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A parallel nodal-based evolutionary structural optimization

algorithm

Y.-M. Chen, A. Bhaskar and A. Keane

Abstract This paper is concerned with the minimum
weight design of structures using Finite Element Analy-
sis (FEA). A new evolutionary structural optimization
(ESO) algorithm is presented. This method departs from
previous studies of ESO in that it exploits the movements
of the nodes in an unstructured finite element mesh in
an appropriate way. An attractive feature of the scheme
presented is that it carries out topology optimization in
the interior of the domain concurrently with shape opti-
mization of the exterior of the domain. Circular cavities
are inserted into the interior of the domain from which
the internal topology is then revealed by migration of
the cavity edge nodes. Due to the complexity of the re-
sulting cavity geometry the FE mesh tends to be refined
internally. A scheme for maintaining a roughly uniform
density unstructured finite element mesh throughout the
optimization in a two-dimensional domain is presented.
The designs produced posses smooth internal and exter-
nal boundaries. The method uses iterative finite element
analysis and re-meshing to correct for any element distor-
tion. The benchmark “Michell Arch” problem is used to
“demonstrate the approach.

Key words evolutionary, node, optimization, topology,
shape
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Nomenclature

Alnitial '~ area of initial design domain.

Adomain area of design domain in each cycle of optimiza-
tion.
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EDinitel nreseribed initial minimum edge distance be-
tween two adjacent boundary design variables.

E Dy variable minimum edge distance between two ad-
jacent boundary design variables.

Cvinitial prescribed initial minimum edge distance be-
tween two adjacent cavity design variables:

CVimin variable minimum edge distance between two ad-
jacent cavity design variables.

R initial radius of circular cavities.

C' a user defined constant.

X; X co-ordinate of node 7.

Y; Y co-ordinate of node 1.

X4 unit movement in X direction.

Yy unit movement in Y direction.

zstep stress search step size in the X direction.

ystep stress search step size in the ¥ direction.

o; nodal stress of design variable .

-

Tinitial_max iBitial maximum nodal von Mises stress.

0x _rer the magnitude of the highest stress in the X direc-
tion relative to that at the design variable position.

oy _ret the magnitude of the highest stress in the Y direc-
tion relative to that at the design variable position.

OR optimum ratio.

SOR increment in the optimum ratio.

Px _vef the relative distance between the highest stress in
the X direction relative to that at the design variable
position. This term is expressed as a multiple of zstep.

Py _rer the relative distance between the highest stressin
the Y direction relative to that at the design variable
position. This term is expressed as a multiple of ystep.

2
Introduction

Shape and topology optimization of structures is a rapidly
developing fleld (e.g., see Rozvany et al. 1995) that has
significant industrial importance. Within this field most
real-world analysis is carried out using Finite Elem-




ent Analysis (FEA). In finite element formulations, the
structural geometry is defined using nodes, elements and
material properties such as element thickness, elastic
modulus, etc. The objective of structural optimization is
usually to produce low mass designs while at the same
time ensuring smoothness of the structure boundaries.
In early work on finite element based shape optimiza-
tion, the coordinates of the boundary nodes were treated
as design variables (see Hsu 1994) because it was be-
lieved that boundary smoothness could be achieved by
slowly migrating the edge nodes. However, this idea was
discarded because experience showed that it was very dif-
ficult to maintain a smooth boundary shape using the
approach (see Hsu 1994). The more recent approach has
been to treat the element or material properties as design
variables.

This more intuitive evolutionary method pioneered by
Xie and Steven (1997) is based on removing inefficient
(low stress level) material from an initially oversized do-
main. The removal process can be carried out by either
varying the elastic modulus as a function of the stresses
or by deleting regions occupied by elements with low
stresses. By repeating this step and “removing” small
amounts of material at each stage, the topology for the
structure gradually evolves. There have been a number of
modifications and refinements proposed for this basic ap-
proach, (e.g., see Querin et al. 1998, 2000; Kim et al. 2000;
Yang et al. 1999). However, the weakness of classical ESO
methods (adding and/or removing elements) in generat-
ing optimum topologies was recently pointed out by Zhou
and Rozvany (2001). They demonstrated through a sim-
ple test example that the classical ESO rejection criteria
for compliance or stress design can produce an extremely
non-optimal topology.

