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Abstract

In this paper, quasi-static analyses of polymers, based on the boundary element
method, are reviewed and implemented. Linear viscoelasticity, for which the
correspondence principle applies, is assumed. Thus, one of the adopted BEM
approaches solves the problem in the Laplace transform domain and relies on
numerical inversion for the determination of the time-dependent response. The
second solves directly in the time domain using fundamental solutions specific to
the solid geometry and the viscoelastic model used. A third, recently proposed
method also produces directly the time-dependent response but relies on the
Laplace transforms of the fundamental solutions. Computer codes based on the
different algorithms are developed and applied to benchmark problems in order
to assess their relative accuracy and efficiency. Particular attention is given to the
effectiveness of the methods to predict fracture parameters in cracked plate
problems. The versatility, computational efficiency and accuracy of the different
schemes are compared. In general, good agreement is achieved between various
BEM predictions and other published numerical results. Schemes for possible
extension of the method to account for more complex viscoelastic models are
briefly discussed.

1 Introduction

The increasing demand of high quality materials in engineering design has led to
an increasing use of polymers due to their high strength to weight ratio and to
their corrosion resistance. Although polymers offer these advantages over
traditional metallic materials, their characteristic time-dependent behaviour may
lead to excessive creep and/or failure. Thus, the study of long-term polymer
component behaviour under various loading conditions is becoming increasingly
important.
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Polymers are materials behaving according to a constitutive model known as
viscoelasticity, which accounts for an interdependence of stress and strain with
time. In order to study the response of viscoelastic solids to arbitrary, external,
time-dependent loads, a numerical analysis is normally needed. Whereas the
finite element method (FEM) remains the most popular numerical method today
for solid material analysis, more recently, the boundary element method (BEM)
has been developed as an effective alternative numerical technique. Although
many studies on the application of BEM to static or dynamic viscoelastic
problems can be found in the literature, a systematic assessment of the relative
merits or limitations of the various approaches previously employed is
apparently missing. -

There are two main approaches to linear viscoelastic analysis by the BEM.
The first method [1] uses the correspondence principle to generate an associated
elastic problem, which is solved in the Laplace transformed domain and the
result is inverted numerically so that the solution in the time domain is obtained.
In this approach, numerical inversion is an additional task requiring attention in
its implementation. The second, direct method [2] involves the formulation of a
boundary integral equation in the time domain which is solved by a step-by-step
time integration scheme. The need for the appropriate time-domain viscoelastic
fundamental solution limits the power of this approach. A new method, recently
proposed [3], seems to combine the advantages of the previous two, solving the
problem in the time domain but relying on the fundamental solutions in the
Laplace domain. This mixed method does not appear to be fully developed,
neither its efficiency and accuracy have been thoroughly tested.

In this paper, quasi-static BEM analyses of polymers are briefly reviewed and
developed computer codes based on different algorithms are applied to
benchmark problems in order to assess their relative accuracy and efficiency.
Particular attention is given to the analysis of cracked plates imposing additional
computational requirements for the representation of stress singularities and the
evaluation of stress intensity factor and the J-integral.

The Laplace transformed domain scheme has the advantage of relying on the
fundamental solutions of the corresponding elasticity problems, it is therefore
conceptually easy to extend its applicability to various types of solid analyses
and a wide range of material models. It is shown that this, more versatile
approach is computationally more demanding and its accuracy depends on the
range and distribution of transform parameter values adopted.

The direct time domain formulation, using fundamental solutions specific to
the solid geometry and the adopted viscoelastic model, requires the identification
or determination of the appropriate fundamental solution but it proves
computationally more efficient. Published time-dependent fundamental solutions
for various cases are reviewed and the validity of some of them is theoretically
and numerically confirmed. The potential of the mixed method to generate quasi-
static solutions is explored with a preliminary investigation into the parameters
controlling convergence. In general, good agreement is achieved between
various BEM predictions and other published numerical results. Schemes for
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possible extension of the methods to account for more complex viscoelastic
models are briefly discussed.

2 Background theory

The linear viscoelastic model adopted in most BEM formulations is, in
accordance with Boltzmann's principle, of hereditary integral type

