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ABSTRACT 

Laminated plate buckling is analyzed by the 
boundary element method (BEM). Ignoring bending-
stretching coupling, a solution is first sought for the 
membrane stresses due to arbitrary in plane loading. 
Using the stress function concept, it is shown that this 
problem is mathematically equivalent to the plate-
bending problem. Based on this similarity, a new 
boundary element formulation is developed for the 
prediction of the pre-buckling membrane state of stress 
in an anisotropic plate. The integral equations for the 
buckling mode are then derived from a variational 
principle using the fundamental solution of the plate-
bending problem. An irreducible domain integral 
depending on plate deflection rather than curvatures is 
numerically accounted for by adopting deflection 
modeling over the plate in addition to boundary 
modeling. Linear discontinuous boundary elements as 
well as domain cells are used along with special 
schemes for the approximation of jump term at corners. 
Analytical integration of singular integrals is performed 
over elements containing the source point. Thus a set of 
integral equations is transformed into an eigenvalue 
problem from which the critical load is evaluated. The 
reliability of the proposed analysis is established by 
comparing BEM predictions with solutions available 
from the literature or obtainable through a general-
purpose finite element program. 

INTRODUCTION 

Laminated composite panels are attractive structural 
elements in the aerospace and other industries due to 
their l ightness and comparatively high strength and 
stiffness. Due to their slenderness however, buckling is 
one of the anticipated failure mechanism against which 
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panels need to be designed. Predictions of plate 
buckling and post-buckling require advanced modeling, 
particularly in cases of complex geometry, material 
behavior or loading. Numerical methods such as the 
finite element method have been commonly 
employed1,2. 

In this paper, a formulation based on the boundary 
element method (BEM) is presented. The only known 
attempts at a plate buckling analysis of laminated 
orthotropic plates using BEM were made by Shi and 
Bezine3 and Shi4, who adopted a direct approach based 
on their previous anisotropic plate bending analysis5. In 
these applications, constant boundary elements were 
used and results were obtained for uniformly loaded, 
simply supported or clamped rectangular plates. 

A general buckling analysis should cater of any 
membrane stress distribution. For this reason, the 
emphasis here is on a new BEM formulation for the 
determination of the pre-buckling state using the stress 
function rather that the displacement components as 
field variable. The latter problem has already been 
solved by formulating integral equations in either real6 
or complex7 domain. An alternative approach based on 
a modification of the generalised Hooke’s law8 allowed 
the use of Kelvin’s fundamental solution for isotropic 
elastostatics. It seems however that the stress function 
concept has not been used for anisotropic BEM plane 
stress analysis. 

It is shown that the boundary value problem for the 
stress function is almost identical to that governing 
plate flexure. Thus a BEM formulation for plane stress 
analysis can follow a very similar pattern to that of 
BEM solutions of the bending problem found in the 
literature5. The respective fundamental solutions have 
the same mathematical form but completely different 
physical interpretation and depend on different sets of 
anisotropic plate stiffness coefficients. 

The boundary element formulation for the buckling 
analysis of a laminate plate is obtained in a similar 
manner to that adopted for isotropic plates9. The 
fundamental solution of the corresponding plate-
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bending problem is used. In contrast to previous 
formulations3,4, the transformation of the integral 
equation of the problem is here performed in such a 
way that the deflection replaces the curvatures in the 
irreducible domain integrals. 

The use of the same type of fundamental solution 
and its derivatives for the pre-buckling and buckling 
analyses is a convenient programming feature making 
possible the application of non-uniform edge loads at 
low computational cost. The numerical results obtained 
by the present method are compared with exact 
solutions and predictions from a general-purpose finite 
element package. The good agreement between these 
results indicates that the proposed scheme is a versatile 
analytical tool that can be reliably applied to the 
buckling analysis of laminate plates. 

GOVERNING EQUATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Plate geometry notation 
 

According to the classical lamination theory, the plate 
is assumed to be perfectly laminated consisting of an 
arbitrary number of discrete layers, each individual 
layer is homogeneous through its thickness and each 
layer is in a state of plane stress. The laminate is also 
assumed to deform according to Kirchhoff’ s 
assumption for the bending of thin plates. The 
laminated plates considered here are made by stacking 
orthotropic layers (or plies) symmetrically arranged 
about the middle reference surface. Bending-stretching 
coupling does not arise for these symmetrically 
laminated plates.  