In contrast the soft kill method developed by Walther
and Matteck (1993) is based on varying the elastic mod-
ulus by using a simple linear relationship with some
scalar measure of the stresses evaluated within each elem-
ent. The hard kill method developed by Hinton and
Sienz (1995) used a step function to adjust the elastic
modulus.

The homogenization method originally developed by
Bendsge and Kikuchi (1988) is based on defining the ini-
tial design domain with an infinite number of microscale
cells with voids. The porosity of this medium is then opti-
mized. The optimization problem is defined in such a way
that the solid/void ratio in the base cells are the design
variables. If a portion of the medium consists only of
voids, it is assumed that no material lies in that area. On
the other hand, if there is no porosity in some portion,
solid structure must be located there. Bendsge (1989) also
proposed varicus ways of predicting the optimum top-
ology of a mechanical element by introducing an artificial
density. He concluded that the most satisfactory method
is to employ a porous material approach, using simple
square voids at the microscale.

A similarity in all the above methods is that the ini-
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tial design domain is filled with elements of equal size

and shape. Analysis of this mesh then provides a meas-
ure of the stress distribution within the domain. Based on
the relative stress levels within the structure, the shape
and topology of the structure are then modified. However,
by using identical elements in the optimization, the final
shape of the converged geometry is limited by the shape
of the elements used. As aresult, a “stair-case” effect may
emerge. Therefore, post-processing is often required to
smooth the final geometry.

It has also been demonstrated that a solid isotropic
microstructure with penalty (SIMP) method for inter-
mediate densities combined with new optimality criteria
methods (see Rozvany and Zhou 1991) results in very
satisfactory solid-empty type topologies in generalized
shape optimization. In addition, the solution obtained
with a SIMP model is much closer to theoretical solutions
than those obtained using square cells (see Rozvany et al.
1992).

Nowadays commercial packages such as ANSYS are
commonly used for geometric and finite element mod-
elling. Most commercial modelling packages have one
or more auto-meshing tools. The meshes generated by
these tools usually consist of irregular sized elements
with different orientations. Increasingly, layout and top-
ology optimization methods are being incorporated into
these commercial packages. The idea of using optimiza-
tion strategies with irregularly meshed domains and
evolutionary methods is, therefore, a natural next step
in the use of FE methods in design. Methods appli-
cable to this way of working are the subject of this
paper.

In this paper a parallel nodal-based evolutionary
structural optimization (PNESO) method that is capable
of optimizing unstructured meshes by treating bound-
ary node positions as the design variables is proposed.
In this method, boundary smoothness is achieved by mi-
grating boundary nodes from their initial lightly loaded
positions to higher stress locations. Both the magnitude
and direction of each nodal movement are calculated by
the proposed “NESO equation”. This algorithm carries
out three optimization operations in an iterative fash-
ion. The first of these moves the external edges of the
structure and is similar in logic to the “nibbling” ESO,
of Xie and Steven (1997). The second operation of the
algorithm is an internal cavity formation stage, where
small circular holes are made in the structure. The fi-
nal operation is the movement of the boundaries of these
holes. The overall structure of the method is illustrated
in Fig. 1.

