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ABSTRACT

The development of grain size during commercial thermomechanical processing of 6000 series
aluminium alloy components has been investigated by combining physical experiments and
modelling techniques. A range of grain structures was generated by varying both deformation
temperature and heat treatment practice. The different deformation conditions were simulated by
finite element modelling, which allowed parameters such as plastic strain, strain rate and
deformation temperature to be subsequently extracted. An adaptive numeric technique
(neurofuzzy modelling) was employed to describe the recrystallized grain size in terms of the
process parameters, and its performance compared with that of an empirical relationship from
the literature.

1. INTRODUCTION

The Al-Mg-Si 6000 series alloys are used extensively for wrought products serving a wide range
of commercial applications. For example, high pressure gas cylinders are manufactured from
AA6061 alloy by a two-stage deformation process, cold backward extrusion followed by warm
neck forming [Woodward and Bates (1987)]. Solution and precipitation heat treatments are
carried out to achieve the desired balance of strength, toughness and resistance to
environmentally sensitive degradation required in the final product. Previous annealing studies
by Clinch, Harris, Hepples, Holroyd and Wood (2000) on cold worked material revealed classic
Johnson-Mehl-Avrami-Kolmogorov (JMAK) type behaviour, with recrystallization occurring
readily at all temperatures investigated. In commercial practice, however, recrystallization takes
place whilst heating to the solution heat treatment temperature rather than during an isothermal
anneal. The non-homogeneous nature of the deformation processes employed can lead to a
range of grain sizes being present within the heat treated component and furthermore, grain
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structure has been found to vary with both deformation and heat treatment conditions. Exact
processing conditions will not be discussed in this paper due to commercial sensitivity of the
information.

Whilst physical understanding of microstructure development may be well developed for
specific simplified conditions, accurate quantitative modelling of more complex, multivariate
and essentially ‘noisy’ industrial systems may be efficiently addressed by adaptive numeric
modelling methods such as neural networks, neurofuzzy networks and Support Vector Machines
[Christensen et al., (2000), Brown and Harris, (1994)]. These are established in predictive
modelling in a variety of disciplines (e.g. financial markets analysis, weapons tracking systems,
speech recognition) constituting a considerable improvement over simple regression analyses
often used in production engineering environments. In the present study neurofuzzy modelling
has been applied as an extension to detailed finite element modelling, forming a uniquely
integrated modelling/simulation effort.

2. EXPERIMENTAL METHODS

2.1 Materials and techniques. Commercial DC cast AA6061 material was used throughout this
study, which had been stress relieved and homogenised to give suitable microstructure and
properties for downstream processing [Holroyd and Hepples (1999)]. Billets were extruded at
room temperature to a true strain of 1.87, or 85 % reduction in area, to provide samples for hot
working trials. A common pre-heat was employed in all cases, but delay time prior to working
was varied to give six initial deformation temperatures. All variants were then subjected to a
standard solution heat treatment and ageing practice for the alloy. This was carried out in both a
commercial oven and a salt bath furnace, giving ‘slow’ and ‘fast’ heating rates respectively.

Specimens were prepared for optical microscopy using standard metallographic techniques for
aluminium alloys and anodised in Barkers Reagent in order to reveal grain structures. The linear
intercept method was used to measure grain size at selected locations within the component.

(b)
Figure 1. Examples of finite element model contour maps showing distribution of plastic
strain after (a) deformation 1, and (b) deformation 2.

2.3 Finite element modelling. The cold extrusion and subsequent hot forming operation were
modelled as separate processes, referred to hereafter as “deformation 1” and “deformation 2”
respectively. Initial conditions based on temperature measurements after pre-heating were
specified for the six variants prior to deformation 2. Examples of strain contour plots from each
deformation process are shown in Figure 1(a) and 1(b) respectively. Process history information
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was extracted for specific geometric locations within the final component where grain size had
also been measured. These parameters were used as input values for subsequent analysis and
adaptive numeric modelling work.