According to the above theory, the membrane 
stresses Nαβ and bending moments Mαβ are related to 
the curvatures καβ and mid-plane strains εαβ, 
respectively, by 

 Nαβ  = Aαβγδεγδ (1) 

 Mαβ  = Dαβγδκγδ (2) 

where Aαβγδ and Dαβγδ are, respectively, the extensional 
and flexural rigidities, the Greek indices take the values 
1 and 2 and repeated indices mean summation over 
their range. If the plate is assumed loaded by in-plane 
body forces derivable from a potential function Φ and 
an un-factored edge load distribution Tα, the problem is 
reduced to finding a stress function F  such that 

 , ,N F Fαβ κκ αβ αβδ= − + Φδαβ (3) 

where δαβ  is the Kronecker delta and a comma 
followed by a lower index indicates differentiation with 
respect to the corresponding co-ordinate. In-plane 
equilibrium is identically satisfied by the stresses given 
by expressions (3), which also need to satisfy 
compatibility.  This requirement leads to the differential 
equation 

 ,A F fαβγδ αβγδ′ =  (4) 

where  

 f = – * 2( , )Aαβκκ αβ αβδ Φ Φ∇ −  (5) 

 * * * *A A A A Aαβγδ κκλλ αβ γδ αβκκ γδ κκγδ αβ αβγδδ δ δ δ′ = − − +  (6) 

and *Aαβγδ is the inverse of the extensional rigidity tensor 
Aαβγδ.  

Using expressions (3) and referring to Fig. 1, it is 
possible to show that, at any point 1 2( , )Q x x along the 
boundary, 

 1 1 2 2 2 1[( ) ( ) ]d
Q

O

F x x T x x T Γ= − − −�   (7) 

 1 1 2 2( ) d ( ) d
Q Q

O O

F
s Q T s Q T

n
Γ Γ∂ = − −

∂ � �  (8) 

where O is an arbitrarily located origin and s(s1, s2) the 
unit tangent vector along Γ. According to Eq. (7), F can 
be physically interpreted as the resultant moment about 
Q of the traction over OQ. Similarly, Eq. (8) describes 
the normal derivative of F as the component of the 
resultant traction over OQ in the direction –s at Q. 

PRE-BUCKLING MEMBRANE STRESS 
ANALYSIS 

A BEM formulation for the stress function was 
developed noting that the corresponding problem 
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described by Eqs. (4), (7) and (8) is mathematically 
very similar to that governing plate bending with the 
extensional compliances Aαβγδ′ replacing the flexural 
rigidities Dαβγδ and the function f(Φ) replacing lateral 
pressure.  A reciprocity relation for the operator defined 
in Eq. (4) can be derived starting from the symmetric 
bi-linear form 

 Λ(F, F*) = , , dA F Fαβγδ αβ γδ
Ω

Ω∗′�  (9) 

where F and F* are two possible solutions, and Ω is the 
plate domain bounded by contour Γ, which is smooth 
apart from a finite number K of corner points as shown 
in Fig. 1. 

Repeated integration by parts and application of 
Green’s theorem transforms Eq. (9) to: 

Λ(F, F*) = , d ( )A F F V F Fαβγδ αβγδ
Ω Γ

Ω∗ ∗′ �+ �� �  

 
1

( ) ( ) d ( ) 0
K

n n j j
j

M F F C F Fθ Γ∗ ∗

=

�− + =� �  (10)  

where the operators θn(F), V(F), and Mn(F) are given by  

 ( )n

F
F

n
θ ∂=

∂
 (11) 

 ( )( ) , ,V F A n F n s F
sαβγδ δ αβγ γ δ αβ

∂� �′= − +� �∂� �
 (12) 

 

 ( ) ,nM F A n n Fαβγδ γ δ αβ′= −  (13) 

and the jump term Cj represents the discontinuity of the 
expression  

 Mns(F) ,A n s Fαβγδ γ δ αβ′= −  (14) 

at the corners. An alternative right hand side to that 
appearing in Eq. (10) can be obtained by interchanging 
the roles of F and F*. Equating these equivalent forms 
of the functional Λ(F, F*) gives the reciprocity relation  