An outline of the basic NESO method is presented
in Sect. 2. Details of the PNESO algorithm are then
presented in Sect. 3. Mesh control considerations are dis-
cussed in Sect. 4. Cavity formation considerations are dis-
cussed in Sect. 5. Section 6 discusses the computational
costs involved in the implementation of the PNESO
algorithm. Section 7 presents an application in which
the PNESO algorithm is validated using the benchmark
“Michell Arch” problem. '
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Fig. 1 PNESO Process

3
The Nodal-Based Evolutionary Structural

Optimization (NESQO) method

The NESO method is based on relocating structural
boundary nodes (design variables) repeatedly from ini-
tially lightly loaded (low stress) locations towards higher
stress locations. The procedure outlined has been imple-
mented on a two dimensional domain. The extension to
three dimensions is, in principle, straightforward. The
details, however, may be significantly different and will
not be discussed here. The basic procedure starts with a
‘blank’ which is usually taken as a rectangular domain.
The domain is meshed using unstructured triangular
elements by the Matlab mesh generator and the loads
and geometric boundary conditions are applied. Finite
element analysis is invoked at this stage and the stress
components found. Here, the scalar measure of the aver-
age of the stress components has been taken as the von
Mises stress at a point.

The strategy of node migration is based on the ex-
pectation that moving nodes at the boundary towards
regions of high stress should lead to improvement of the
design in the sense of reducing weight from the relatively
unstressed regions. By shifting the boundary nodes to-
wards higher values of stress, we are likely to retain ma-
terial in the regions of high stress, whereas material from
the low stress regions is likely to be “trimmed off” by
shifting nodes away from these areas. Note that the con-
ventional ESO approach (see Xie and Steven 1997) trims
off material from the regions of relatively low stress too:
the difference is that the present method does not use
elimination of an element from the domain and, therefore,
affords the possibility of controlling the process of shed-
ding material from the design more smoothly. We require

two pieces of information to move a node in a plane: we
need to decide the magnitude of movement and the direc-
tion of movement.

The present strategy finds a reference point within
the domain in both the horizontal and the vertical direc-
tions relative to each boundary node. The reference co-
ordinates are taken as the locations of the highest stress
within the domain with respect to each boundary node,
i.e. with respect to the same horizontal and vertical co-
ordinate. Each boundary node is then migrated towards
these reference points in the X or Y-direction.

To accurately determine these reference points, a small
step size is required when searching through the design
domain. For each search point, the corresponding stress
is calculated by interpolation from the FE results. This
is equivalent to exploring the domain stress distribu-
tion using a fine rectangular grid but with the advantage
of not needing to use this fine grid when deriving the
FE solution. This saves significant computational cost
in the cycles of finite element analysis. Consider a two-
dimensional continuous domain as shown in Fig. 2. The
steps required for finding the reference points are listed
below.

Reference
Pointin ¥
Direction

sep T T L

xstep

Fig. 2 Reference node search strategy

Starting from the position of each design variable (i.e.
a boundary node), search the domain with a given step
size in the two orthogonal directions; relative to the pos-
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Table 1 INustration of the X directional stress and position counter (NaN (not a number) indicates the search has crossed the

domain boundary)

Stress value (MPa) NaN 96 100" 73 66 35 © Nal
X direction position -2 -1 0 1 2 3 4
counter (Px) [xstep]  [xstep]  [xstep] [xstep] [xstep]  [xstep]  [xstep]

*Current design variable (o; = 100)

ition of the current boundary node. Searches in both the
positive and negative senses in the two directions are car-
ried out (i.e. left as well as right; and up as well as down)
until a domain boundary is crossed.

During search, the nodal stresses are interpolated
from the values given by the unstructured grid FE analy-
sis. The nodal stresses are recorded in two vectors for the
X-direction and the Y-direction searches, respectively.
The highest values and their corresponding locations are
stored.

The number of ‘zstep’s and ‘ystep’s in the X and Y-
direction vectors, respectively, required to reach the ref-
erence point from the current design variable position are
noted. For example, based on Fig. 2, considering both the
X and Y- direction vectors, respectively; these are zero
and ten, see Tables 1 and 2.

