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On the continuum properties of repetitive beam-like

pin-jointed structures

N G Stephen™ and Y Zhang
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Abstract: The equivalent continuum beam properties of a one-dimensional repetitive structure have
previously been determined through eigenanalysis of the transfer matrix of a single cell. A simpler
procedure requires a knowledge of the stiffness matrix of the single cell, together with the ability to deduce
the displacement vectors for tension, bending and shear. A once and for all application of the principle of
minimum potential energy for tension yields the equivalent continuum Poisson’s ratio, from which the

remaining properties follow.
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NOTATION

equivalent cross-sectional area
displacement component
displacement vector

Young’s modulus

nodal force component

force vector

shear modulus

transfer matrix

equivalent second moment of area
stiffness matrix

member length

bending moment

shearing force

state vector of nodal displacement and force
components

CROENRTSOQM TR RN

u, v displacements in the x and y directions
U strain energy of the cell

X,y planar Cartesian coordinate system

y shear angle

e strain

K shear coefficient

v Poisson’s ratio

Y cross-sectional rotation

The MS was received on 19 November 2001 and was accepted after
revision for publication on 10 May 2002.

*Corresponding author: School of Engineering Sciences, Mechanical
Engineering, University of Southampton, Highfield, Southampton SO17
1BJ, UK.

S07301 © IMechE 2002

1 INTRODUCTION

A structure is said to be repetitive, or periodic, when its
construction takes the form of a spatially repeating cell; a
honeycomb sandwich panel and rail track supported on
equispaced sleepers are examples of two- and one-dimen-
sional repetitive structures respectively. Their manufacture
and construction are also repetitive and this leads to cost
effective design solutions in a variety of mechanical, civil
and aerospace engineering applications. Periodic structures
are analysed most efficiently when the periodicity is taken
into account; this allows the behaviour of the complete
structure to be determined through analysis of a single cell.
In turn, the equivalent continuum properties allow the
engineer to model the global behaviour, such as vibration
and buckling, in a very efficient manner. Eigenanalysis of a
state vector transfer matrix G has previously been
employed [1] to determine the Saint Venant decay rates and
the continuum beam properties of repetitive one-dimen-
sional (beam-like) structures. The state vectors s;, and sg
are comprised of the nodal displacement and force compo-
nents on the left- and right-hand sides respectively of the
single cell of the repetitive structure, while the transfer
matrix G is obtained through manipulation of the stiffness
matrix, K, of the single repeating cell. Non-unity eigen-
values of G pertain to the decay of self-equilibrated end
loading, and occur as reciprocals according to whether the
decay is from left to right, or vice versa. Multiple unity
eigenvalues pertain to the transmission of tension, bending
moment and shear (and torsion for non-planar structures),
as well as the rigid-body displacements and rotations. From
a knowledge of the eigen- and principal vectors associated
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with the unity eigenvalues (the transfer matrix being both
defective and derogatory), the equivalent continuum beam
properties of Poisson’s ratio, cross-sectional area, second
moment of area and shear coefficient were calculated.
Since the examples treated in reference [1] were pin-
jointed, and finite element analysis (FEA) of such struc-
tures involves exact elements only, the computational
process alone limits accuracy; predictions from the eigen-
analysis were thus verified by comparison with ‘exact’
results from FEA. The equivalent continuum properties
were employed to determine the natural frequencies of
vibration in reference [2] and agreement with FEA
predictions was found to be very good so long as the semi-
wavelength is greater than the depth of the cell.

In the present note, the continuum properties are found
without resorting to eigenanalysis. The cell is first defined
by its stiffness matrix, K. The approach then relies upon
the ability to deduce the displacement vectors for tension,
bending moment and shear; this is straightforward for
tension and bending. The shear displacement vector is not
immediately obvious, but can be deduced employing
elementary requirements of force and moment equilibrium
of the cell. A once and for all application of the principle
of minimum potential energy for tension yields the equiva-
lent continuum Poisson’s ratio, from which all of the
remaining properties follow.

For simplicity, the planar structure treated in reference
[1] is considered again and then, without derivation, more
general expressions for the continuum properties are
presented in terms of length and cross-sectional area for
this particular cell configuration, allowing more general
conclusions to be drawn.

2 EXAMPLE STRUCTURE

Consider the beam-like repetitive pin-jointed framework
shown in Fig. 1; the typical repeating cell is shown in bold,
together with nodal numbering. Horizontal and vertical
members have a cross-sectional area of 1 cm?, while the
diagonal members have an area of 0.5 cm?. However, since
vertical members are regarded as being shared between
adjacent cells, for the single cell their cross-sectional area
is taken to be 0.5 cm?. Young’s modulus for each member
is assumed to be 200 X 10° N/m? and this, together with
the length and depth of the cell of 1 and 2 m respectively, is
regarded as applying equally to the equivalent continuum
beam.
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The stiffness matrix K for the single cell can be found by
a variety of means (see, for example, reference [3]) and
relates the nodal force and displacement components
according to

F=XKd (1)

which is presented explicitly in the Appendix.

