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ABSTRACT 

In this contribution, the validity of a number of key quench factor analysis (QFA) assumptions is 

discussed. It is shown that the incorporation of a square-root dependency of yield strength on 

precipitate volume fraction provides a sounder physical basis for quench factor modelling. Peak-

aged strength/hardness prediction accuracies are not affected, but C-curve positions are. It is also 

demonstrated that transformation kinetics are described more correctly by a modified Starink-

Zahra equation than by a Johnson-Mehl-Avrami-Kolmogorov type equation, yielding better 

prediction accuracies when a physically realistic Avrami exponent of 1.5 or greater is used. 

Finally, a regular solution model is introduced to quantify the influence of the solute solubility 

temperature dependency on the minimum strength. These improvements are all implemented 

within the framework of classical QFA. 

 

1. INTRODUCTION 

 

Quench factor analysis (QFA) was first developed by Evancho and Staley [1] in the early 1970s 

to predict the effect of continuous cooling quench rate on the yield strength and corrosion 

resistance of wrought aluminium alloys. A theoretical justification was proposed by Staley [2] in 

1987, and an improved quench factor model, which includes the capability to make fracture 

toughness predictions, was published in 1993 [3]. 

 

Since its development, QFA has been applied to a wide range of wrought aluminium alloys to 

predict properties and/or optimise industrial quenching procedures [4-12]. It has also been 

applied to steels [13-14] and aluminium casting alloys [15-16], and is now recognised as an 

important technique for modelling property losses during continuous cooling [17-19]. 
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The key foundational principle of QFA is the use of isothermal transformation kinetics to predict 

transformation behaviour during continuous cooling. By representing a quenching curve as a 

series of consecutive isothermal transformation events and adding together the amount 

transformed during each isothermal step, the effect of temperature on transformation rate can be 

taken into account for virtually any step quenching or continuous cooling thermal path. 

Consequently, the effect of quench rate on properties can be modelled much more accurately than 

if an average quench rate approach is taken [1]. 

 

The use of isothermal data to make non-isothermal transformation predictions dates back to 

Scheil [20] and Avrami [21], who proposed that this is only possible for a very limited number of 

additive reactions. Cahn [22] later showed that transformations which nucleate heterogeneously 

(as is typically observed during quenching of aluminium alloys) tend to obey the rule of 

additivity, suggesting that a wide range of reactions are additive. Since then, a broad range of 

non-isothermal transformations have been successfully modelled under the assumption that the 

reactions are additive [23-30], despite the fact that the precise conditions for additivity are still 

disputed [31-35]. 

 

Although the success of QFA suggests that transformations occurring during quenching are 

largely additive, there is still a lack of conclusive evidence regarding the additivity or non-

additivity of such reactions. Consequently, it must be remembered that this continues to be a 

major assumption at the heart of QFA. Because of the complex and controversial nature of the 

subject, however, a detailed discussion of additivity is beyond the scope of this paper. Instead, the 

purpose of this paper is to draw attention to some of the other assumptions made in QFA, to 

discuss their limitations and to suggest improvements. These improvements are designed to be 

used within the existing framework of classical QFA. The suggested QFA improvements are 

tested by comparing predictions with published data on the strength and hardness of quench 

sensitive 6xxx and 7xxx alloys. 

 

2. CLASSICAL QUENCH FACTOR ANALYSIS 

 

2.1  Theoretical Background 

 

The equation for the C-curve, or time-temperature-property (TTP) curve, that is used in all 

versions of QFA is 
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where Ct = critical time required to precipitate a constant amount of non-hardening 

precipitates during isothermal annealing (the locus of which is the C-curve 

corresponding to that fraction transformed), 

  k1  =  ln(fraction untransformed), 

  k2  =   constant related to the reciprocal of the number of nucleation sites, 

  k3  =   constant related to the energy required to form a nucleus, 

  k4  =   constant related to the solvus temperature, 

  k5 =   constant related to the activation energy for diffusion, 

  R  =   gas constant = 8.3143 JK-1mol-1, and 

 T     =  temperature. 

 

Eq. 1 was derived [2] by taking the reciprocal of the simplified classical nucleation rate equation, 
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and, by ignoring elastic coherency strains around nucleated particles, assuming that 
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where hetN&  =  nucleation rate, 

  oN   =  pre-exponential term related to the number of nucleation sites, 

  *
hetGΔ  =  activation energy for heterogeneous nucleation, 

  dQ   =  activation energy for diffusion, 

  sK   =  constant related to the free energy change of nucleus formation, 

  sT   =  solvus temperature, and 

  TTs −  =  degree of undercooling. 

Based on the C-curve and a continuous cooling quench curve, the quench factor is defined by 
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where Q  =  quench factor, 

  dt   =  time increment from the quench curve, 
  ot   =  time at start of quench, and 
  ft   =  time at end of quench. 