* *( , , )dA F F F Fαβγδ αβγδ αβγδ
Ω

Ω′ −�  

 * *( , ) ( , ) 0bI F F J F F+ + =  (15) 

where 
* * *( , ) ( ) ( ) ( )b

n nI F F V F F M F F
Γ

θ�= −��  

 * *( ) ( ) ( ) dn nM F F V F Fθ Γ�+ − �  (16) 

 * * *

1

( , ) ( ) ( ) ( ) ( )
K

j j j j
j

J F F C F F s C F F s
=

� �= −� ��   (17)   

The present formulation is based on Eq. (15) in 
which F*  is chosen to be one of the singular 
fundamental solutions satisfying 

 , ( , )i iA F Q Pαβγδ αβγδ δ∗′ = ; i = 1,2 (18) 

where δ1(Q,P) is the Dirac-delta function , δ2(Q,P) is 
the derivative of δ1(Q,P) with respect to an arbitrary 
direction m, while P and Q are the source and field 
points, respectively. These fundamental solutions are 
identical in form to those for the anisotropic plate-
bending problem5. Their physical interpretation is of 
course different and should be related to unit potential 
and dipole sources referring to the forcing function f 
defined by Eq. (5). 

Introducing the fundamental solutions as weighting 
functions in Eq. (15) and ignoring body forces 
generates integral equations in the form 

 * *( ) ( , ) ( , ) 0b
i i ikF P I F F J F F− + + = ; i = 1,2 (19) 

where k is equal to 1 or 0.5 depending on whether P is 
in domain or on smooth portion of the boundary, 
respectively, and 

 F1 = F, F2 = ∂F/∂n 

The boundary values of F and ∂F/∂n are computed 
using Eqs. (7) and (8) respectively. A boundary element 
solution of integral equation (19) can thus be generated 
that would provide the variation of Mn(F) and V(F) 
along the boundary. The membrane stresses at any 
point within the domain are then computed by 
differentiating twice the boundary integral equation for 
the stress function, that is, Eq. (19) with k=1 and i=1. 
These second partial derivatives are directly evaluated 
since they depend on known or already determined 
variables along the boundary. 

CRITICAL EQUILIBRIUM 

The membrane state of equilibrium determined through 
the procedure outlined in the previous section becomes 
unstable at a certain intensity of the factored edge load 
λTα. Then a second stable equilibrium state exists, 
associated with a lateral deflection w(xα) for a critical 
load factor λc. The variational equation governing the 
buckling mode w(xα) has the form10 

Π(w,δw) = ,
�

, dD w wαβγδ αβ γδ
Ω

Ω�  

 ,
�

, d 0c N w wαβ α β
Ω

λ Ω+ =�  (20) 

where δ is the variation symbol. 

Repeated integration by parts and application of 
Green’s theorem transforms Eq. (20) to: 
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( ), ,
�

dcD w N w wαβγδ αβγδ αβ αβ
Ω

λ Ω−� ( )( ) , �cV w T w wα α
Γ

λ+ +���  

 ]( ) � ( ) dn nM w wθ Γ−
1

( ) � 0
K

j j
j

C w w
=

+ =�  (21) 

where the normal slope θn(w), shear force V(w) and 
bending moment Mn(w) along the boundary are given 
by the same operators defined in Eqs. (11)-(13) but with 
the tensor Aαβγδ′  replaced by Dαβγδ. Similarly, the corner 

forces Cj(w) are equal to discontinuity jumps of the 
twisting moment Mns(w) as defined by Eq. (14). 

The condition that Eq. (21) be satisfied for an 
arbitrary δw yields the field equation 

 , , 0cD w N wαβγδ αβγδ αβ αβλ− =  (22) 

over the domain Ω and the boundary conditions, 

 either Mn = 0 or θn = θ (s) (23) 

 either V + λcTαw,α = 0 or w = w (s) (24) 

on Γ and 

 either Cj(s) = 0 or wj = w (sj);  j = 1,…,K  (25) 

at the corners, whereθ (s) and w (s) are, respectively, 
prescribed values of the slope and deflection along the 
whole or part of the boundary. Thus Eq. (22) together 
with Eq. (4) are the uncoupled field equations 
governing buckling of symmetrically laminated plates 
subjected to in-plane forces. It is obvious that solving 
Eq. (4) is a prerequisite to the solution of the buckling 
problem governed by Eq. (22). 