It is presumed that the cell is loaded in tension, as shown
in Fig. 2, and restrained in such a way as to prevent rigid-
body displacement but to allow Poisson’s ratio contraction.
This immediately implies that displacement components
dlx:de:dSX:dlv:dSy:O- Set dyy = ds, =
dex = u, when the strain in the x direction is &, = u/L = u,
since L=1. The strain in the y direction is &, =
(dsy — dg,)/(2L) = (d1, — d3,)/(2L), and by virtue of the

symmetry of the cell, di, = —ds,, ds, =—dsy, so0
ey =dsy/L=d\,/L = dy4y, = dy,. However, ¢, = —ve,,
s0 d1, = dsyy = —vu, d3, = ds;, = vu and the cell displa-

cement vector for tension is
d=[0 —vu 00 0 vu u —vu u 0 u vu]" (2

The strain energy of the cell U is calculated as

1 Eu? 1 v 3 1
U=>dKd =—|v* 1+ﬁ>———+—+—
2 104[ < 2V2) V202 22

&)

The cell will deform in such a way as to minimize the
above, i.e.
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Fig. 2 Single cell loaded in tension. Dotted lines show the initial
cell configuration
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Fig. 1 Planar pin-jointed framework. The typical repeating cell is shown in bold
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o 0 @)
which gives v = 1/(1 + 2v/2) = 0.261204. An equivalent
shear modulus G can then be defined using
G = E/[2(1 + v)], with Young’s modulus being regarded
as invariant.
The tensile force T applied to the cell is

T:F4x+F5x+F6x (5)

These force components are calculated from equation (1),
employing the displacement vector (2) as

Eu 1—v
F4x=F6x:W<1+““_4\/2—>

Eu 1—v

Fsy=—(1+——

” 10“( +2\/§>
(6)

and

Eu 1=

roB(se1=) o
For a continuum beam, 7' = (EA/L)u, and with L = 1, the
equivalent cross-sectional area is 4 = [3 + (1 —v)/v/2]
X 107 = 3.5224 X 1074 m°.

Next consider the displacements during bending, as
shown in Fig. 3. The displacements d, = dg, = —u,
dsy = dsy = u are assumed, which is consistent with
rotations of the side faces of the cell, and also
d>, = ds, = 0, which is consistent with zero axial strain on
the neutral axis. For a continuum beam, a fibre coinciding
with the member joining nodes 1 and 4 would have strain
&x = y/R, where y is distance from the neutral axis and R
is the radius of curvature. However, the strain e, = 2u/L
and y = 1; hence

M 1w2uw

BRI N ®)

Also shown in Fig. 3 is an apparent shift of the neutral axis

Fig. 3 Single cell loaded in pure bending
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(the member joining nodes 2 and 5) towards the tension
(upper) face of the cell. In fact, the upper face moves
towards the neutral axis while the lower, compression, face
moves away by an equal amount, both displacements being
Poisson’s ratio effects. For a continuum beam, Sokolni-
koff (reference [4], equation 32.9) gives the transverse dis-
placement during pure bending as v = —[M/(2EI)]
(x? + vy?) + ¢; here the x* term represents the curvature
due to bending and may be ignored (or equivalently
absorbed into the constant ¢) if the origin of coordinates is
located mid-way between nodes 2 and 5 and the slope of
the cell is horizontal, as depicted. The constant ¢ represents
a rigid-body displacement in the y direction and is adjusted
such that v=0 on y==£1 to give v=[Mv/(2EI)]
(1 —y%). Nodes 2 and 5 have y =0 and employing
expression (8) gives d, = ds, = vu. The cell displace-
ment vector for bending is then

d=[-u 00 vu u 0 u 00 vu —u 0]" )
The bending moment is
M = (Fax — Fer)L (10)

where the force components are calculated from equation
(1) employing the displacement vector (9) as

FEu 1—v
F4x—F6x—W<2+'m> (11
Hence
2FEu 1—v
M=—2+— 12
104( +4\/§> (12)

from which the second moment of area is /=
2+ (1 —9)/(4v2)] X 107* = 2.130602 X 10~ m*.
Figure 4 shows the cell subjected to a shearing force,
together with a bending moment; again the nodal displace-
ments are guided by the solution for a cantilevered
continuum beam subjected to a shearing force (see
reference [4], equation 55.2). Rotations on both sides of the

Fig. 4 Single cell subject to shear and bending moment
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cell are different, so di, = —uy, d3x = u; and dy, = —u,
dex = uy. As with pure bending, there is also a Poisson’s
ratio effect of an apparent shift of the neutral axis in the y
direction (ds,), but this effect is absent on the right face of
the cell where the bending moment is zero, i.e. ds, = 0.
The shear displacement vector is written initially as

d=[—u; 00 dy, u; 0~ 000 uy 0]" (13)