 

By assuming that the transformation kinetics can be described by a Johnson-Mehl-Avrami-

Kolmogorov (JMAK) equation where the Avrami exponent, n, equals 1, and assuming that the 

strength (or hardness) after peak ageing varies linearly with the amount of solute available for the 

precipitation of the hardening phase, classical quench factor models predict the variation of 

strength with quench rate using the following equation: 
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where σ  =  strength attained after peak ageing (T6 condition), 

 σmax  =  maximum T6 strength (attained after an infinitely fast quench), 

  σmin  =  minimum T6 strength (a constant, or temperature-dependent), 
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  σx  =  nominal strength represented by the C-curve, and 

  Q  =  quench factor. 

Some authors have assumed σmin to be negligible and have therefore simplified Eq. 5 to: 
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σ
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2.2  Assumptions, Limitations and Inconsistencies 

 

Classical QFA, as outlined in Section 2.1, contains a range of assumptions, some of which are 

inconsistent with recent experimental and theoretical findings. In particular, the following points 

are highlighted: 
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A.  Strength varies linearly with solute concentration 

The theories of yield strength development based on the blocking of dislocation movement by 

obstacles indicate that the strengthening contributions due to both shearable and non-shearable 

precipitates are proportional to the square root of the precipitate volume fraction, regardless of 

whether Friedel or Kocks statistics are used [36-39]. This theoretical finding has been confirmed 

experimentally and incorporated into successful models on strengthening in a wide range of 

alloys [40-45]. Classical quench factor analysis, however, contradicts this often-used theoretical 

result by assuming that the strength varies linearly with the amount of solute available for 

precipitation hardening. 

 

B.  Transformation kinetics are described by a special case of the JMAK equation where n=1 

When Evancho and Staley [1] analysed 7075-T6 and 2024-T4 interrupted quenching data from 

Fink and Willey [46] and McAlevy [47], they obtained linear correlations with a slope of 1 on 

logarithmic plots of -log(σ/σmax) vs isothermal hold time. Ever since then it has been assumed 

that the Avrami exponent (n) equals 1 and can therefore be omitted from Eqs. 5 and 6, regardless 

of what material the QFA is being applied to. However, the diffusion-controlled nucleation and 

growth theories indicate that n < 1.5 is not possible for reactions that involve growth through 

diffusion in 3 dimensions (e.g. precipitates nucleating and growing within grains) [48-50]. Hence 

the use of n = 1 in classical QFA contradicts the notion that quench sensitivity is mostly related 

to the formation of non-hardening precipitates within grains during quenching. Although Staley 

[2] acknowledged that n can vary with nucleation rate and precipitate morphology, no steps were 

taken to at least include it as a variable in Eqs. 5 and 6. 

 

In addition, Starink [50] has clearly demonstrated that the JMAK equation itself often does not 

describe diffusion-controlled precipitation reactions adequately. This highlights another 

shortcoming in Eqs. 5-6:  besides assuming that n = 1, these equations also assume that 

impingement of diffusion fields (i.e. soft impingement) can be described by the JMAK equation, 

which is valid for hard impingement but has not been proven for soft impingement [50-51]. 

While the JMAK equation may be valid for relatively rapid quenches yielding limited amounts of 

widely spaced precipitates, there could be numerous instances (e.g. during slow cooling, long 

isothermal holds or for a high number density of nucleation sites) where impingement becomes 

important.  

 

C. The minimum strength in the Avrami equation 
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By neglecting the minimum strength, σmin, it is evident that Eq. 6 loses accuracy as σ/σmax 

decreases. From this point of view, predictions at lower values of σ/σmax are improved by 

introducing σmin as a constant related to the alloy strength in the absence of hardening 

precipitates. For most commercial alloys and heat treatments, the assumption that σmin is a 

constant is adequate because only predictions at high values of σ/σmax are generally of interest. If 

the quench factor model is calibrated with continuous cooling data rather than interrupted 

quenching data, then σmin is readily defined as a constant equivalent to the T6 strength attained 

after an infinitely slow quench. 

 

However, in an analysis of interrupted quenching data from an Al-Cu-Li alloy, Staley et al [3] 

found that σmin varies strongly with the isothermal hold temperature. Consequently, they 

improved their quench factor model by introducing an empirically determined parabolic variation 

of σmin with temperature, where σmin was defined as the minimum T6 strength resulting from 

infinite holding at a given isothermal hold temperature. The parabolic variation of σmin with 

temperature was due to two main effects: (a) the sloping solvus and (b) the precipitation of a 

hardening phase at the lower isothermal hold temperatures. This, however, was an alloy-specific 

empirical approximation; a more rigorous way of dealing with the uncertainties surrounding σmin 

would be to include a regular solution model to describe the effects of the sloping solvus. 