Recrystallized grain size was calculated in terms of the prior deformation parameters according
to Equation (1) below, stated by Humphreys and Hatherly (1995), where the coefficients ¢, ¢’, n,
and & were obtained via linear regression. Since no expression for heating rate is included, grain
size was determined for oven heat treated material only.

Dyex =cD " 2* (D
where ¢, ¢', n, kK = constants; D, = original grain size; ¢ = plastic strain; z =
Zener Holoman parameter (Q = 205 kJ/mol)

2.3 Adaptive Numeric Modelling. The neurofuzzy (NF) modelling approach used in this work is
essentially a neural network (NN) incorporating fuzzy logic [Brown and Harris, (1994)]. Where
the ordinary NN [Bishop, (1995)] relies on simple functions of all inputs woven into an obscure
network, the NF model, during optimisation, adapts its internal structure, identifying only the
relevant inputs and their interactions. Model complexity is limited (via a statistical significance
term) to a level which is justified by the amount and distribution of data. Models are therefore
kept simple, normally relying on subfunctions of less than 4 input parameters and, consequently,
are highly transparent, such that relationships between individual input parameters and the
output parameter are easily identified.

Final microstructure in the component is determined by both deformation stages and heat
treatment conditions. Deformation 1 was represented by plastic strain with a hardness multiplier
term to account for annealing prior to deformation 2, which was described by plastic strain,
strain rate and temperature. Heat treatment medium was included as a binary input, indicating
either “slow” air oven or “fast” salt bath. The full set of inputs was therefore: Strain;, Multiplier,
(Strain; *Multiplier), Strain,, Strain rate,, Temperature, and Solutionising Medium. A total of 64
data points were modelled, using both measured grain size values and their natural logarithms.
As a benchmark for the NF modelling, linear multivariate regressions (least squares) were
carried out and both techniques compared to empirical modelling described by Equation (1).

3. RESULTS AND DISCUSSION
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Figure 2. (a) Effect of deformation temperature and heat treatment medium on grain, and
(b) predicted vs. actual grain size according to Equation (1).
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Figure 2(a) shows examples of heat treated grain size as a function of position within the
component for the highest and lowest of the six deformation temperatures, after both heat
treatment conditions, and indicates the range of grain sizes encountered. The largest grain sizes
were observed at combinations of high deformation temperature and slow (oven) heating rate,
however in all cases grain size appeared to decrease along the length of the component. The
apparent grain refinement due to rapid (salt bath) heating was less pronounced in material
deformed at low temperature. Figure 2(b) shows performance of the empirical model based on
Equation (1) for the oven heat treated data. Whilst in general predicted grain sizes were fairly
close to actual values, significant deviation from the empirical model was experienced at the
highest point.

Table 1. Linear regression, neurofuzzy and empirical model performance.

Model Training Test
No | Type* Target ** MSE*%* MRE (%)**** MSE*%* MRE (%) ****
1 LLS GS 2768.8 513 3516.5 58.3
2 | LLS In(GS) 2028.6 213 2409.5 24.0
3 NF GS 708.5 14.4 902.4 15.6
4 NF In(GS) 824.1 13.4 980.2 14.9
5 | EMP In(GS) 1071.0 143 - -

* LLS refers to linear least squares regression, NF neurofuzzy, EMP empirical (eqn. 1)

** Models 2,4 and 5 model In(grain size). In order to compare their MSEs to those of the other models, their
outputs were transformed to grain size values and regular MSEs obtained.

**% Grain sizes are in pm, MSEs in pm’,

**** Values are based on actual rather than logarithmic grain size values in models 2, 4 and 5.

Table 1 shows model performance for the linear regression, NF and empirical methods. Errors
are shown in terms of: (i) the mean-squared-error (MSE), based on the absolute errors between
model predictions and experimental results, and (ii) the mean relative error (MRE), where the
errors between prediction values and experimental results are expressed as percentages of the
experimental value. MRE gives a fairer comparison of model performance across the wide range
of grain sizes being considered. When reviewing MSE and MRE values it may be noted that
95% confidence limits on the measured grain dimensions were of the order of 9.6%. The
training errors were found by establishing the model based on all data points and then
calculating the prediction error, i.e. the difference between model prediction and actual output
value, for all data points. Given the relative paucity of data, test errors were assessed via leave-
one-out cross-validation, whereby multiple modelling is carried out with a different single point
left out of the training set each time. This is conducted for all of the data, with modelling error
then being expressed in terms of the average error between model prediction and target value for
the unseen points.