The boundary element formulation for the buckling 
mode is obtained in a similar manner to that applied for 
the stress function in the previous section. Initially, δw 
in Eq. (20) is replaced by a weighting function w*. 
Noting the symmetry of the bi-linear from Π(w, w*), a 
reciprocity relation 

 Π(w, w*) = Π( w*, w) 

 is deduced both sides of which can be transformed in a 
similar manner as that applied to the right hand side of 
Eq. (20). This leads to a new integral equation: 

* *( , , )D w w w w dαβγδ αβγδ αβγδ
Ω

− Ω�  

* * *( , ) ( , ) ( , )d d t
c cI w w I w w I w wλ λ� �− − +� �  

 * *( , ) ( , ) 0bI w w J w w+ + =  (26) 

where *( , )bI w w and *( , )J w w are given by equations 

(14) and (15),  

 * *( , ) ,dI w w N w w dαβ αβ
Ω

= Ω�  (27) 

 * * *( , ) ( , , )tI w w T w w w w dα α α
Γ

= − Γ�  (28) 

The weighting function here used is replaced by the 
fundamental solutions of the plate bending problem 
satisfying 

 , ( , )i iD w Q Pαβγδ αβγδ δ∗ =  (29) 

they have therefore the same mathematical form as 
those defined through Eq. (18) but a completely 
different physical interpretation. More specifically, they 
are deflections of an infinite plate due to unit force and 
moment at the source point P.  

Finally, similar to Eq. (15), integral equation (26) is 
transformed into 

* *( ) ( , ) [ ( , )b t
i i c ikw P I w w I w wλ− + +  

* *( , )] ( , ) 0;d
i iI w w J w w+ + =  i=1,2 (30) 

where 

 w1 = w, w2 = ∂w/∂n 

Due to the presence of domain integral 
*( , )d
iI w w depending on the unknown deflections, 

equation (30) is not a proper boundary integral 
equation. The boundary element methodology can still 
be applied to the present problem by introducing a 
simple domain deflection model instead of higher 
derivatives of deflection, complementing the 
conventional boundary modelling. 

INTERPOLATION MODELS 

The boundary integrals Ib and It in Eqs. (19) and 
(30) depend on four variables, either F or w, θn, V and 
Mn. V(F) and Mn(F) are unknown quantities in Eq. (19) 
which need to be approximated over boundary 
elements. In Eq. (30), either Mn or θn, and V or w are 
the unknown quantities according to the boundary 
conditions (23)-(25). The linear discontinuous model 
has been adopted in the present analysis. This model 
represents more accurate variation of boundary variable 
and allows a direct modelling of its discontinuity at 
corners.  

Interpolation functions for the discontinuous models 
are generated as polynomials in the natural co-ordinate 
ξ with origin at the mid-point of the element. These 
functions should satisfy 

 ( )i j ijφ ξ δ=  (31) 

where the range of indices depends on the order of 
approximation. In the case of linear interpolation the 
functions φi are given by  
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 2
1

2 1

ξ ξφ
ξ ξ

−
= −

−
, 1

2
2 1

ξ ξφ
ξ ξ

−
=

−
 (32) 

where ξ1 and ξ2  are the local co-ordinates of the two 
nodes. Since there are two independent unknowns per 
node, the total number of boundary unknowns will be 
Nb =4Ne where Ne is the number of boundary elements. 