 

D. Other considerations 

It is well established that the decomposition kinetics during ageing (at least in the early stages) 

are strongly influenced by the concentration of quenched-in vacancies and vacancy-related 

defects, which in turn are determined mainly by the quench temperature, quench rate and alloy 

chemistry [52-59]. In general, ageing kinetics are increased by faster quenching rates or by 

quenching from higher temperatures. Consequently, it must be considered in QFA that a given 

ageing treatment designed to produce peak strength after water quenching will, in general, 

correspond to an underaged condition after a very slow air cool, leading to possible errors in QFA 

predictions. However, since most quench factor models are only concerned with a relatively 

small range of industrially relevant quenching rates at high values of σ/σmax, and the ageing 

curves of many commercial alloys have relatively broad peaks, it may be justifiable to disregard 

variations in ageing kinetics in some cases (see e.g. [60]). For Al-Mg-Si alloys there is some 

evidence that ageing kinetics are accelerated by increased quench rates and higher quench 

temperatures [61-63]. A method for taking account of such altered precipitation kinetics is 

presented elsewhere [11]. 
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As an additional point, it is suggested that the convenient practice of substituting hardness for 

strength values in QFA and related equations (see, e.g. [10, 12, 41, 64]), be approached with 

caution. Although good linear correlations between hardness and strength may be obtained if the 

same ageing treatment is applied after different continuous cooling quench rates, differences in 

strain hardening generally lead to poor correlations if different ageing treatments are used [65-

66]. Uncertainties may be overcome by including an existing hardness-strength conversion 

method based on differences in strain hardening [66-67] in the quench factor model. 

 

Finally, caution must be exercised when calibrating models (like the current one) that contain a 

large number of adjustable parameters. The large number of adjustable parameters requires a 

large and well-distributed dataset if each parameter is to be determined accurately and 

unambiguously. For example, if a quench factor model is calibrated only with continuous cooling 

data from 10 different quench rates, several combinations of k2 to k5, can give equally good fits. 

Additional work (not presented here) has shown that different sets of k2 to k5 values yielding 

similar fits to data can result in dramatically different C-curves. This problem can be partly 

overcome by using a larger and more well-distributed dataset. Including some interrupted 

quenching data with the continuous cooling data can be a particularly effective way of 

pinpointing C-curve positions. Further inaccuracies may result from the fact that QFA models are 

based on single C-curves, whereas in many commercial alloys more than one phase may actually 

precipitate during quenching. While multiple C-curves could be predicted to address this issue, 

such work may complicate the analysis unnecessarily. 

 

One general conclusion from Section 2.2 is that C-curves derived from a QFA of 

strength/hardness data can deviate significantly from time-temperature-transformation (TTT) 

curves determined more directly from data based on the extent of reactions. Having identified 

several of the assumptions and inconsistencies in classical QFA, it will be demonstrated in the 

next section that the model can be improved and that some of the inconsistencies can be resolved. 

As the considerations under point D have been addressed to some extent elsewhere [11, 66-67], 

this contribution will focus only on points A, B and C. 
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3. IMPROVEMENTS IN QUENCH FACTOR ANALYSIS 

 

In this section, suggestions for improving classical QFA theory and practice are made and the 

implications are considered by examining predictions made using data on the influence of 

interrupted quenching and continuous cooling on T6 strength and hardness. The nature and 

source of the data are described in Table 1. 

 

3.1  Variation of strength with solute concentration 

 

As outlined under point A in Section 2.2, the assumption that the strength after peak ageing varies 

linearly with solute concentration after quenching is inconsistent with strengthening theory. To 

resolve this inconsistency, Eq. 5 should therefore be re-written as: 

 

( )[ ] 21
1

minmax

min Qkexp=
−

−
σσ

σσ
     (7) 

 

To illustrate the different predictions made by Eqs. 5 and 7, these equations, together with Eqs. 1 

and 4, were fitted to Fink and Willey’s data [46] by iteratively adjusting constants k2 to k5, σmax 

and σmin to minimise the root mean squared error (RMSE)1. It is noted from Fig. 1(a) that the 

difference between the two results can be as large as 80-90 MPa at intermediate quench factors. 

However, optimisation of the models by iterative variation of the parameters in Eq. 1 results in 

both Eq. 5 and Eq. 7 predicting similar strengths i.e. different TTP curves are predicted to 

compensate for the differences between the two equations (Fig 1(b)). While the TTP curve 

predicted by Eq. 5 (with its nose at about 0.1 sec) is similar to that determined from the same data 

by Evancho and Staley [1] using classical QFA, it is expected that the TTP curve predicted by 

Eq. 7 (with its nose at about 0.05 sec) is more true to reality. 

 

Although Staley [2] has shown mathematically that Eq. 6 remains valid regardless of whether the 

square root of the volume fraction is introduced into the equation or not, this is not strictly true. 

While models can be optimised to predict the same strengths using either Eq. 6 or Eq. 7 (with 

σmin = 0), the predictions will, as in Fig. 1, result in different TTP curves. Despite similar 

                                                 
1 The RMSE values throughout this paper are calculated from data used to calibrate each model, making them 
dependent on the model complexity/structure. Since different tables/figures result from different model structures, 
comparisons of RMSE values can only be made within tables/figures and not between tables/figures. 
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prediction accuracies, it is expected that Eq. 7 will always result in more physically correct TTP 

curves than Eqs. 5 or 6.  

 

In conclusion, therefore, an apparent inconsistency in QFA can be resolved by replacing Eq. 5 

with Eq. 7 whilst retaining the overall structure of classical QFA. Prediction accuracies of T6 

strength/hardness are not affected, but resulting C-curves are believed to be more realistically 

positioned. 