From Table 1it is clear that the location of the current
design variable itself has the highest stress value among
all the locations in the horizontal direction of the do-
main. In this situation, the current design variable itself
becomes the reference point in the horizontal direction

Table 2 Ilustration of the Y-directional stress and position'

counter (NaN (not a number) indicates that the search has
crossed the domain boundary)

Y-direction
position counter (Py)

Stress
value (MPa)

NaN 16 [ystep]
194 15 [ystep]
202 14 [ystep]
204 13 [ystep]
212 12 [ystep]
222 11 [ystep]
2257 10 [ystep]
202 9 [ystep]
196 & [ystep]
188 7 lystep]
182 6 lystep]
180 5 [vstep]
168 3 [ystep]
157 2 [ystep] )
148 1k
1007 0f

NaN =11
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i
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0
t
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N

* Reference node in the Y-direction (oy
**Current design variable {o; = 100 MPa)

(0x_ver =100 and Px_rer = 0). As will be seen later, this
node will not move in the horizontal direction (zstep = 0).

From Table 2, the vertical direction vector reveals that
the reference point has a magnitude of oy _rer = 225 MPa
and is situated 10 steps in the Y-direction from the pos-
ition of the boundary node in question, i.e. Py er = 10.
Therefore, the current design variable needs to be moved
in the vertical direction. Moreover, the positive sign of the
term Py o indicates that the movement should be in the
positive Y-direction, i.e. upwards. So far, the method of
finding the directions for each nodal movement has been
illustrated. The magnitude of nodal movement is calcu-
lated by the use of the “NESO” equation as explained
below. Consider the X and Y co-ordinates of each bound-
ary node; nodes are shifted according to the following
equation:

1 T _
{59n<PX‘ref) <1 IPx fi) [1 Cox J } Aa,

_re A _T€e
Y=Y+

1 i
sgn{Py - - Y :
q ( y_ef)( iPY_ref!) li Uy_ref}} d ( )

First term: the previous value of the co-ordinate.

Second term: the signum function is used to decide
the direction of each nodal movement with respect to the
local nodal position.

Third term: provides a relative magnitude for each
nodal movement. The unit distance counted as Px e OF
Py .t is an integer value that indicates the relative dis-
tance between the boundary node and the reference point
location. In addition, if the position of the reference point
is located far away from the current design variable pos-
ition (|Px_ref| > 1 and/or [Py _rer| > 1), then this node
should move a relatively large distance towards the refer-
ence position, i.e. movement increases as distance to the
reference point increases.

Fourth term: this term smooths out the nodal move-
ment. This term together with term B provides a more
realistic estimation on the magnitude of the nodal move-
ment. In other words, if the reference nodal stress is high
(0x_res > 03 and/or oy _rer > 03) compared with the
nodal stress of the boundary point in question, then the
boundary node needs to make a larger step towards the




reference point, i.e. movement increases as stress differ-
ence increases.

Final term: prescribed unit nodal movement distance.
This term is directly related to the computational cost.
A smaller value results in a smoother boundary but the
number of steps required to achieve it is larger and hence
the process becomes more expensive.

At first sight, the behaviour of the second term in
the NESO equation for the movements may appear to be
contrary to intuition. It appears that nodal movements
for a boundary node are affected most when the refer-
ence point is far off whereas this is smallest when the
reference point is close to the boundary node in question.
Note that the minimum value of this term is zero when
Px e =1 (the minimum possible value; recall that this
variable takes only integer values) and it is unity when
Py o tends to infinity. In addition, when Px_rer = 0
(the design variable position itself is a reference point),
the second term in the NESO equation tends to infinity
but the third term becomes zero. In other words, when
Px e is zero, the total contribution to the nodal dis-
placement is zero and hence the node does not move at
all. A careful examination of the node-movement pro-
cess reveals that the desired nodal movements should
indeed have the trend indicated above (with respect to
distance from the reference point), i.e. the algorithm pre-
sented here is based on the idea that points with low
stress values should be pushed towards regions of high
stress.

Note that this strategy of edge movement is capable of
modifying the external shape only, it cannot alter the top-
ology in any way. To allow for changes in topology, cavi-
ties are introduced based on local values of stress within
the domain.

