A Data Parallel Approach
for Large-Scale Gaussian
Process Modeling

Arindam Choudhury, Prasanth B. Nair, and Andy J. Keane*

Abstract

"This paper proposes an enabling data parallel local learning methodology for han-
dling large data regression through the Gaussian Process (GP) modeling paradigm.
The proposed model achieves parallelism by employing a specialized compactly
supported covariance function defined over spatially localized clusters. The associ-
ated load balancing constraints arising from data parallelism are satisfied using a
novel greedy clustering algorithm, GeoClust producing balanced clusters localized
in space. Further, the use of the proposed covariance function as a building block
for GP models is shown to decompose the maximum likelihood estimation problem
into smaller decoupled subproblems. The attendant benefits which include a signif-
icant reduction in training complexity, as well as sparse predictive models for the
posterior mean and variance make the present scheme extremely attractive. Ex-
perimental investigations on real and synthetic data demonstrate that the current
approach can consistently outperform the state-of-the-art Bayesian Committee Ma-
chine (BCM) which employs a random data partitioning strategy. Finally, extensive
evaluations over a grid-based computational infrastructure using the NetSolve dis-
tributed computing system show that the present approach scales well with data
and could potentially be used in large-scale data mining applications.

Keywords

Gaussian Processes, Regression, Kernel Machines, Parallel Architectures; Grid Com-

puting.

*Arindam Choudhury, Prasanth B. Nair and Andy J. Keane {A.CHOudhury, P.B.Nair,
Andy.Keane}@soton.ac.uk, are with the Computational Engineering and Design Center, School of
Engineering Sciences, University of Southampton

95

local learning strategies construct models for spatially localized partitions of the
data. The motivation for this arises from the fact that local learning techniques
are known to perform better than meta-learning techniques which suffer from high
variance and poor generalization. Vapnik (1996) proposed a local learning tech-
nique which creates the model at runtime after the testing point is known. This
is in fact a lazy learning strategy analogous to the k-nearest neighbor algorithm
which selects a subset of points from the training data closest to the testing point
to make a prediction. Even though, this approach has provided breakthrough per-
formance in some application domains, the associated computational cost precludes
its application in practice.

In what follows, we approach the local learning problem explicitly from the
point of view of the covariance function, which is the fundamental building block of
the Caussian Stochastic Process. Specifically, we show that a compactly supported
covariance function defined over spatially localized clusters naturally leads to a data
parallel scheme for modeling large-scale data. It is shown that using this new covari-
ance function, the maximum likelihood estimation (MLE) problem can be decom-
posed into smaller decoupled subproblems. This leads to a significant speedup in the
training phase of GP models. Further, the present approach also leads to sparset
yet effective predictive models which consistently outperform Bayesian Committee
machines (BCM) — a state-of-the-art approach for model aggregation. Since equally
sized or balanced partitioning of data is crucial to the efficiency of such data paral-
lel approaches, we next develop a novel clustering scheme GeoClust, which outputs
clusters of (nearly) equal sizes. Finally although GP models serve as a good testbed
for testing our algorithms, we stress that our data parallel local learning strategy
may also be readily applied to other kernel machines such as SVMs.

Detailed experimental simulations presented later in the text support our intu-
itions about the algorithms presented and show conclusively that our data parallel
approach scales favorably with data size both in sequential mode where the models
are trained sequentially and in parallel where they maximally leverage the presence
of multiple processors. The parallel scalability studies have been conducted using
NetSolve [21], a computational platform which facilitates grid-based heterogenous
computing in a transparent and efficient manner. The Southampton Computational
Grid was utilized in part to conduct these studies. It is generally recognized that
data mining in the future would shift to such grid based computing platforms and
architectures[22].