 

3.2  Avrami exponents and impingement 

 

In Section 2.2, point B, it was indicated that the choice of Avrami exponent in classical QFA may 

be questionable and that possible deviation from classical JMAK-type impingement needs to be 

considered. To address these issues, the applicability of the following equation, derived by 

Starink and Zahra [69-72], will now be investigated: 
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where α is the fraction transformed, k is a temperature-dependent constant, n is the Avrami 

exponent, and ηi is the impingement factor. In the limit of ηi approaching infinity, Eq. 8 is 

identical to the JMAK equation. When ηi is small (ηi < 10), however, the fraction transformed 

will differ significantly from that predicted by the JMAK equation, especially in the latter stages 

of a transformation, where soft impingement may be expected to occur. By adapting Eq. 8 to 

QFA, Eq. 7 can be replaced by 
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where the symbols have their usual meanings. A similar equation was used successfully in a 

recent integrated hardening model of extruded 6082 [11]. 

 

The validity of Eq. 9 was tested on interrupted quenching data from Fink and Willey [46] and 

Bratland [64, 68]. For n-values of 1.0, 1.5 and 2.5, the data were fitted to Eqs. 1, 4 and 9 by 

iteratively adjusting constants k2 to k5, σmax, σmin and ηi to minimise the RMSE. For n = 1, the 
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lowest RMSE value was always obtained at impingement factors approaching infinity. This 

corresponds to JMAK kinetics and was approximated by n = 1 and ηi = 104. Results in Table 2 

and Fig. 2 demonstrate that for the 7075 data, n = 1.5 gives the best results (i.e. the lowest RMSE 

value). The results in Table 3 and Fig. 3, on the other hand, indicate that for the 6082 data, there 

is negligible difference in prediction accuracies between the different n-values. This difference 

between the 7075 and 6082 predictions indicates that there may be small but distinct differences 

in the way these alloys respond to quenching and ageing. However, in general, it may be 

concluded from these results that the use of n ≥ 1.5 is likely to result in similar or better 

prediction accuracies than the use of n < 1.5. 

 

Besides improved prediction accuracies, the use of n ≥ 1.5 also ascribes direct physical meaning 

to the predictions. For example, n = 1.5 would describe particles of any shape growing through 

diffusion in 3 dimensions (e.g. within a grain) under conditions where negligible nucleation 

occurs beyond the initial stages of transformation (i.e. site saturation) [48-50]. Similarly, n = 2.5 

would describe particles of any shape growing through diffusion in 3 dimensions 

under continuous nucleation conditions [48-50]. Both these scenarios would be compatible with 

the 6082 predictions in Table 3, as Bratland [64, 68] has demonstrated by transmission electron 

microscopy that non-hardening precipitates nucleate and grow at dispersoids within grains during 

quenching. On the other hand, n = 1 is not possible for precipitates growing through diffusion in 

3 dimensions (e.g. within a grain) or in 1 dimension (e.g. on a grain boundary), irrespective of 

whether continuous nucleation or site saturation occurs [48-50]. 

 

It should also be pointed out that the range of impingement factors for cases where n ≥ 1.5 in 

Tables 2 and 3 is consistent with experimentally determined values ranging from ηi = 0.5 to ηi = 

2.2 for a number of different reactions [69-72]. Although n and/or ηi may vary during industrial 

quenching operations due to different types/densities of nucleation sites, different 

types/shapes/spacings of precipitates and changing nucleation rates, the consideration of these 

poorly understood relationships would unnecessarily complicate the model. Instead, it may be 

better to make allowance for such influences by determining average values of n and/or ηi by 

iteration. In any case, however, it is expected that C-curves predicted with n < 1.5 may be 

inaccurate. 

 

In conclusion, the inclusion of a recently derived expression for precipitation kinetics 

incorporating an adjustable impingement factor has resulted in an improvement to classical QFA. 
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Improved accuracies in QFA predictions are generally obtained when Avrami exponents of 

greater than or equal to 1.5 are used in combination with impingement factors that are consistent 

with recent experimental and theoretical work. 

 

 

3.3  The minimum strength 

 

A rigorous way of dealing with the variation of the minimum strength with the temperature-

dependent solute solubility (point C in Section 2.2) is to include a regular solution model to 

describe the sloping solvus. For ternary alloys, the solvus for a precipitate of fixed stoichiometry, 

AlmAxBy, can be conveniently described by [64, 68]: 
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It further holds that: 
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where [ ]B,AC   =  equilibrium matrix concentrations (wt%) of elements A and B, 

 o
B,AC   =  nominal concentrations (wt%) of elements A and B in the alloy, 

  x, y, m =  integers describing the stoichiometry of the compound yxm BAAl , 

  BA M,M  =  atomic weights of elements A and B, 

  oSΔ  =  standard entropy of reaction, 

  oHΔ  =  standard enthalpy of reaction, 

  Ω   =  contribution of interface curvature to reaction enthalpy (a function of 

the precipitate-matrix interfacial energy and the precipitate molar 
volume and radius; typically 0=Ω  for equilibrium precipitates), 

  R  =  gas constant, and 

  T  =  solvus temperature. 