The NESO equation is a mathematical representation
of the fact that the boundary nodes move relative to each
other. When the nodes are far from the reference points,
the nodal movement is relatively large compared with the
nodes that are close to the reference points. Conversely,
the nodal movement becomes smaller when the nodes are
near the reference points. This has the advantage of en-
suring a slow geometrical convergence into the optimum
shape in high stress regions.

4
The Parallel Nodal-Based Evolutionary Structural
Optimization (PNESO) algorithm

Here, we propose a parallel version of the nodal-based

evolutionary structural optimization algorithm (PNESO),

in which cavities can be inserted into the domain before
the external edge movement is completed. Additionally,
the cavity nodes are then treated as design variables and
participate in the node-shifting process. In other words,
both the external (shape) and internal (topology) design
domains are optimized at the same time.
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In the normal evolutionary optimization method, the
process of optimization continues until some prescribed
objective function goal is satisfied, e.g. optimization con-
tinues until the lowest stress is, say, 80 % of the original
peak stress. However, it often requires experience to set
this goal successfully. Here, the optimization is allowed to
continue indefinitely and is terminated by the user when
no further substantial changes in the design are observed.

Consequently, the product of the initial maximum
nodal von Mises stress (aﬁ{itial_ mas) and a large integer
constant C is taken as the goal [see (2)]. The objective
function for each stage of the evolutionary optimization
is then set as the product of a control parameter termed
the optimum ratio OR (which is gradually adjusted) and
ColN a1 max tO encourage a gradual convergence from
the initial geometry, i.e.

objective function = OR Coliiar max - (2)

During the evolutionary process, a low value of OR
(say 0.01) is used to begin with. When the minimum value
of the von Mises stress at all the boundary nodes reaches
this value, the optimum ratio is incremented by a fixed
amount, l

OR = OR+50R. (3)

With this increased optimum ratio, the node-shifting
and cavity formation operations take place again until the
minimum over all the boundary nodes reaches this new
value.

The constant used here plays two roles in the opti-
mization: (a) it allows the user to terminate the opti-
mization process when appropriate; (b) it speeds up the
optimization process. The explanation for why the in-
troduction of C reduces the optimization time is as fol-
lows: in each stage of optimization the objective func-
tion is defined as the product of the optimum ratio OR
and C’U{Xma]_ max- Only those design variables with nodal
stress less than this product are shifted, however, after
each edge movement the stresses throughout the whole
design domain tend to increase. Without the introduc-
tion of the constant, edge movement tends to spend most
of the time moving a few low stress boundary nodes be-
fore moving to the next step of the optimization. This
increases the computational cost because FE analysis is
required after each movement. By introducing the con-
stant, more boundary nodes are shifted per iteration and
this means that the design domain shrinks faster. Thus,
the evolutionary optimization process requires less itera-
tions to produce a given shape and topology for the design
domain.

For each cycle of edge movement, only those bound-
ary nodes that have stresses lower than OR Coliiial max
are relocated to new positions. All boundary nodes with
nodal stresses greater than this are not moved. Similarly
for cavities, only those cavity design variables with nodal
stress lower than the minimum nodal stress of the bound-
ary design variables are shifted, i.e. the minimum bound-
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ary nodal stress is also the driving force for cavity shape
design. This cycle of optimization continues until the up-
per limit of OR is reached. A flow chart that illustrates
the inter-connectivity of the various processes involved in
PNESO is shown in Fig. 3.

Note that when cavities are introduced into the de-
sign domain, the mesh tends to refine around the cavities
because of the complexity of shape. It is, however, im-
portant to ensure an approximately uniform mesh dens-
ity throughout optimization to minimize the computa-
tional cost. The mesh density of the design domain can be
controlled through appropriate selection of both external
boundary design variables and cavity design variables.