The rest of the paper is organized as follows: In section 2, the basic GP
regression formulation is discussed briefly along with the associated computational
hurdles. Section 3 present the essential ingredients of the proposed data parallel
local learning strategy. Section 4 elaborates on load balancing requirements arising
out of the data parallel paradigm and proposes a new clustering algorithm tailored to
satisfy such requirements. Section 5 discusses aggregating predictions from multiple
models and shows how it can be done efficiently in the present case without resorting
to a model aggregation strategy. Section 6 presents a discussion on the training

1The term sparse is used here loosely to denote models which only use a subset of the training
dataset to make predictions.

97

where,
£n+1 = kz+1(X)C;ltn (5)
o? = k(Xnt1,Xns1;6) — k?;+].(x)cgl'k'n+l (6)

where, p41 and o2 is the prediction for the posterior mean and the variance, re-
: . kel
spectively, and kno1 = {k(Tns1,71), k(@nt1, T2), - k(Znt1,20)} € R™

2.1 Determining the Optimal Hyperparameters

From a computational perspective, the search for an optimal GP regressor under
the evidence maximization framework [4] involves solving the following nonlinear
maximum likelihood estimation (MLE) problem to determine the most probable
hyperparameters 857 p for the given data.

. 1 1
Maxjmize L(9) = —3 log det C - StTC ty - = log 2 7)

where L(8) denotes the log likelihood for a Gaussian process.

Since computing L(8) and its gradient generally involves computing and in-
verting a dense n X n covariance matrix (requiring O(n?) resources) at each iter-
ation, training the GP model can be prohibitively expensive even for moderately
sized data (e.g., say a few thousand data points). This is amply demonstrated
in Figure 1 where the training time is shown for a typical 10 variable dataset.
Unfortunately, other schemes such as Markov chain Monte Carlo sampling for ap-
proximating the predictive distribution [3, 2, 5] are also plagued by similar problems
involving escalating training costs with data size. In any case, it has been shown
that evidence maximization is faster and performs better than its counterparts on
large datasets[3].

Since the main obstacle to efficient maximization of (7) is the presence of
the dense covariance matrix, it would seem natural to choose a covariance function
which leads to a sparse or banded covariance matrix. Similar concerns have been
raised and addressed elsewhere in the literature [17] in the context of radial basis
function networks. In particular, the use of compactly supported radial basis func-
tions has been shown to bring about appreciable speedups in the training as well as
prediction phases. In what follows, we pursue a similar line of argument but for the
Gaussian process model. It is easily shown that such a line of approach naturally
leads to a data parallel local learning scheme for GP regression.

3 Data Parallel Local Learning

Since a Gaussian stochastic process is completely specified by its covariance func-
tion, training a GP involves considering a parameterized covariance function and
determining its hyperparameters 6 such that the log likelihood L(8) of the data
is maximized (see Eqn. 7). In this section, we propose a compactly supported
covariance function to facilitate data parallel local learning.

99

where K;; € R™*™ contains correlation terms explicitly from the ith cluster which
consists of n; points. Since in this case the determinant of the covariance matrix K
can be written as the product of determinants of the blocks Ki; and Ko, the log
likelihood can be split into individual log likelihoods for the two partitions, i.e.,

L(6) = L(61) + L(62) (11)

It is important to note at this point that while the conventional GP regression
model uses a single set of hyperparameters to model the full data, the data parallel
version uses different sets of hyperparameters to model the covariance structures
of different regions of the data. Hence, maximizing the overall log likelihood for
the data is equivalent to maximizing the log likelihood for each partition, since
the individual objective functions depend on separate sets of hyperparameters. It
may seem at first sight that the proposed compactly supported covariance function
would result in a less accurate oversimplified global model. However, the results
in the later sections do not seem to bear out this observation. Indeed, it can be
argued that given enough flexibility in the choice of the local covariance models,
the performance degradation can be somewhat circumvented.