 

The composition achieved after complete precipitation at a fixed temperature, T, is described by 

the combination of Eqs. 10 and 11. Analytical solutions for this combination can be obtained for 

specific x:y ratios (e.g. for Mg2Si, the use of x = 2y gives an analytically solvable cubic equation). 

For a 6082 alloy, stable (β) and metastable (β’’) solvus boundaries calculated in this manner 

(assuming Mg2Si stoichiometry for both precipitates) are illustrated schematically in Fig. 4. 
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Superimposed on this schematic phase diagram are 2 hypothetical interrupted quenches 

performed so that quench 1 results in an as-quenched Mg concentration of CAQ1 and quench 2 

results in an as-quenched Mg concentration of CAQ2 (in solid solution). The minimum Mg 

concentration, Cmin(T), at the isothermal hold temperature, TIH, is then given by the equilibrium 

concentration of Mg in solid solution at that temperature. If the strength is measured and 

modelled in the peak-aged (T6) condition and if β’’ is the hardening precipitate in the T6 

condition [73], then it is evident from Fig. 4 that quench 1 results in Mg precipitating to form the 
hardening β’’ phase (the amount of Mg precipitating equals AT1AQ CC − , where ATC  is the 

amount of Mg in solution at the ageing temperature, TA), whereas quench 2 causes insufficient 

Mg to be available for precipitation hardening. Using concepts from the Shercliff and Ashby [41] 

age hardening model and the well established finding that the precipitation strengthening 

contribution varies with the square root of the precipitate volume fraction (see Sections 2.2A and 

3.1), it follows that if 
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where iσ    =  intrinsic yield strength of the base metal, 

  ssσΔ  =  solid solution hardening contribution to the T6 yield strength, 
  pptσΔ  =  precipitation hardening contribution to the T6 yield strength, 

  )Tmin(C  =  equilibrium solute concentration at the isothermal hold temperature, 

  )Tmax(C  =  equilibrium solute concentration at the solution treatment temperature 

(just prior to quenching), and 
  21 c,c  =  constants. 

The yield strength, σ, may then be predicted using 
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Eqs. 10-16 are readily applied to interrupted quenching data by calculating )Tmin(σ  for each 

isothermal hold temperature and )Tmax(σ  for the solution treatment temperature. For continuous 

cooling data, however, )Tmin(σ  and )Tmax(σ  need to be calculated separately for each of the 

incremental isothermal steps describing the continuous cooling curve. While )Tmin(σ  is a function 

of the equilibrium concentration at each incremental isothermal hold temperature (Eqs. 13-14), 
)Tmax(σ  is a function of solution treatment temperature for the first incremental isothermal step 

only. For each subsequent incremental isothermal step, )Tmax(σ  is a function of the amount 

transformed during the previous incremental isothermal step (i.e. )Tmax(σ  is set to equal the 

predicted value of σ from the previous isothermal step). The final cumulative value of σ is then 

taken as the predicted T6 yield strength for that particular continuous quench. 

 

Alternatively, the analysis can be improved by eliminating the minimum strength altogether and 

replacing strengths in Eq. 16 with concentrations: 
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where AQC  is the solute concentration remaining in solution immediately after the quench, and all 

the other symbols have their usual meanings. Predicted AQC  values may then be converted into 

T6 yield strengths using: 

 
( ) 21

ATAQ2
32

AT1i6T CCcCc −++= σσ           (for ATAQ CC > )  (18) 

 
32

AQ1i6T Cc+= σσ    (for ATAQ CC ≤ ) (19) 

 

The use of Eqs. 17-19 makes the model more transparent and eliminates uncertainties regarding 
changes in solid solution strengthening. In Eqs. 7, 9 and 16, for example, minσ  or )Tmin(σ  are 

assumed to contain a constant amount of solid solution strengthening, which could lead to 

additional errors if there are differences in the amount of solid solution strengthening from 

quench to quench. 

 

The validity of Eqs. 10-19 was tested on the combined interrupted quenching and continuous 

cooling data from Bratland [68]. For n-values of 1.5, the data were fitted to Eqs. 1, 4 and 10-16 as 

well as to Eqs. 1, 4, 10-11 and 17-19 by iteratively adjusting constants k2 to k5, ηi, HVi, c1, c2 and 
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Ω  to minimise the RMSE (using ΔHº = 95.9 kJmol-1 and ΔSº = 112 JK-1mol-1 after Bratland [64, 

68]). The results, including a scenario where Cmin = 0 for comparison, are presented in Table 4 

and in Figs. 5-6. 

 

Table 1:  Nature and source of aluminium alloy data used to test improvements in QFA. 

Alloy and 

Condition 

Data 

Type 

Number of 

Datalines 

Range of Quenching 

Conditions 

Property Source 

7075 – T6 Interrupted 

quenching 

40 427ºC, 316ºC, 260ºC and 

204ºC (1 to 480 sec 

holding times) 

Yield 

Strength 

Fink and 

Willey [46] 

6082 – T6 

A1 (580) 

Interrupted 

quenching 

64 400ºC, 375ºC, 350ºC, 

325ºC, 300ºC, 275ºC (10 

to 600 sec holding times) 

Vickers 

Hardness 

Bratland 

[68] 

6082 – T6 

A1 (580) 

Continuous 

cooling 

10 10 linear quench rates 

from 1 to 35 ºC/sec 

Vickers 

Hardness 

Bratland 

[68] 

 

Table 2:  Results from fitting interrupted quenching data from Fink and Willey [46] to Eq. 9. 