Oey ()
or

t
0= Gyl 5u0) + [Gypg (t=7) -2 de M
0
where oy, ; are the stress and small strain tensors, respectively, and G(f) the
relaxation moduli in the general case of an anisotropic medium. Adopting the
notation for the Stieltjes convolution of two functions [4], eqn (1) can be more
concisely written
9 =G * dey @
In the case of an isotropic medium characterised by the moduli K(¢)} and /A1),
corresponding to the bulk and shear moduli in elasticity, the constitutive relations
(2) can be transformed to
5= 2441) * dey), Ok = 3K(D) * degu(D) 3)
where sj; and ejj are, respectively, the deviatoric stress and strain tensors. A
commonly used rheological model is the generalised standard linear solid (SLS)
[5]. It can be formed by connecting in series a Hookean spring and N Kelvin
models, or by connecting in parallel a spring and ¥ Maxwell models. The
resulting viscoelastic equations are of differential operator type, the solution of
which under relaxation or creep conditions leads to the determination of the
time-dependent relaxation or creep moduli, respectively. v
Introducing the small strain-displacement relations into the constitutive eqns
(1) and substituting the latter into the stress equations of equilibrium yields a
system of integro-differential equations
! : Ou ki (T)
Gk 0) + [Gya (=) =2 dr+ £, =0 @
0
where £; is the body force per unit volume. The problem is complemented by the
boundary conditions
w()= (O on i o= ;) on I )
where n is the outward unit normal vector to the boundary /"= /7 + 75.
Given two viscoelastic states (u;, p;, f) and (u7, pf, fi*), satisfying the
boundary value problem described above, the reciprocity relation [4]

jp,. *du’dl + Ifi xduld= [u, »dp;dr+ J'u,. *dfdQ )
r Q r Q
can be derived. The alternative form

JP:’ *u;dl+ Jf: *u;dQ= jui *prdlr+ jui * f;dQ (M
r Q r Q
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involving Riemann convolutions can be shown to be also valid.
Taking the Laplace transform of both sides of constitutive eqns (1) gives

& = GyuEu= G Fu (8)
By transforming also the equations of equilibrium (4), the strain-displacement
relations, as well as the boundary conditions (5), a complete correspondence is
established between the elastic and the linear viscoelastic problem. The latter can
thus be solved in the transformed domain for any range of values of the
transform variable s by the same methods as those applicable to the
corresponding elasticity problem. In the end, it is, of course, necessary to obtain
the solution in real time through inversion of the transform so obtained. This, so
called, correspondence principle has been applied directly to generate BEM
solutions of the transformed physical problem but also to obtain the fundamental
solutions for particular viscoelastic models, which are then used in time domain
BEM formulations.

3 BEM formulations
3.1 Laplace transformed domain

If the correspondence principle is applied to the quasi-static problem, a BEM
solution can be developed from the boundary integral equation in the Laplace
transformed domain

6 = [[E O - TP+ [fujae ©)
r 2

where x; = 0.59; in the case of a smooth boundary, and (u‘,-j, p',j) is the elastic
fundamental solution for displacements and tractions in which however the
elastic constants have been replaced by the corresponding functions in the
transformed space according to eqn (8). The calculated Laplace transforms of
boundary or domain variables can be numerically inverted back into time-
dependent functions using any of the available numerical inversion methods.

3.2 Time domain

The boundary integral equation can be obtained directly from the reciprocal
theorem of linear viscoelasticity (6). This is achieved by choosing the system
(ur,p?,/i*) to coincide with the fundamental solution o.f the viscoelastic
problem, that is, the displacements u (x—E,f) and tractions p #(x—E,1) generated
by unit body forces in each co-ordinate direction applied at x=§ and time
¢ = 0. These unit forces, represented by
fi = 6;6(x-DH(®)

where &; is the Kronecker delta, &x-&) the delta function and H(t) the
Heaviside step function, are substituted into eqn (6), which then provides, for a
point & on the boundary of £2:
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Kyut) = j(p,. * du —u; * dpy)dl + jf, *du} dQ (10)
r n
or, taking into account a property of the Stieltjes convolution [4],
) = [y *dp, = py + duw)A + [ £, #dujaQ (1)
r n

The inverse Laplace transform of the elastic fundamental solution in the
transformed space is required in the above time domain formulation. Such an
operation has been carried out in several special cases. Carini and De Donato [5]
obtained the fundamental solutions for a general Kelvin or Maxwell SLS model.

3.3 Mixed formulation

A particular mixed scheme [3] was based on the boundary integral equation

) = [y oy = Pl 2w+ [£i0upaQ (12)
r o}

which can be obtained from the reciprocity relation (7) if the fundamental
solution u‘,,(x—E,,t), p‘,«,(x—E,,t), due to the body force

1t = 6G& x-)&X0) (13)
is used as the second viscoelastic state. If time # is divided into N equal intervals
At so that ¢ = NAt, the convolution integrations in eqn (12) may be performed by
the convolution quadrature method proposed by Lubich [6, 7]. This quadrature
formula uses integration weights depending only the Laplace transformed
functions u',y- and p‘,,-. Thus a time stepping procedure can be formulated directly
in the time domain, although only the Laplace transforms of the fundamental
solutions are used, that is, a viscoelastic boundary element formulation in the
time domain is achieved without requiring the knowledge of the time dependent
fundamental solutions.