From the preceding discussion, it is clear that the use of a compactly supported
covariance function naturally leads to a data parallel local learning approach to GP
regression and hence provideés a means to handle large datasets. Having made this
connection, we are now confronted with a problem: that of partitioning or clustering
the data into subsets. From a data parallel point of view the subset sizes chosen
need to be (nearly) equal.®* What we really need is an algorithm which creates
clustérs which are localized in the data space. Local models can then be built on
each of these clusters. Finally the ensemble of local models can be used in place
of the global model. As argued in Vapnik (23], for unevenly distributed data, such
local learning may lead to effective capacity control which can significantly improve
the performance for some cases.

Even though, we discussed the data parallel approach in the context of GP
regression, our approach can also be applied to other kernel-based machine learning
algorithms such as SVMs. The basic approach is elucidated as a pseudo code in
Algorithm 1, where C1,Ca, ... ,Cp, denote the m clusters or partitions of data and
My, M, ..., My, denote the corresponding local prediction models. As is clear from

Algorithm 1, a complete description of the data parallel approach requires the spec~

ification of three functions viz., Partition(), CreateLocalModel() and Aggregate().

3This is primarily because of efficiency reasons and also to reduce the waiting times when
operating in a multiprocessor scenario.

101

cluster center c3. At the end of each iteration, the cluster strengths Wiy, Wa, W3
are reassessed. The process continues till the increments become zero or very small.
The iterative process is assisted by a relaxation/learning factor a. Typically, « is
set to a low value. In our experiments, we have found 1072 to be reasonable choice
when the data is normalized. Note that as the cluster strengths become close, the
relative movement of the centers towards each other slows down and finally ceases.
Hence, the algorithm converges when the clusters have equal strengths.* Figure
2 illustrates how GeoClust partitions a toy 2-D dataset into 2, 3 and 4 clusters

respectively.

, Algorithm 2: GeoClust
Inputs : Data D
: Number of partitions desired m
: Maximum number of iterations Maziter
: learning parameter o
Initialize m random centers, c?,i =1,2,..... ,m
For t = 1: Maziter
e Assign each data point to the cluster nearest to it
e Compute number of points in each cluster: Wi, Ws, ..., W,
e For each cluster C;, Update the cluster center as follows:
o Compute §v; = Zﬁur_‘i(%’% —1)(cit —cih
o Update center cf = ¢t~ " + adv;
e End
End

Figure 2. The partitions obtained be GeoClust for a toy dataset when the
desired number of partitions are increased from 2 to 4 (left to right)

Remark : Ideally one would like to solve a graph partitioning problem where m
disjoint partititions of a set of N nodes (points) are sought so as to minimize the total
weight of the edges connecting nodes from different sets. In the present case, the
weights of the edges are given by the correlation between two points. Unfortunately,

4When the number of instances is not exactly divisible by the number of clusters, the cluster
strengths settle to nearly equal values.

103

(O(n?) memory) and computing its inverse (O(n®) flops). The computational ad-
vantages of the present local learning strategy over the conventional GP regression
approach are significant and are straightforward to evaluate. Specifically, for n data
points and m clusters, 2 sequential data parallel version of our algorithm requires
training time of C’)(m—g-) only as compared to O(n®) for the global GP regression
model. Further, the attendant memory requirements are reduced from O(n?) for the
conventional case to O(W) The parallel version of the algorithm offers even more
advantages. Typically, in such a scenario, one has access to at least as many pro-
Cessors as the number of clusters specified.® The overaH training time now reduces
to O(L5) and the memory requirements fall to O(Z) per processor involved.

The prediction model obtained using the compactly supported covariance
function is extremely cheap in terms of both runtime computations and memory
required as compared to BCM. Since a BCM prediction involves the additional cost
of computing the variance of prediction for each model using equation (6), it effec-
tively means explicit computation and storage of multiple matrix mvelses Hence
runtime computation and memory requirements both scale as O(m—) In contrast,
the runtime complexity of the predictive model arising from the data parallel local
learning approach scales only as O(mp + Z) flops, where p is the dimensionality of
the input data. Additionally, as demonstrated in in the next section, experimen-
tal investigations suggest that the current strategy can indeed outperform BCM
consistently in terms of accuracy of prediction.