If Z denotes a boundary unknown, a typical 
boundary integral over an individual element Γe would 
have the form 

 
2

1
e

e
k k

k

I Z G dφ
= Γ

= Γ� �  (33) 

where G would be the kernel paired with variable Z in 
the integral equations (19) and (30). The integration 
over elements, which do not contain the source point 
are performed numerically using Gaussian quadarture. 
Analytical integration is carried out over elements 
containing the source point. With the source point 
identified with internal node "i" of an element and a 
local co-ordinate s defined as shown in Fig. 2, the 
integrals over that element in the case of the linear 
interpolation model reduce to the form  

 1
2 1 0

2 1

2
( )

( )

e
e e

i

I
I Z Z I Z

L ξ ξ
= − +

−
 (34) 

where 

 0

e

eI Gds
Γ

= � , 1

e

eI Gsds
Γ

= �  (35) 

 

 

 

 

 

 

 

 

Fig. 2 Boundary element co-ordinate for analytical 
integration 

 

The modelling of jump term in Eq. (19) at corners is 
achieved by deriving a relation between Cj and certain 
boundary unknowns or their path derivatives. Eqs. (13) 
and (14) are transformed at the boundary relative to a 
local n-s frame of reference. This essentially involves 
the transformation of only the term F,αβ in eqs (13) and 
(14), which can be written  

 

 
2 2

2
, ( )

F F
F n n n s s n

n snαβ α β α β α β
∂ ∂= + +

∂ ∂∂
 

    
2

2

F
s s

sα β
∂+
∂

     (36) 

Substituting Eq. (36) into Eqs. (13) and (14) and 
eliminating ∂2F/∂n2 between them, results in an 
expression for Cj in terms of Mn, ∂θn/∂s and ∂2F/∂s2. 
Using the adopted boundary element model, an 
approximation can thus be deduced for Cj appearing in 
the jump term over the boundary elements adjacent and 
on either side of a corner in terms of the nodal values of 
Mn, θn and F within the elements. In a similar way, the 
jump term in Eq. (30) at corners is modelled in terms of 
the nodal values of Mn, θn and w over the boundary 
elements adjacent and on either side of the corner. 

The domain integral *( , )d
iI w w in Eq. (30) is 

evaluated by modelling the deflection over the plate 
domain, which is discretized into Nc triangular domain 
cells. Linear interpolation functions of the form  

 
3

1
i ij j

j

φ α ζ
=

= �  (37) 

were adopted where jζ , j = 1,2,3, are the familiar area 

co-ordinates. Thus the total number of internal nodes is 
Nd =3Nc. With the three internal nodes placed along the 
medians halfway between the vertices and the cell 
centroid, the coefficients αij of the interpolation 
functions are given by 

 

5

3
1

3

ij

j k

j k

α

� =��= �
� − ≠
��

 (38) 

MATRIX FORMULATION 

The steps towards the numerical implementation of 
the developed formulation are described next. With the 
boundary divided into Ne linear discontinuous elements, 
integration of the terms appearing in integral equation 
(19), governing the stress function, is performed.  This 
gives a consistent system of algebraic equations in the 
form 

 H0Z0 = G0  (39) 

where X0 is the array of the unknown nodal boundary 
values of Mn(F) and V(F), H0 is a square coefficient 
matrix arising from the respective boundary integrals in 
Ib(F, *

iF ), and G0 is a column matrix containing the 

boundary integrals depending on F and ∂F/∂n. 

 s1  s2 

i 

ξ 

s 

L/2 L/2 

n 
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Then a domain mesh is generated and the stresses 
Nαβ are determined at all domain nodes. Boundary and 
domain models are substituted into Eq. (30), the source 
point placed at all boundary nodes and integrations are 
carried out over all elements leading to the following 
system of Nb linear algebraic equations 

 (Hb  + λc H
t )Z=λc H

d W (40) 

where Z and W are the arrays containing the boundary 
and domain unknowns, respectively, the elements of 
matrix Hb result from integrals Ib(w, *

iw ) and jump 

terms J(w, *
iw ), while matrices Ht and Hd are the 

consequence of integrals It(w, *
iw ) and Id(w, *

iw ), 

respectively. An additional system of Nd equations, 

 (Db + λc D
t )Z=(I + λc D

d)W (41) 

is obtained by applying Eq. (30) with k = i = 1 and 
placing the source point at all domain nodes. Then, 
integrals Ib(w, *

1w ), It(w, *
1w ) and Id(w, *

1w ) would 

generate the elements of matrices Db, Dt and Dd, 
respectively, with the jump terms contributing to Db. 