5
Mesh control: selection of external boundary design

variables

The Matlab™ partial differential equation (PDE) tool-
box is used to mesh the geometries studied here; each
geometry being defined by a set of edge nodes. When re-
meshing is invoked, the number of edge nodes tends to
increase. As a result, the edge nodes tend to become more
closely packed (leading to a higher mesh density) and
edge movement becomes difficult and expensive. One way
of controlling mesh density is by an appropriate selec-
tion of edge nodes for deletion. This requires prescribing

Creation of an Initial oversize design domainJ

FEA

Yes
Stop ! a————-—{ Upper limit of optimum ratio (OR) reached ? Il

No

[ External edge rnovementjI

I—a;vity nodes with nodal stress less than the minimum boundary nodal stress 'j
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Create cavity
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k.

[OR=OR+0R

l?izA

No Yes

. .. N
Has the minimum nodal stress of structure edges reached OR0jrzi01 maz ©

’)

diagram of PNESO algorithm




a minimum edge distance ED i, (1.e. the minimum spac-
ing between nodes), which is used to control the minimum
distance between two adjacent edge nodes before anode is
deleted. This leads to the design variable criterion

ED > EDmin. (4)

A reference edge node is selected, and the edge dis-
tance ED is calculated between the reference node and
next node in the sequence defining the geometry. If the
edge distance is greater than the prescribed minimum
edge distance ED;, then such a node qualifies to be
treated as a design variable. Additionally, this qualifying
node becomes the reference node for the next adjacent
node in the sequence. Conversely, if the edge distance be-
tween nodes fails to satisfy the design variable criterion,
then this node is deleted. The design variable criterion
is applied to the whole set of edge nodes each time after
re-meshing. As a result, the number of design variables
varies at each re-meshing. However, the mesh density is
kept nearly uniform because the spacing between the edge
nodes (design variables) is properly controlled and it is
from these nodes that the mesh is created.

6

Cavity formation considerations

In the basic NESO algorithm, boundary node migration
is completed before cavity insertion and the basic shape
of the structure remains fixed during cavity development.
With the PNESO algorithm, cavities are introduced into
the domain according to the changing stress distributions
during edge movement. In other words, the location of the
most lightly loaded regions within the domain constantly
varies. An interesting question then arises as to the cor-
rect location of the cavities within the domain and their
possible migration.

In the basic NESO algorithm, cavities are created
when the nodal stresses of the internal domain are less
than the minimum nodal stress of the boundary design
variables. The lowest such stresses are chosen for cav-
ity centers. In the PNESO algorithm, however, the same
strategy cannot be used, due to the constant variation in
stress distribution. Often, as the external boundaries shift
inwards, there are a few adjacent low stress points. More-
over, low stress points also appear near to existing cavities
(see Fig. 4). The areas covered by these low stress points
are generally very small and they usually disappear after
the next few iterations of structure edge and/or cavity
edge movement. Hence, we can state that cavities should
be introduced within the domain only as long as their lo-
" cations are neither near existing cavities or adjacent to
the structure boundary.

Ideally, as many cavities as possible should be placed
inside the design domain because forming cavities reduces

the structural weight. In addition, after cavities are cre-

@& =Lightly loaded region

Fig. 4 Low stress locations near an existing cavity and adja-
cent to the external boundary

ated within the domain, the edge nodes of cavities qualify
for the node-shifting process and this allows freedom to
these nodes to explore the surrounding low stress areas,
i.e. a further saving of structural weight is achieved.

For the external structure boundary, the set of bound-
ary design variables is limited using the design variable
criterion. The selected design variables are adequate for
representing the shrinking behavior of the design domain.
In contrast to the external structural boundary, cavities
exhibits a growing behavior. Therefore, additional cav-
ity nodes are needed to ensure a smooth cavity bound-
ary. Re-meshing the domain generates these additional
nodes. Additionally, the number of cavity design vari-
ables is controlled using a similar design variable criterion
for external nodes. The only difference is that the pre-
scribed minimum spacing between two adjacent cavity
nodes CV min is set less than the prescribed minimum dis-
tance between two adjacent boundary nodes. It should
be pointed out here that selecting more boundary and
edge nodes {decreasing the prescribed minimum bound-
ary EDmin and cavity edge CV i, distances) tends to
produce a better shape, but the required computational
cost increases. Control of computational costs is discussed
next.