Scenario n ηi RMSE 

A 1.0 104 8.1 MPa 

B 1.5 4.1 5.4 MPa 

C 2.5 0.9 8.6 MPa 

 

Table 3:  Results from fitting interrupted quenching data from Bratland [68] to Eq. 9. 

Scenario n ηi RMSE 

A 1.0 104 4.1 HV 

B 1.5 3.0 4.0 HV 

C 2.5 0.9 4.0 HV 

 

Table 4:  Results from fitting interrupted quenching data from Bratland [68] to Eqs. 16 and 17 for 

n-values of 1.5. 

Scenario Equation ηi RMSE 

A 16 2.8 3.5 HV 

B 16 (Cmin = 0) 2.5 3.9 HV 

C 17 1.4 4.9 HV 
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Fig. 5 illustrates how )Tmin(C  and HVmin(T) vary with temperature. The rapid increase in HVmin(T) 

above about 395ºC (Tt) is due to the precipitation hardening contribution that occurs when 
AT)Tmin( CC > . At lower temperatures, the variation of HVmin(T) with temperature is relatively 

small since it is only influenced by changes in solid solution hardening. In this case, there is only 

a negligibly small slope in HVmin(T) at temperatures below Tt, suggesting that the use of Eq. 16 

(instead of Eq. 17) is justified. For alloys with significant amounts of solid solution hardening, 

however, Eq. 17 is expected to give better results than Eq. 16. 

 

The results in Table 4 indicate that for predictions made using Eq. 16 with n = 1.5 (n = 1.5 was 

found to give the best RMSE values), there is little difference in prediction accuracies between 
using 0C )Tmin( =  and allowing )Tmin(C  to vary with temperature. Predicted TTP curves for 

scenarios A and B are also very similar (Fig. 6). It may be inferred from this analysis that the 
benefits of allowing )Tmin(C  to vary with temperature are only realised in cases where (a) 

AT)Tmin( CC >  and (b) the TTP curve is positioned such that a significant amount of 

transformation will occur at temperatures above the transition temperature, Tt. In any case, 

however, the incorporation of Eqs. 10-19 makes the quench factor model more transparent and 

more widely applicable, making it possible, for example, for variations in ageing temperature, 

solution treatment temperature and/or composition to be included in the model. 

 

 

4. CONCLUSIONS 

 

The theoretical basis for QFA has been examined. The main assumptions have been highlighted 

and discussed in relation to their limitations. Suggestions for improvement have been made 

within the framework of classical QFA. In particular, it is concluded that: 

• In comparison with classical QFA, the incorporation of a square-root dependency of yield 

strength on volume fraction of precipitates gives similar prediction accuracies of T6 

strength/hardness but more realistically positioned C-curves. 

• Transformation kinetics are described more correctly by a modified Starink-Zahra equation 

(Eq. 9, 16 or 17) than by a JMAK-type equation (Eq. 5, 6 or 7). Prediction accuracies are 

improved and gains in physical consistency are achieved when an Avrami exponent of 1.5 or 

greater is used. 
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• The minimum strength ambiguity can be eliminated by including a regular solution model to 

describe the variation of Cmin or σmin with temperature. 

Some of the improvements identified will affect the positions of the C-curves derived from QFA, 

but it is expected that these improvements enable true transformation behaviour during quenching 

to be described more accurately.  

 

 

5. ACKNOWLEDGEMENTS 

 

The authors would like to thank The Luxfer Group for financial support. 

 

 

6. REFERENCES 

 

1. J. W. Evancho, J. T. Staley, Metall. Trans. 5 (1974) 43. 

2. J. T. Staley, Mater. Sci. Tech. 3 (1987) 923. 

3. J. T. Staley, R. D. Doherty, A. P. Jaworski, Metall. Trans. 24A (1993) 2417. 

4. C. E Bates, G. E. Totten, Heat Treat. Metals, 15 (1988) 89. 

5. J.-S. Kim, R. C. Hoff, D. R. Gaskell, Proceedings of the International Symposium on 

Materials Processing in the Computer Age, The Minerals, Metals and Materials Society, 

New Orleans, 1991, p. 203. 

6. J. T. Staley, Proceedings of the Third International Conference on Aluminium Alloys, The 

Norwegian Institute of Technology, Trondheim, 1992, p. 107. 

7. C. E. Bates, AFS Trans. 101 (1993) 1045. 

8. J. T. Staley, Proceedings of the International Conference on Computer-Assisted Materials 

Design and Process Simulation, ISIJ, Tokyo, 1993, p. 237. 

9. N. Järvstråt, S. Tjøtta, Metall. Mater. Trans. 27B (1996) 501. 

10. D. D. Hall, I. Mudawar, R. E. Morgan, S. L. Ehlers, J. Mater. Eng. Perform. 6 (1997) 77. 

11. P. A. Rometsch, M. J. Starink, P. J. Gregson, Proceedings of the James T. Staley Honorary 

Symposium on Aluminum Alloys, Indianapolis, Indiana, November 5-8, 2001, ASM 

International, Materials Park, in press. 