The critical load factor is the smallest eigenvalue of 
the system of Eqs. (40) and (41) which can be written 
as a standard eigenvalue problem 

 (A – λc B) X = 0 (42) 

where 

A = �
�

�
�
�

�

− ID

0H
b

b
, B = �

�

�
�
�

�

−
−

dt

dt

DD

HH
, X = 

�
�
�

�
�
�

W

Z
 

Thus 1−
cλ can be evaluated as the largest eigenvalue of 

matrix A–1B which can be directly obtained from 

A–1B =  
�
�
�

�

�
�
�

�

−+−
−

ddbbttbb

dbtb

DHHDDHHD

HHHH
ˆˆ

ˆˆ
 

where bĤ = (Hb)–1. Thus the inversion of only the 
Nb×Nb matrix Hb is required while efficient routines 
yielding the largest eigenvalue of a matrix as well as the 
associated eigenvector are readily available. It is worth 
noting that boundary integral It(w, *

iw ) vanishes under 

certain combinations of loading and support conditions. 
These include simply supported and clamped plates 
under edge shear anywhere on the boundary as well as 
compression on the clamped portion of the boundary. In 
such cases, both matrices Ht and Dt vanish and the 
eigenvalue problem (42) reduces further to 

 [(Db bĤ Hd – Dd) – 1
cλ−  I] W = 0 

Results can only be obtained in these special cases by 
implementing the above simpler formulation, which 
also considerably increases numerical efficiency. 

RESULTS AND DISCUSSION 

The BEM formulation was implemented through a 
suite of C codes. The plane stress analysis was first 
validated by applying it to a series of simple two-
dimensional problems. Stress results are here presented 
for the problem illustrated in Fig. 3(c). The orthotropic 
graphite/epoxy laminated panel shown was assumed to 
have the following extensional stiffness coefficients: 

A1111 = 1.8181×109 N/m 

A2222 = 1.0346×108 N/m 

A1122 = 2.8969×107 N/m 

A1212 = 7.17×107 N/m 

The aspect ratio a/b of the plate was taken equal to 5 
and a pressure p = 1 MPa was applied on the top 
surface. The boundary was divided into a total of 120 
elements (50 along each longer and 10 along each 
shorter side). The same plate was analyzed using 
ANSYS, a general-purpose finite element program11. A 
regular mesh of 400 8-node quadrilateral solid elements 
(Solid82) was adopted and symmetry was accounted 
for, that is, only one half of the plate was modeled.  

The results from both analyses for the variation of 
N11 and N22 along the x2-axis are shown in Fig. 4. 
Excellent agreement is noted. At most points, the 
difference between the two solutions is much less than 
1%. Greater discrepancies are observed near the edges 
probably due to the near singularity of the BEM kernels 
in these locations. 

The buckling analysis was applied to simply 
supported and clamped square plates under various 
combinations of compression loads as shown in Fig. 3. 
Both uniform and non-uniform in-plane stress 
distributions were thus generated. The same plate 
material was assumed as that for the plane stress 
analysis. Its flexural rigidities were: 

D1111 = 15151 Nm  

D2222 = 862.181 Nm   

D1212 = 597.5 Nm 

D1122 = 241.41 Nm 

The critical value of a reference component of traction 
Trc is given in terms of the critical load factor λc by 

 Trc  = λc
3
2

D

a
 (43) 

where D3 = D1122 + 2 D1212 and a the x1-dimension of 
the plate as indicated in Fig. 3. The loading as well as 
the definition of Trc for each case analyzed can be seen 
in Table 1.  
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Fig. 3 Geometry and loading of analysed plates 
 

 

Fig. 4 Plane stress predictions for the problem 
shown in Fig. 3(c). 

 

The results are also presented in Table 1 and can 
be compared to those obtained from ANSYS using 

comparable meshes. A total of 48 boundary elements 
and 50 domain cells are used for BEM analyses in 
comparison with 400 8-node finite shell elements 
(Shell9311). The predicted critical loads from the two 
numerical methods for examples 1-3 are in very good 
agreement. Because of the uniformity of in-plane 
stresses, exact solutions are also available in these 
cases12, which gave critical loads equal to 55.569, 
129.766, and 69.461, respectively. It is noted that the 
accuracy of the BEM predictions is the same or 
slightly higher than that of the FEM results. 