4 Boundary element modelling

Constant boundary elements were used in the present numerical implementations
of BEM formulations in both the transformed and time domain. Time domain
formulations based on integral equations (10), (11) or (12) require modelling also
in the time dimension. If the boundary surface " is discretised in £ elements 7,
the following representation can be adopted,

u (x,1)=25(0), py(x,0)= p5(®) (14)
where %) and p°(¢) are the time dependent nodal values of displacement and
traction, respectively.

Boundary integral equation (11) was discretised assuming that the boundary
variables u,(x,t) and pyx,f) are linear with respect to time ¢ within a small time
step A, = t, — t; and the viscoelastic fundamental solutions have the general
form:
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M N
py =al(uE)+ ) aP(xBe-ant, uf =bj(xE) D bl (xE)e-put (15)
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The discretised form of eqn (11) was obtained as

N K N
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where, for simplicity, the body force is assumed to be zero and
A"0©) = [ apxou0dr, 81 @ = [ ox&p”0ar

1) = u(x,te) pO©)=Pi(%0)

It is evident from eqn (16) that the boundary displacements and tractions can
been determined at any time ¢ = fx if they are known at all previous times. At
¢ =0 all unknown boundary values can be calculated when the boundary integral
equation (10) governs only the initial elastic response due to any non-zero initial
values of the boundary or loading conditions. At any following time ¢ = t,, the
respective unknown boundary values can be obtained from eqn (16) with the
current boundary conditions and the additional terms depending only on the
solution at the previous steps. A step-wise procedure is thus established which
advances the solution until the final time step is reached. After the unknown
boundary values of the linear viscoelastic problem are determined, the
displacements and stresses at internal points can be calculated using expressions
obtained from eqn (10) with &;; = ;.

The numerical algorithm for the mixed method is obtained by inserting the
boundary models (14) in eqn (12) with the body forces neglected. This gives

E

rud =3 [ s0* PO - [PpEN U OU ()
e=1 re re

Applying the quadrature formula proposed by Lubich to the integral equation

(17) results in the following boundary element time-stepping formulation for n =

0,1,...,N,

n E n

> @k (R (RO BRI ACOREE By an)  (18)
k=0 0

e=] k=
with the spatial integration incorporated into the weights a, which are
approximately given by
L-1
- 1 — z] -
on@p b=t S| [EFoeelEhar |z
LI:O I, At
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where function g represents u',-j(t) or p‘,«,(t), Hz) is an analytic function, which
should satisfy certain stability criteria as postulated by Lubich and z, = ge'®#1), 5
being the radius of a circle within the domain of analyticity of u;and p; . Thus
an algebraic system of equations for the discrete nodal values pilkat) and
u;(kAt)is formed with coefficients depending on the Laplace transforms of the
fundamental solutions u; (x,8,0) and pj (x,8,0).

5 Numerical results

In order to test the reliability of the developed computer programs, several
problems were solved, including an infinite plane with a circular hole, as well as
a thick walled cylinder with and without an outside elastic ring. The applied load
was constant internal pressure in all cases. All these analyses gave numerical .
results in very good agreement with the corresponding exact solutions.

Numerical results from the methods described in the previous sections are
presented for the problem of the thick wall cylinder reinforced by an elastic ring
as shown in Fig. 1. Initially there is no traction or gap between the cylinder and
the ring; then the inner boundary L; of the cylinder is subject to a uniform
pressure p = 100 MPa applied as a step load at time ¢ = 0. The numerical values
used are = 6 mm, & =20 mm and # = 1 mm. The adopted viscoelastic material
model is that assumed by previous investigators for the same problem [1, 8],
namely, elastic behaviour in bulk deformation with X = 128 GPa and standard
linear solid in shear according to

(1) =12 + 36 (GPa) (19)

where the constants can be easy related to the properties of either a Kelvin or a
Maxwell model. The material values chosen are those used by Sim and Kwak
[8]. The Young’s modulus of the elastic ring is 207 GPa, and the Poisson’s ratio
is 0.25.

Figure 1: Thick wall cylinder reinforced by an elastic ring.

Taking advantage of symmetry, only one quarter of the cylinder was
analysed. The boundary meshes for both methods were the same consisting of
boundary elements of more or less uniform length. BEM analyses were
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performed under both plane strain and plane stress conditions. In the transform
method, Schapery's inversion method [1] was used with 30 discrete values for
the transform parameter s, satisfying s~ = 25, r=1,2,...,29 with 5, = 0.001. In
the direct method, the time step was kept constant at Az, = 0.5 s.