12. J. D. Bernardin, I. Mudawar, Int. J. Heat Mass Transfer, 38 (1995) 863. 

13. C. E. Bates, J. Heat Treating, 6 (1988) 27. 



 17

14. C. E. Bates, G. E. Totten, Proceedings of the First International Conference on Quenching 

and Control of Distortion, ASM International, Materials Park, 1992, p. 33. 

15. P. A. Rometsch, G. B. Schaffer, J-Y. Yao, M. J. Couper, Proceedings of the Sixth 

International Conference on Aluminium Alloys, The Japan Institute of Light Metals, Tokyo, 

1998, p. 727. 

16. P. A. Rometsch, G. B. Schaffer, Int. J. Cast Metals Res. 12 (2000) 431. 

17. C. E. Bates, G. E. Totten, R. L. Brennan, Quenching of steel, in: J. R. Davis (Ed.), ASM 

Metals Handbook – Heat Treating, vol. 4, ASM International, Materials Park, Ohio, 1991, 

pp. 67-120. 

18. C. R. Brooks, Heat treating of aluminum alloys, in: J. R. Davis (Ed.), ASM Metals 

Handbook – Heat Treating, vol. 4, ASM International, Materials Park, Ohio, 1991, pp. 841-

879. 

19. H. Y. Hunsicker, Aluminum – properties and physical metallurgy, in: J.E. Hatch (Ed.), ASM, 

Metals Park, Ohio, 1984, pp. 134-199. 

20. E. Scheil, Arch. Eisenhüttenwes. 8 (1934) 565. 

21. M. Avrami, J. Chem. Phys. 8 (1940) 212. 

22. J. W. Cahn, Acta Metall. 4 (1956) 572. 

23. M. B. Kuban, R. Jayaraman, E. B. Hawbolt, J. K. Brimacombe, Metall. Trans. 17A (1986) 

1493. 

24. C. Verdi, A. Visintin, Acta Metall. 35 (1987) 2711. 

25. S. H. Park, S. Yue, J. J. Jonas, Metall. Trans. 23A (1992) 1641. 

26. T. T. Pham, E. B. Hawbolt, J. K. Brimacombe, Metall. Mater. Trans. 26A (1995) 1987. 

27. T. T. Pham, E. B. Hawbolt, J. K. Brimacombe, Metall. Mater. Trans. 26A (1995) 1993. 

28. B. I. Bjørneklett, Ø. Grong, O. R. Myhr, A. O. Kluken, Acta Mater. 46 (1998) 6257. 

29. Ø. Grong, O. R. Myhr, Acta Mater. 48 (2000) 445. 

30. O. R. Myhr, Ø. Grong, Acta Mater. 48 (2000) 1605. 

31. I. A. Wierszyłłowski, Metall. Trans. 22A (1991) 993. 

32. M. Lusk, H.-J. Jou, Metall. Mater. Trans. 28A (1997) 287. 

33. Y. T. Zhu, T. C. Lowe, R. J. Asaro, J. Appl. Phys. 82 (1997) 1129. 

34. M. T. Todinov, Metall. Mater. Trans. 29B (1998) 269. 

35. Y. T. T. Zhu, T. C. Lowe, Metall. Mater. Trans. 31B (2000) 675. 

36. J. W. Martin, Precipitation Hardening, Pergamon Press, Oxford, 1968, pp. 59-76. 

37. A. J. Ardell, Metall. Trans. 16A (1985) 2131. 

38. E. Nembach, G. Neite, Prog. Mater. Sci. 29 (1985) 177. 



 18

39. A. Deschamps, Y. Bréchet, Acta Mater. 47 (1999) 293. 

40. J. C. Huang, A. J. Ardell, Acta Metall. 36 (1988) 2995. 

41. H. R. Shercliff, M. F. Ashby, Acta Metall. Mater. 38 (1990) 1789. 

42. P. Gomiero, Y. Bréchet, F. Louchet, A. Tourabi, B. Wack, Acta Metall. Mater. 40 (1992) 

857. 

43. B. C. Lee, J. K. Park, Acta Mater. 46 (1998) 4181. 

44. M. J. Starink, P. Wang, I. Sinclair, P. J. Gregson, Acta Mater. 47 (1999) 3855. 

45. O. R. Myhr, Ø. Grong, S. J. Andersen, Acta Mater. 49 (2001) 65. 

46. W. L. Fink, L. A. Willey, Trans. AIME, 175 (1948) 414. 

47. R. B. McAlevy, Master of Science Thesis, Pennsylvania State University, 1965. 

48. J. W. Christian, in: R.W. Cahn (Ed.), Physical Metallurgy, North-Holland Publishing 

Company, Amsterdam, 1965, pp. 443-539. 