It is clear from the preceding discussion that the efficiency of the algorithm
increases with increasing number of clusters m. Further, it has been been shown
elsewhere that the use of compactly supported kernels produces more stable so-
lutions [18]. However, it is important to mention that increasing the number of
clusters beyond a certain limit actually leads to a deterioration in the general-
ization capability of the resulting model [18]. This results from an ever reducing
number of points available for modeling each cluster.®

7 Experimental Investigation

The aim of the experimental studies presented in this section is two-fold: (i) we seek
a direct comparison of the performance of the proposed algorithm with respect to
the state-of-the-art BCM algorithm suggested recently [16] for handling large data
using data parallel GP models, and (ii) we carry out a full scale timing study of our
technique on a large data set to see how it scales with the size of the training data.
Simultaneously, we also compute training times for the full scale GP model trained
on the whole data. :

We shall use the following acronyms henceforth to refer to the competing
schemes: LL-GP for the scheme which uses the proposed local learning approach
and RP-BCM for the scheme which uses a Random Partitioning of data and a BCM

5Conversely, it is reasonable to assume that the number of clusters are pr especified by the user
according to the number of processors available.

8Fvom the point of view of compactly supported covariance functions, poor generalization arises
when the support radius is reduced below a certain threshold.

105

28 T T T T T
—#— RP-BCM
-~ LL~GP
26 GP benchmark
24 .
L
/
-
..//

22 /"/ '''''
w T o
g .
$20- 7 a7]
© /;if" -
[}

~

2 // 2

e e 4

A
I -
168"]
4 o
14- .
12 1 i 1] I3 1 1
3 4 5 6 7 8 9 10
No of clusters

Figure 4. MSE performance for 100 realizations of a synthetic function
with 10 variables generated using F* with varying cluster sizes.

Methods Measure No. of clusters
1 2 4 6 8 10
’ MSE 8.04 | 8.98 9.33 | 10.38 | 10.67 | 10.72
LL-GP Std 6.2 8.55 7.20 8.12 8.41 7.5
Jog(L)(10%) | 1.25 | 1.26 1.25 1.26 1.26 1.26
MSE - 11.03 | 15.17 | 17.13 | 20.33 | 40.67
RP-BCM Std - 9.5 12.73 | 12.84 | 21.56 | 189.22
-log(L)(10%) - 1.30 1.34 1.36 1.39 1.40

Table 1. Comparison of the statistics of MSE and negative log likelihood(-
log(L)) values for the Boston dataset

test set of 2000 instances. From the figures, it is clear that the present local learning
strategy is superior in terms of average MSE performance when compared to the RP-
BCM. Also, this experiment clearly exhibits that the mean accuracy of prediction
decreases with increasing number of clusters for both the algorithms although the
training times are cut down significantly with increasing cluster sizes. This reflects
the familiar speed-accuracy tradeoff, which limits the number of clusters one may
use in practice and hence upper bounds the speedups one can obtain.

Table 1 summarizes the statistics for the Boston data set. The measures shown
are averaged over 100 runs each of which includes training over 481 instances and
testing over the remaining 25. Note that for a single cluster, the LL-GP scheme

107

the parallel code increases approximately in a linear fashion when the number of
training points are increased. For the case of 30,000 points, the grid-enabled version
is nearly 12 times faster than a sequential version of our approach. Interestingly, the
conventional GP rapidly became infeasible beyond a training set size of 4000 points,
which itself took 140 minutes of training time. Hence, the proposed approach in both
its sequential and grid-enabled form is clearly much faster than the conventional
'GP modeling and is an enabling approach for handling problems with large data.
It is also worth noting that meta-learning approaches which use random par-
titions of the data can be deployed on grid-based computational infrastructures.
However, it is often the case that the model aggregation stage cannot be fully par-
allelized. As a consequence, the resulting speedups may not be very significant
for some cases. For example, the parallelized version of the meta-learning strategy
proposed recently for SVM mixtures [12] (running on 50 compute nodes) is only 3.3
times faster than the sequential code for a problem with 100,000 training points.