The associated force components are then calculated from
equation (1) as

E 1
Fio=—Fy, =— |luy— (1 +—
1 3 107 [uz ( +4\/§>u1}

E 1 1
Fao = —Fo, = 07 {m - mdzy - (1 +m) uz}

[ =Fs5. =0

E Ui dzy
o= £y = (- 22)

E 1 Uy + up
Fry=—|14+—d,,
2 1m[<*@¢ﬁ 2+ %5]

E (uy+d,
Fiy = For = —105 (%52

o E u
5= 1 (z‘ﬁ)
(14)

These components satisfy vertical force equilibrium for the
complete cell and there is zero horizontal resultant on both
sides. Moment equilibrium requires the relationship

_ Dy 1
u1—4\/§+<1+4\/§>u2 (15)

while asymmetry of the shear force vector requires

Fiy = —Fyy, Fyy = —Fsy, F3, = —Fe,
(16)
which yield the single relationship
ur =y + (1 +2v2)dy, (17)

Hence

up = (16 + 6V2)d,,, uy = (15+4V2)dy,  (18)
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The shearing force is then
E
Q=F,+Fy+F, :1—04(5+8\/§)d2y (19)

In Timoshenko beam theory, the shear angle y is defined as

dv
y=v-5 (20)

where v is the cross-sectional rotation and dv/dx is the
centre-line slope. The rotation is taken as the average of the
rotations on either side of the cell when the shear angle is
(Fig. 4) equal to

y = ;”2+d2y @1

bearing in mind that the cell has unit length. Finally, the
above expressions are introduced into the shear equation
QO = GAxky to give the shear coefficient as

o 4(5 4 8v2)(1 +v)
(33 + 10v2)[3 + (1 — v)//2]

=049562  (22)

The equivalent properties as derived above are in agree-
ment with those determined in reference [1].

A cell, as in Fig. 1, is considered last, but having more
general lengths and cross-sectional areas. In particular, the
longitudinal members have length L and cross-sectional
area Aj, while the vertical and diagonal members have
lengths H and D =+ L[>+ H? and areas Ay and 4p
respectively; the stiffness matrix K is written in terms of
these parameters. The equivalent properties are found using
the above procedures, and are expressed first in terms of
the absolute parameters of the cell and then more simply in
terms of derived equivalent properties, in particular the
Poisson’s ratio, which is

ApHI?

= 23
v AyD? + ApH? 23)

For isotropic materials Poisson’s ratio can take values
within the range —1 < v < 0.5. For this particular cell
configuration, ¥ cannot be negative; it has a minimum
value of zero when A4 p is zero, when the cell can withstand
tension and bending (for shear it is a mechanism). The
equivalent cross-sectional area is
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4ApAyL?

A=34, 4 DIHE
LY L D+ ApID

L
=3+ dv Ay (Q24)

which is equal to that of the three longitudinal members,
together with a necessarily positive contribution from the
vertical and diagonal members.

The equivalent second moment of area is

ApAy H*I?

mzzALH2+VAHLH

I=24,H+
(25)

and consists of a ‘parallel-axes theorem’ contribution from
the top and bottom longitudinal members (247 H?)
together with a positive contribution from the vertical and
diagonal members. Moreover, this additional contribution
is consistent with a ‘parallel-axes theorem’ treatment of the
additional area term, 4v(L/H)Ay, in expression (24). In
particular, it is reasonable that one-half of this additional
area should be placed symmetrically about the neutral axis,
at distance + H /2, when the parallel-axes theorem gives

2
L H
Z(ZV'HAH) (—2—> = VAHLH

It is interesting to note that / reduces to 24 1 H?, and not
zero, when the diagonal members are absent, as it might be
argued that these members are required to transmit shear
from the upper (tensile) to the lower (compressive)
members of the cell; in practice, these diagonals are clearly
necessary. On the other hand, the assumed displacement
vector for bending prescribes that the cell deforms in the
required manner, i.e. with the upper horizontal member in
tension and the lower in compression.
The shear coefficient becomes

(26)

|

This reduces to zero when Ap = 0, as the cell cannot
withstand shear.

3 CONCLUDING REMARKS

The determination of the equivalent continuum properties
has relied upon the ability to deduce the cell displacement
vectors for tension, bending moment and shearing force, a
process aided by the planar nature and symmetry of the
structure. For less symmetric structures, and those invol-
ving torsion, deduction of the vectors is slightly more
complicated, but still quite straightforward. Extension of
the process to two-dimensional, plate-like, structures is also
possible.
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APPENDIX (see over)

_ 8(ApDd + ApH® + ApHI»Y2A Ay D’ + 24 ApH? + ApAn ) ApH?L

N T GALARD {341 ApH? 1 4ApAg3)2ALD° + ApLl3)AnD® + ApH>)

8(1 + V)(2ALH + VAHL)ADH3L

T (BALH + WAz L)AL HD® + vAg D L + vApLH?)
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APPENDIX

[ Fix]
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