49. F. L. Cumbrera, F. Sánchez-Bajo, Thermochim. Acta, 266 (1995) 315. 

50. M. J. Starink, J. Mater. Sci. 32 (1997) 4061. 

51. E.-S. Lee, Y. G. Kim, Acta Metall. Mater. 38 (1990) 1669. 

52. W. DeSorbo, H. N. Treaftis, D. Turnbull, Acta Metall. 6 (1958) 401. 

53. C. Panseri, T. Federighi, Acta Metall. 8 (1960) 217. 

54. D. Turnbull, H. S. Rosenbaum, H. N. Treaftis, Acta Metall. 8 (1960) 277. 

55. C. Panseri, T. Federighi, Acta Metall. 11 (1963) 575. 

56. T. Federighi, in: R. M. J. Cotterill, M. Doyama, J. J. Jackson, M. Meshii (Eds.), Lattice 

Defects in Quenched Metals, Academic Press, New York, 1965, pp. 217-268. 

57. E. Ozawa, H. Kimura, Acta Metall. 18 (1970) 995. 

58. H. Kimura, R. Maddin, Quench Hardening in Metals, North-Holland Publishing Company, 

Amsterdam, 1971, pp. 20-62. 

59. R. Wolter, H.-G. Fabian, P. Czurratis, R. Kroggel, Cryst. Res. Tech. 25 (1990) 177. 

60. A. Deschamps, Y. Bréchet, Mater. Sci. Eng. A251 (1998) 200. 

61. M. F. Komarova, N. N. Buynov, L. I. Kaganovich, Phys. Metals Metallog. 36 (1974) 72. 

62. Y. Song, T. N. Baker, Mater. Sci. Tech. 10 (1994) 406. 

63. Y. Song, T. N. Baker, Mater. Sci. Eng. A201 (1995) 251. 

64. D. H. Bratland, Ø. Grong, H. Shercliff, O. R. Myhr, S. Tjøtta, Acta Mater. 45 (1997) 1. 

65. P. A. Rometsch, PhD Thesis, Department of Mining, Minerals and Materials Engineering, 

The University of Queensland, 2000. 

66. P. A. Rometsch, G. B. Schaffer, Mater. Sci. Eng. A, in press. 

67. J. R. Cahoon, W. H. Broughton, A. R. Kutzak, Metall. Trans. 2 (1971) 1979. 



 19

68. D. H. Bratland, PhD Thesis, Department of Metallurgy, The Norwegian Institute of 

Technology, 1995. 

69. M. J. Starink, A.-M. Zahra, Thermochim. Acta, 292 (1997) 159. 

70. M. J. Starink, A.-M. Zahra, Phil. Mag. A, 77 (1998) 187. 

71. M. J. Starink, C. Y. Zahra, A.-M. Zahra, J. Thermal Anal. 51 (1998) 933. 

72. M. J. Starink, J. Mater. Sci. 36 (2001) 4433. 

73. A. K. Gupta, D. J. Lloyd, S. A. Court, Mater. Sci. Eng. A301 (2001) 140. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20

100

150

200

250

300

350

400

450

500

550

1 10 100 1000 10000
Quench Factor

Yi
el

d 
St

re
ng

th
 (M

Pa
)

Eq. 5 Eq. 7

 

200

250

300

350

400

450

0.01 0.1 1 10
Time (sec)

Te
m

pe
ra

tu
re

 (d
eg

 C
)

Eq. 5 Eq. 7

(b)
 

 

Figure 1:  (a) Yield strength vs quench factor curves corresponding to (b) 99.5% of maximum 

yield strength TTP curves, determined by fitting isothermal 7075 data from Fink and Willey [46] 

to Eqs. 5 and 7. The RMSE for both Eq. 5 and Eq. 7 is 8.1 MPa. 
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Figure 2:  (a) Yield strength vs quench factor curves corresponding to (b) 99.5% of maximum 

yield strength TTP curves, determined by fitting isothermal 7075 data from Fink and Willey [46] 

to Eq. 9 for scenarios where n = 1 (A), n = 1.5 (B) and n = 2.5 (C). Further details are given in 

Table 2. 
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Figure 3:  (a) Hardness vs quench factor curves corresponding to (b) 90% of maximum hardness 

TTP curves, determined by fitting isothermal 6082 data from Bratland [68] to Eq. 9 for scenarios 

where n = 1 (A), n = 1.5 (B) and n = 2.5 (C). Scenario D is given by Eq. 5 (classical QFA). 

Further details are given in Table 3. 
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Figure 4:  Schematic phase diagram for a 6082 aluminium alloy, showing β and β'' solvii and Mg 

concentrations in solution at the solution treatment temperature (Cmax(T)), the ageing temperature 

(CAT) and in the as-quenched conditions after quenches 1 and 2 (CAQ1 and CAQ2, respectively). TIH 

is the isothermal hold temperature and TA is the ageing temperature. 
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Figure 5:  Predicted variation of Cmin(T) and HVmin(T) with temperature, based on combined 

isothermal and continuous cooling 6082 data from Bratland [68]. The transition temperature, Tt, 

corresponds to Cmin(T) = CAT. 
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Figure 6:  90% of maximum hardness TTP curves determined by fitting combined isothermal and 

continuous cooling 6082 data from Bratland [68] to Eqs. 16 and 17. Details of scenarios A, B and 

C are given in Table 4. 

 


