison of the percentage error in the mean
and standard deviation of the eigenvalues computed
using RBA and PM1 for Case 2 is shown in Figure
6. As observed earlier for Case 1, RBA gives bet-
ter results, as compared to PM1, for the statistical
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moments of most of the eigenvalues. However, for
some eigenmodes, the mean and standard deviation
predicted by PM1 can be seen to be marginally more

accurate as compared to RBA.

Table 2: Comparison of Skew and Kurtosis for

Case 2, 09=0.15

Skew Kurtosis
Exact RBA Exact RBA
0.1419 0.1413 3.1895 3.1888
0.0306 0.0291 2.9819 2.9803
0.1176 0.1070 3.1082 3.0706
0.1169 0.0209 3.2762 2.7457
0.0320 0.0100 3.0634 3.8477
0.1203 0.1388 2.9578 3.7544
0.1012 0.1784 3.0240 4.4861
0.0773 0.0343 3.0836 4.0062
0.0142 0.0224 3.0693 3.3256
0.0274 0.1027 2.9985 4.0908
0.1732 0.2454 2.8698 5.3373
0.0598 0.0988 2.9803 3.4708
0.0429 0.0267 3.0475 3.2559
0.1683 0.2043 3.0060 3.6467
0.0284 0.0099 3.0322 4.0797
0.0465 0.0407 2.9643 3.1036
0.1141 0.0987 3.0192 4.6442
0.0265 0.0116 3.0009 3.7757
0.0291 0.0428 2.9922 4.0900
0.0564 0.2530 29711 5.7394

10
8] Mode2 {\\

Figure 7 : Comparison of pdf of Eigenvalues for
Case 2,

08 09 0% 1 105 1

. 101 Mode4

09=0.15

08 09 095 1 105 11

The pdfs of the first four eigenvalues computed
using various methods are compared in Figure 7.

The skew and kurtosis computed using RBA is com-
pared with the exact results in Table 2. Clearly, the
exact results indicate that the pdfs of some of the
eigenvalues are non-Gaussian, a trend which cannot
be captured using PM1. However, RBA accurately
captures this trend for the first few eigenvalues. -

Mean Displacement Response

9 ;

— ExactMCS
- - RBA
o PMH

! 1

50

1 1
250 300
Frequency (Hz)

i 1
100 150 200 350

400

450 500

Figure 8 : Comparison of Mean Displacement

Response for Case 2, 09=0.15

Standard Deviation of Displacement Response
]

T T T T T T

- - RBA
- PM1

— Exact MCS

I | 1 L L !

10° !
0 50

100 150 200 250 300

Frequency (Hz)

Figure 9 : Comparison of Standard Deviation of
Displacement Response for Case 2, 09=0.15

The mean and standard deviation of the forced
response computed using RBA and PM1 are com-
pared with the exact results in Figures 8 and 9. It

8
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can be seen that the RBA shows better agreement
with the exact results for both the mean and the
standard deviation of the response.

For Case 3, the random system parameters are
considered as Gaussian random variables with stan-
dard deviation of 0.25. This pathological test case
is expected to give insights in to when the RBA
method will break down and give unacceptable re-
sults. For this case, some realizations of the random
variables may lead to negative stiffness and mass
properties. During the simulation, the small frac-
tion of the realizations of #; which lead to negative
stiffness and mass are excluded.

45— T T T T

—%- Mean Using RBA
~¢- Mean Using PM1 B
- S8td Using RBA
-~ Std Using PM1

w2
&
T

@
S
T

g

Percentage Error

Eigenmode Number

Figure 10 : Comparison of Errors in Mean and
Standard Deviation of Eigenvalues for Case 3,
09=0.25

The percentage errors in the mean and standard
deviation of the first 20 eigenvalues for Case 3 are
shown in Figure 10. It can be seen that RBA gives
significantly better approximations for the standard
deviation as compared to PM1 for the first few eigen-
modes. As expected, PM1 gives acceptable approx-
imations only for the mean of the eigenvalue. The
pdfs of the first four eigenvalues computed using var-
ious methods are compared in Figure 11.

It was observed that due to the large value of oy,
the statistical overlap factor?® increases drastically
as compared to the earlier cases, i.e., the pdfs of all
the eigenvalues show a great degree of overlap. The
extent of overlap was found to increase drastically for
the higher eigenmodes. The skew and kurtosis of the
first 20 eigenvalues are shown in Table 3. It can be
clearly seen that RBA accurately captures the non-

9

Gaussian distribution of the fundamental eigenvalue.
However, the errors for the other modes are seen to
be rather high. The trends indicate the RBA can
only be used for reliably computing the statistics of
the fundamental eigenvalue when oy = 0.25.