8 Concluding Remarks

Regression techniques based on Gaussian processes have recently been applied with
great success to modeling observational data. However, the impressive generaliza-
tion behavior of GPs is offset by the overwhelming training cost incurred even for
modest datasets. This paper proposes a novel data parallel local learning paradigm
as an enabling approach for applying GP models to large-scale regression tasks.
This is achieved using a combination of a compactly supported covariance function
and a novel data partitioning scheme which respects load balancing considerations
as well as space localization. A simple yet effective prediction strategy follows
naturally from the choices effected, which is shown to consistently outperform the
state-of-the-art BCM framework in terms of predictive performance. Experimental
studies provide empirical evidence for the attractive scaling behavior of the proposed
methodology which indicates its potential as a data mining tool. ,

A number of interesting lines of research are worth pursuing. From a theoreti-
cal point of view, it is of interest to examine the relationship between the number of
clusters to be chosen and the resulting generalization error of the predictive model.
This could result in a more principled data dependent basis for the a priori selection
of the number of clusters to be formed to achieve reasonable generalization, while
still obtaining good training and runtime speedups. While Geoclust efficiently solves
an unconstrained graph partitioning problem, it remains to be seen whether impos-
ing edge constraints improves the generalization performance any further. Lastly;
it is to be noted that our data parallel paradigm can also be applied to speed-up
other kernel-based machine learning algorithms.

109

111

[13] Joachims, T., Making Large Scale Support Vector Machine Learning Possible,
In Advances in Kernel Methods,, Schélkopf, B., Burges, C., Smola, A, (Eds.),
MIT Press, 1999

[14] Platt, J., Fast Training of Support Vector Machines using Sequential Minimal
Optimization, In Advances in Kernel Methods,, Scholkopf, B., Burges, C.,

Smola, A.,(Eds.), MIT Press, 1999

[15] Ridda, A., Labbi, A., Pellegrini, C., Local Experts Combination Through
Density Estimation, International Workshop on AI and Statistics, Uncertainty
’99: Morgan Kaufmann, 1999

[16] Tresp, V., A Bayesian Committee Machine, Neural Computation, Vol. 12, pp
2719-2741, 2000

[17] Schaback, R., Creating surfaces from scattered data using radial basis func-
tions, in Mathematical Methods for Curves and Surfaces, M. Daehlen, T. Lyche
and L. Schumalker (eds.), pp 477-496 : Vanderbilt University Press, 1995

[18] Schaback, R., Error estimates and condition numbers for radial basis function
interpolation, Adwvances in Computational Mathematics, Vol. 3, pp. 251-264,

1995

[19] Friedman, J.H., Greedy Function Approximation: A Gradient Boosting Ma-
chine, Annals of Statistics, To Appear

[20] Kernighan, B.W., Lin, S., An Efficient Heuristic Procedure for Partitioning
Graphs Bell Systems Technical Journal, Vol. 49, pp. 291-307, 1970

[21] Casanova, H., Dongarra, J., NetSolve: A Network-enabled Server for Solving
Computational Science Problems The International Journal of Supercomputer
Applications and High Performance Computing,, Vol. 11(3) pp. 212-223, 1997

[22] Foster, I., Kesselman, C., (Eds), The Grid: Blueprint for a New Computing
Infrastructure: Morgan Kaufmann, 1999.

[23] Bottou L. and Vapnik V., Local learning algorithms, Neural Computation, Vol.
4(6), pp. 888-900, 1992.

[24] Chan, P.K,, Stolfo, S.J., Learning Arbiter and Combiner Trees from Parti-
tioned Data for Scaling Machine Learning, Proceedings of the First Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 39-44 : AAAT
Press, 1995