7
Computational cost considerations

The prescribed minimum edge distance parameter is di-
rectly linked to the computational cost involved in the
evolutionary optimization. In an evolutionary optimiza-
tion process, iterative finite element (FE) analysis is re-
quired, and within each FE analysis, inverting the stiff-
ness matrix is an expensive step. Therefore, a fine mesh
should only be used when needed. Here, we control the
numbers of elements produced after each re-meshing via
constantly varying the minimum edge distance parame-
ters ED pin and CV . We mentioned earlier that, due
to boundary edge movement, the design domain exhibits
a shrinking behavior. In other words, a portion of mate-
rial has been “trimmed off” after each edge movement.
The boundary smoothness of this smaller design domain
is maintained by increasing the numbers of edge nodes
(i.e. decreasing the value of the minimum edge distance
ED nin). Conversely, we can say that the initially over-
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sized design domain does not need a very fine mesh (i.e.
the minimum edge distance parameter may be assigned
a larger value). Hence we vary the minimum edge dis-
tance parameter as a function of the domain area as
follows:

| init.ialAdomain (?
B n EDmm Ainitial
“*domain

Equation (5) simply takes advantage of the shrink-
ing behavior of the design domain Ay .. < Alitial and
uses the area ratio to calculate the minimum edge dis-
tance value per iteration. As a result, a finer mesh is au-
tomatically used when the area of the domain becomes
smaller (the number of elements approximately doubles
every time the enclosed area halves).

In contrast, the cavities tend to exhibit a growing be-
havior when the cavity design variables explore the low
stress areas inside the domain. Increasing the minimum
cavity edge distance, C'Vyiy,, then results in a poor cav-
ity shape because fewer cavity design variables are used
to shape the cavity. Conversely, decreasing C'Vi, results
in an increase in computational cost. Therefore, a fixed
C'Vinin 1s recommended for use throughout the evolution-
ary optimization.

An alternative arrangement is to link both C'V p;, and
Ed iy to the square root of the domain area ratio. This
has the attraction that topologically similarly shaped do-
mains have similar numbers of elements whatever their
size. Experiments with these control parameters are
continuing.

8
Example: Michell arch

In this section the benchmark “Michell arch” problem is
used to illustrate the working of the PNESO method in-
troduced in this paper. A two-dimensional plane stress
problem is considered. The initial domain is a rectangle
with length 5m and width 2.5 m. The Matlab™ PDE
toolbox is used to mesh the design domain in an unstruc-
tured fashion using triangular elements. A point force of
magnitude of 50 x 10% N is applied at the bottom center;
and the lower left and right corners are rigidly fixed in
both the X- and Y-directions (see Fig. 5).

The goal for this optimization was set to
240 Ui‘?i‘itial_ max’

When internal lightly loaded points were identified dur-
ing edge movement, circular cavities with fixed radius R
of 0.1 m were inserted at these locations.

Each element possesses a thickness of 100 mm, elas-
tic modulus of 21 x 10%° N/m? and Poisson’s ratio = 0.3.
Both the X- and Y-direction unit nodal movements were
set to 0.1m. Re-meshing is carried out over the do-
main every cycle. The initial minimum edge distance
EDi¥el for design variables located on the external
boundaries was set to 0.5m. The cavity design vari-

able selection criterion used a fixed value of OT/"mQ;‘;al of

50x 10°N

Fig. 5 Initial oversize domain

0.0628 m (27w R/10). The increment of the optimum ratio
OR =0.01. :

The evolutionary structural optimization process was
terminated after 112 iterations. The final shape is shown
in Fig. 11, while Fig. 12 plots the initial domain and the
result from Fig. 11 together. The first circular cavity was
created after 31 iterations of edge movement (see Fig. 8)