Overall it may be seen that the NF models provide the best prediction accuracy, with the
similarity in training and test errors showing that overfitting had not occurred. It is interesting to
note that whilst LLS accuracy improved on using logarithmic data; this was not the case for the
NF modelling; a result of its intrinsic functional flexibility, using piecewise functions as
necessary. The empirical model showed some improvement over the basic LLS model,
particularly in the MRE values, and performance was comparable to those of the NF models,
although this is not a fair comparison, as Equation (1) is only applicable to one solution
treatment condition.
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Figure 3. (a) Model prediction versus experimental values plot for NF model No. 4, and
(b) neurofuzzy sub-function plots.

The general quality of model accuracy of the NF-type models across the complete grain size
data range is illustrated by the prediction versus experimental values plot shown in Figure 3(a)
for model No. 4 in Table 1. NF model 4 (with the best MRE) gave the sub-function structure
and corresponding regression surfaces shown in Figure 3 (b). Whilst higher order functions were
available to the NF models, only piecewise linear subfunctions were allowed, so as to pre-
constrain model complexity in light of the low number of data points. The underlying trends are
clearly identified as: (i) increasing grain size after solutionising in the air oven (in Figure 3(b)
solutionising medium values of 0 and 1 correspond to the air oven and salt bath respectively),
(i1) increasing grain size with Temperature;, and (iii) decreasing grain size with increasing
Strain;. The increased sensitivity to temperature in the oven treated condition is clearly evident
in the bivariate function. It is interesting to note that whilst the continuous function of
solutionising medium ‘value’ (i.e. going from 0 to 1) is rather artificial; this range may be
broadly linked to continuous variations in the solutionising heat rate.

The NF modelling results may be viewed with a degree of confidence in light of qualitative
physical understanding of the system and the model structure shown in Figure 3(b) - this
highlights the role of model transparency in the modelling process, with such assessment of
functionality being highly problematic in conventional NN techniques. Specifically, the solution
heat treatment medium should have a distinct effect on recrystallisation, with the rapid salt bath
heating rates essentially inhibiting recovery, leading to more stored energy being retained at the
onset of recrystallization and hence smaller grain size for a given plastic strain. Furthermore,
increasing deformation temperature will effectively reduce the stored energy for a given strain
due to dynamic recovery. It is significant to note that the NF modelling actually used a rather
limited number of inputs to achieve the predictions. This may be attributed to the input data
ranges, as the technique is purely data driven and cannot find relationships where parameters are
of an effectively limited range. For example, the range of strain rates during deformation 2
would not be expected to have a strong influence given the temperatures involved, hence the
absence of a strain rate term in the NF models is not unreasonable. This is an important
fundamental issue with data driven modelling of any degree of sophistication - such techniques
may therefore be of considerable value in practical situations, where parameter ranges and
correlations are closely defined by the process of interest, but extrapolation of the relationships
that are found must be treated with caution. The apparent inability of all models, including the
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empirical approach, to predict the large grain sizes observed at combinations of high
deformation temperature and oven heat treatment is of particular interest and requires further
investigation. It is possible that extensive dynamic recovery may have occurred during
deformation, leading to a significant reduction in nucleation sites for recrystallization. In this
case final grain size would be controlled by grain growth rather than nucleation, and therefore
might be expected to follow Equation (2) below rather than Equation (1) [Humphreys and
Hatherly (1995)].

D" =D,"tctexp (-Q;/kT) (2)
where ¢, n, O, = constants

4. CONCLUDING REMARKS

This study has shown that finite element modelling can provide details of deformation
parameters necessary to develop microstructural models for real industrial processes.
Furthermore, the application of adaptive numeric modelling approaches offers good prediction
accuracy, whilst being more comprehensive than the conventional empirical approach in being
able to include heating rate effects.
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