Greater differences between BEM and FEM 
predictions are noted for examples 4-6 involving 
clamped plates. This may due to BEM satisfying 
more rigorously the edge constraints since the 
corresponding contour integrals vanish altogether 
while FEM allows some flexibility between nodes. 

Even greater discrepancies are observed in the 
cases of applied point loads (examples 13-16) 
irrespective of boundary conditions. This is clearly 
due to the uniformity of both meshes, which do not 
quite capture the high stress concentrations in the 
neighbourhood of contact points. It was shown 
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through numerical tests that increasing simply the 
number of boundary elements or refining their mesh 
in the neighbourhood of these points is not sufficient 
to improve the accuracy of the results. Domain mesh 
refinement is essential to the accuracy of both BEM 

and FEM analyses in the case of high stress 
concentrations. 

 

 

Table 1: Critical load factor λc for graphite/epoxy square plate. 

 

No. Fig BC Trc Loading BEM ANSYS 

1 (a) SS p1 p1=p2, c=a, d=b 55.520 55.449 

2 (a) SS p1 p2=0, c=a, d=b 130.089 129.448 

3 (a) SS p2 p1=0, c=a, d=b 69.520 69.310 

4 (a) CL p1 p1=p2, c=a, d=b 143.185 138.812 

5 (a) CL p1 p2=0, c=a, d=b 468.200 458.777 

6 (a) CL p2 p1=0, c=a, d=b 160.447 156.558 

7 (a) SS p1 p1=p2, c=a/2, d=b/2 94.376 93.555 

8 (a) SS p1 p2=0, c=a/2, d=b/2 160.705 157.971 

9 (a) SS p2 p1=0, c=a/2, d=b/2 111.319 110.123 

10 (a) CL p1 p1=p2, c=a/2, d=b/2 230.769 227.832 

11 (a) CL p1 p2=0, c=a/2, d=b/2 527.909 517.715 

12 (a) CL p2 p1=0, c=a/2, d=b/2 259.392 257.451 

13 (b) SS P1 P1=P2 41.424 39.152 

14 (b) SS P1 P2=0 64.548 58.819 

15 (b) CL P1 P1=P2 90.752 89.252 

16 (b) CL P1 P2=0 175.558 166.681 

17 (c) SS p  75.816 75.570 

18 (c) CL p  178.535 173.851 

      BC: boundary conditions, SS: simply supported, CL: clamped 

 

 

CONCLUSIONS 

The proposed BEM plane stress analysis based on 
the stress function concept may lack the versatil ity of 
the displacement formulation since, in its present form, 
it is only applicable to a statically determinate 
configuration. It does however combine neatly with 
BEM formulations of the plate bending and buckling 
problems because of its mathematical similarity with 
these problems. It also provides very accurate 
predictions as was demonstrated through direct stress 
comparisons as well as indirectly from the critical load 
results. In certain cases, it would be possible to consider 
kinematic boundary conditions by replacing them by an 
assumed traction distribution and evoking Saint- 
Venant's principle. Further research should lead to the 

generalisation of the method but at the cost of 
increasing its complexity. 

Within the range of problems solved, the reliability 
of the buckling analysis can be considered satisfactory. 
Further convergence studies are required to establish 
better agreement between methods in the case of 
strongly non-uniform plane stress distributions. The 
method was tested on plates with very regular geometry 
and uniform boundary conditions. It is important to 
assess its reliability in cases of greater complexity. 

With regard to the material model, the numerical 
algorithm and the developed program did account of 
general anisotropy although results for only orthotropic 
plates are presented here. Additional applications to 
plates with axial-shear coupling produced results in 
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satisfactory agreement with those found in the 
literature12. 

There is considerable scope for further work. 
Extension-flexure coupling can be introduced and its 
effect on buckling loads assessed. Large deformation 
analysis leading to the prediction of the post-buckling 
behaviour is another possibility for expansion of the 
proposed formulation. This problem is of considerable 
design interest since it is linked more closely than the 
critical load to the strength limits of stiffened composite 
panels13. 
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