Numerical time histories of the circumferential stress at various radial
locations were found in excellent agreement with the exact solution predictions.
Table 1 shows the average error for two boundary element meshes, where Npg is
the number of BEs. It can be seen that, for the chosen modelling parameters, the
direct method is generally more accurate than the transform method. It is worth
noting that refining the mesh around comers contributed significantly to the
improvement of the accuracy of the results achieved by increasing the number of
boundary elements. Table 1 is based on results obtained under plane strain
conditions but very similar trends were observed in the results from the plane
stress case.

Table 1: Numerical error in circumferential stress calculations
¥

Radial Npe = 88 NBE =275
co-ordinate | Transformed Time Transformed Time
r (mm) domain domain domain domain
6.5 2.46 % 3.05% 0.26 % 0.16 %
13.5 0.11 % —0.06 % 0.06 % 0.01 %
19.5 0.94 % 0.58 % —0.24 % —0.23 %

New BEM results were obtained in the case of a long strip with a central
crack under uniform lateral extension. Accounting for symmetry with respect to
both x and y axes, only one quarter of the plate was analysed as shown in Fig. 2.
This was a model of a specimen used for studying crack propagation in a
viscoelastic solid [9]. The material was assumed to have a constant Poisson's
ratio v= 0.4 and a standard linear solid behaviour in shear

(1) = 1.057 + 154.3¢™ (MPa) (20)
This material model does not represent accurately the time dependence of the
material tested Mueller and Knauss [9] but does give the quoted extreme values
of relaxation modulus at 7= 0 and ¢ = . A lateral extension », = 0.2 mm was
uniformly applied along the edge y = 17.46 mm. The BEM model consisted of
534 BEs the majority of which were located in the neighbourhood of the crack

tip.

Z( 127 mm —————-%E
) A
Crack Tip 17.46 mm
X v >
<30 mm->

Figure 2: Centrally cracked long strip
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Both time and transformed domain results for the time-dependent stress
concentration factor K{f) are plotted in Fig. 3. These were obtained using

KAt = 1in}) 0y (r, )27 2D

where r = x — 30 (mm) is the distance from the crack tip. The limit on the right
hand side of eqn (21) was identified by linear regression since, theoretically, the
corresponding expression is represented by a straight line. Although the
agreement between the two BEM solutions at ¢ = 0 is very good, considerable
deviation is observed at later times. This can be attributed to the insufficient
number of Laplace transform solutions. The extreme BEM time domain results
K{0) = 20.89 Nmm™" and K{s=) = 0.1420 Nmm™"* can be compared with the
theoretical predictions for an infinite strip which are 22.72 and 0.1545,
respectively [9]. The error of about 8% could be partly numerical but mainly due
to the difference between infinite and finite dimensions.

25 7 :
~ [ S N
s 201 -
é 15 - ——— Time domain -
=z .
< 10 . =
2 SN Transformed domain
0 . | | |

00 05 10 15 20 25
' Time (s)

Figure 3: Stress intensity factor for the strip problem.

6 Discussion and conclusions

The transformed domain method is certainly more versatile since it can be
adapted to any type of viscoelastic model but requires the transform inversion
and the associated choice of range and distribution of the transform parameter,
both having a strong influence on the accuracy of the final results. Increasing the
number of Laplace transformed solutions imposes a heavy computational penalty
on the final output. With regard to viscoelastic fracture mechanics problems, this
method allows the determination of the stress intensity factor through a path-
independent integral in the transformed domain [10], similar to that defined in
linear elastic fracture mechanics.

The time domain method yields directly time histories of results, it has
therefore proved to be more efficient than the transformed domain method.
Another advantage of the time domain method is that it can handle more easily
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inputs of complex time histories of loading conditions. However, the time-
dependent fundamental solution for the adopted viscoelastic model must be
available. Although such solutions exist for a wide range of cases [5], their
numerical implementation remains a challenge due to the complexity of their
general form. This disadvantage may be overcome by exploring further the
mixed method proposed by Schanz [3]. Before extending its application to quasi-
static problems, ranges of parameters guaranteeing convergence should be firmly
established. Preliminary assessments of its potential have shown that its accuracy
~ and stability depend on an appropriate choice of the approximation parameters
At, p and L, as described in Section 4. Numerical results will hopefully show
that this method can be accepted as a versatile alternative to the other two in
most cases.

There is considerable scope for increasing the potential of the method to
solve complex viscoelastic problems. This can be achieved by enhancing its
range of material modelling and extending its applicability to complex, industry-
oriented problems. One such objective is the analysis of non-linear viscoelastic
behaviour, which can be more important especially for long-term, high stress
concentration situations. This can be achieved through an extension of the time
domain approach, which however needs to become more versatile by
incorporating the widest range possible of available time-dependent fundamental
solutions.
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