Fig. 6 Iteration 1

Fig. 7 Iteration 7

Fig. 8 Iteration 31




Fig. 9 Iteration 35

Fig. 10 [teration 60

X

Fig. 11 Iteration 112

Fig. 12 Before and after

and two additional cavities followed four iterations later
(see Fig.9). Once the cavities are introduced into the
domain, the cavity nodes start to grow inside the inte-
rior of the domain (see Fig. 10) during ongoing external
edge movement. After 100 iterations of optimization the
edge movement is seen to be less effective and no obvi-
ous changes are made to the geometry. The final design
produced by this process is in accord with theoretical pre-
dictions, (see Rozvany et al. 1995) save only that the finite
thickness and widths of the members used limit the num-
ber of cavities that are present in the design.

The changes in the domain area are shown in Fig. 13.
The final design uses only 36.8 % of the material of the

Evolutionary History: Structure Area
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Fig. 18 Area of the domain during the evolutionary opti-
mization process

original blank from which the process was started. The
mesh density is automatically adjusted according to the
domain area in this optimization following the design
variable spacing criterion set out earlier (see Fig. 14).
The history of the design variable nodal stresses is
shown in Fig. 15. The maximum stress in the final do-
main is 3760 MN/m? and the minimum is 434.13 MN /m?.
These may be compared to equivalent values of
894.17 MN/m? and 17.65 MN/m? for the original blank.
The minimum nodal stress gradually rises at each cycle
of node migration. The maximum nodal stress increases
sharply in the early stages of optimization and is rather
less affected by the edge movement in the later stages be-
cause a steady state has been reached. In the early stages
of optimization, the applied load is shared by an initially
large domain area. After each edge movement where por-
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Fig. 14 Number of elements used during the evolutionary
optimization process
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Fig. 16 An optimum shape produced by Evolve 97 version
2.0

tions of material have been trimmed off the same load is
shared by a smaller design domain area. In other words,
each portion of material carries more load after each edge
movement and this explains why there is a sharp increase
in the maximum design variable nodal stress in the early
stages of optimization. However, in the final stages of
optimization the structure is more efficient i.e. the local
design variables are closer to the reference points and the
stress gradients between the local design variables and
the reference points are smaller. As a result, the edge
movements become smaller and this means that the do-
main area is only slightly reduced at each edge movement.
This explains why the maximum nodal stress in Fig. 15
shows a fairly constant behaviour in the later stages of
optimization.

It is noteworthy that the evolved geometry (Fig. 11)
possesses a highly symmetric shape in spite of the com-
pletely random initial mesh. Also, the internal and the
external boundaries are exceptionally smooth when com-
pared with the typical conventional ESO results for this
problem (see Fig. 16). The result in Fig. 16 was obtained
by using the “Evolve 97 version 2.07 software written
by Xie and Steven (1997), using the same loading and
boundary conditions given earlier. In addition, the max-

imum removed volume was set to 63.2 %, i.e. the same as
achieved here. The maximum rejection ratio was set to
15 % and evolutionary rate (ER) was set to 0.1 %. A fine
mesh was used in the initial rectangular domain. Note
the poorer symmetry exhibited by the result in Fig. 16,
c.f. that of Fig. 11.
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Conclusions

A new evolutionary optimization algorithm has been pre-
sented in this paper. This algorithm performs layout op-
timization on the exterior of the domain and topology
optimization in the interior of the domain at the same
time. Mesh density control of the unstructured mesh over
the design domain is implemented. The validity and qual-
ity of the designs produced using this algorithm have been
demonstrated using the benchmark “Michell Arch? prob-
lemn as an illustrative example. The optimization process
is automated once it is started and the resulting designs
possesses good quality with respect to stress levels and
smooth boundaries.

Future work will focus on extending the two-
dimensional PNESO method described here to deal with
3D problems.
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