5
Mode 2

0.6

Mode 3 Mode 4

=]

12

0.4 0.6 0.8 1 0.4 0.6

Figure 11 : Comparison of PDF of Eigenvalues
for Case 3, 09=0.25

Table 3 : Comparison of Skew and Kurtosis for
Case 3, 0y=0.25

Skew Kurtosis
Exact RBA Exact RBA
0.2531 0.2494 3.3782 3.3719
0.1170  0.0758 3.2573 3.0115
0.6070 0.2764  5.1004 3.0949
0.7058 0.0352 5.2691 1.6734
0.1404 0.0003 3.4669 3.6272
0.0610 0.0206 3.0883 3.2995
0.0562 0.1619 3.1414 4.0981
0.1737 0.1059 3.2428 3.2514
0.0199 0.0100 3.2919 2.6349
0.0871 0.1214 3.1947 3.7026
0.1341 0.2958 2.9642 5.1441
0.0033 0.0865 3.0904 3.4496
0.0167 0.0131 3.1771 2.7979
0.0828 0.0445 3.1819 3.2265
0.0327 -0.0456 3.1273 3.1286
0.0722 0.0554 3.1420 2.6586
0.0271 0.0086 3.2159 3.5129
0.0006 0.0036 3.0754 3.3322
0.0292 0.0056 3.0294 4.1757
0.0458 0.2746 3.0443 6.0725
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Figure 12 : Comparison of Mean Displacement

Response for Case 3, 09=0.25
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Figure 13 : Comparison of Standard Deviation of

Displacement Response for Case 3, 09=0.25
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The mean and standard deviation of the forced
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pared with exact results in Figures 12 and 13. It
can be seen that RBA gives better approximations
for both statistical moments of the forced response
as compared to PM1. This indicates that the eigen-
vector statistics computed using RBA are also of
reasonable accuracy. It is of interest to note that,
in spite of the high magnitude of error in the eigen-
value statistics, the first two statistical moments of
the forced response are of reasonable accuracy.

10

Computation of the first 20 modes of this struc-
ture using the Lanczos method requires around 1.7
seconds on a SGI Origin2000 with R10000 proces-
sors. Hence, the Monte Carlo simulation procedure
using a sample size of 10000 involved nearly 5 hours
of computer time on a single processor. In contrast,
the reduced basis formulation required only 2.3 min-
utes, with the first-order perturbation method tak-
ing around 1.7 minutes. Note that the routines im-
plementing the approximate methods have not been
fully optimized. It is expected that the difference
between the computational cost of the methods will
become even more significant with increase in the
problem size, i.e., both RBA and PM1 will require
only a very small fraction of the computation cost
required for MCS using exact eigensolution.

Concluding Remarks

An efficient numerical scheme based on reduced basis
methods is presented for solution of large-scale alge-
braic random eigenvalue problems. The proposed
method reduces the original eigenvalue problem into
a sequence of 2 x 2 reduced-order random eigen-
value problems for each mode of interest. The terms
of the reduced-order eigenvalue problem can be ef-
ficiently computed by solving a deterministic eigen-
value problem and computing its sensitivities. Fur-
ther, the present formulation allows explicit expres-
sions for the random eigenvalues and eigenvectors to
be derived in terms of the random system properties.
This enables a complete statistical description of the
random eigenvalues and eigenvectors in a computa-
tionally efficient fashion.

Numerical studies have been presented for free
and forced vibration analysis of a stochastic struc-
tural system to demonstrate that significant im-
provements over the first-order perturbation method
can be achieved, particularly for large stochastic
variations in the system properties. In particular,
nearly exact results can be obtained for the statis-
tics of the first few eigenvalues. In contrast to the
first-order perturbation method, the reduced basis
method accurately predicts the first two statistical
moments of the forced response. It is also demon-
strated that this improvement is achieved with only
a small increment in the computational effort as

compared to the first-order perturbation method.

It is of interest to note that the proposed method
can be readily extended to linear algebraic random
eigenvalue problems with general non-Hermitian
matrices, and quadratic random eigenvalue prob-
lems. Extension of the proposed reduced basis
method to interval eigenvalue problems?* is also a
topic for further research.
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