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Abstract

This paper proposes an automatic and adaptive Domain Knowledge Based (DKB) Search Advisor for use with Design
Exploration Systems (DES)—a form of design Problem Solving Environment (PSE). The advisor contains domain knowledge of
search routine performance on design problems built using a knowledge modelling methodology. These help designers working on
complex engineering problems to decrease the cost of design-space search and improve the quality of the resulting designs. This
paper introduces this field, beginning with a view of some of the problems and inefficiencies of present design processes. This is
followed by the description of a knowledge modelling methodology that may be used to build knowledge models of search routine
performance on design domains. One focus of the paper is the use of machine learning to automate the process of knowledge
discovery. The practicability of the DKB Search Advisor is then demonstrated with a case study taken from the aircraft wing design
domain. The results presented help provide insights into the strengths and weaknesses of various optimization routines. More
importantly, they also illustrate that an advisor containing knowledge of search routine performance on design domains can support
design engineers in their search activities. The Search Advisor helps to decrease the cost of aircraft wing design search while at the

same time increasing the quality of the resulting designs. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Domain knowledge base; Optimization; Engineering design exploration; Knowledge modelling methodology

1. Introduction

Presently, most complex engineering design explora-
tion is carried out manually. The design engineer uses
computer aided design (CAD) tools to make a
modification to the design and evaluates this by
numerical simulation. He then enters a design—evalu-
ate-redesign process and stops when he thinks that the
design is adequate based on his experience and knowl-
edge of past designs. A numerical simulation may thus
be used by hand to provide a design exploration process.
By contrast, Design Exploration Systems (DES) address
the needs of engineers responsible for automatically
establishing critical design parameters, usually during
the early stages of the design process. Such systems aim
to provide a controlled framework for studying the
effects of parameter choices on the numerical simula-
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tions available to the designer for dealing with geometric
decisions, stress analysis, performance estimation, efc.
Today, several powerful DES such as OPTIONS
(Keane, 1995) and Isight (2000) have become available,
most of which have the common characteristic of
containing multiple sophisticated optimization and
exploration techniques for design-space search. The
heart of a good DES is usually a design optimization
facility, which is basically a design-space search tool that
is employed to automatically find good solutions to
some problem (e.g., by finding the maximum of a
function) by generating a collection of potential solu-
tions to the problem and then manipulating them.
Optimization is a mature technology that has been
studied extensively by researchers over the last half
century. Although studied for many years it has only
recently been heavily used by the design community
(Keane and Nair, 2001). This take-up is now happening
because increases in computing power allow increasingly
accurate analysis codes to be deployed in this way, see
for example, the work reported by (Jameson, 1999)
in a recent theme issue dedicated to optimization.
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Engineering design optimization thus helps reduces the
cycle time of design—evaluate-redesign iteration loops
and often finds better designs by computerizing parts of
this iterative process. In general, given a set of design
variables D, a set of bounds and constraints B and C,
constrained design optimization is the problem of
determining values of D to minimize or maximize an
objective function F(D), subject to B and C.

In practice, however, unless one knows which
optimization routines in the DES most suit the design
problem in hand, the optimization method may not
perform properly or achieve a truly optimum design.
For example, gradient-based methods have the known
advantage of their efficiency; however, they are also very
sensitive to starting point selection and are more likely
to stop at non-global optima than modern stochastic
algorithms. Stochastic techniques on the other hand
produce new design points that do not use information
about the local slope of the objective function and thus
are not prone to stalling in false optima. They do tend to
require more analysis effort, however.! Moreover, some
search routines might not even be capable of producing
a feasible design. Sandgren (1977) applied 35 nonlinear
optimization algorithms to 30 engineering design
optimization problems and compared their perfor-
mance. Bramlette and Cusic (1989) also compared the
application and performance of different methods,
including gradient based numerical optimization, to
the design and manufacture of aeronautical systems.
The applicability of different conventional numerical
optimization methods to aircraft design has been further
explored by Sobieszczanski-Sobieski and Haftka
(1996). The general conclusion obtained from all
these studies is that no single optimization search
technique always performs well on all problems—a
result that is sometimes referred to as the “no free lunch
theorem”.

Nevertheless, it remains common to find design
engineers relying very much on their intuition, experi-
ence and knowledge of a design domain when making
the choice of optimization routine to employ whenever a
design search is conducted. The effect of this is that the
design quality is heavily dependent on the experiences
and knowledge of the design engineer and this may
lead to non-optimal designs being produced at high
cost due to the limited experience of novice or
inexperienced designers (i.e., in reality, designers often
stick to a very limited range of optimization techniques
regardless of the design problem involved or the
sophistication of any optimization methods suite avail-

"Typical gradient-based methods are Sequential Quadratic Pro-
gramming; Linear Approximation; Direct Search Methods; and others
(Lawrence and Tits, 1996; Schwefel, 1995; Siddall, 1982). Among the
modern stochastic optimizers are Genetic Algorithms; Simulated
Annealing; Evolutionary Programming and Evolution Strategies
(Yin and Germay, 1993; Kirkpatrick et al., 1983).

able). It may also have a detrimental effect on design
innovation by placing too much dependence on a single
individual’s past designs and decisions, which usually
contain biases. In addition, sole reliance on experienced
designers may also mean a heavy cost for professional
manpower to assure maximal performance from new
designs.

Few studies in the literature have addressed the
problem of choice of optimization search techniques
for engineering designs with much success. Most have
tried to identify the optimization techniques that will
work well on rather limited ranges of design test
problems. Here, we propose a Knowledge Base Search
Advisor for use in design search activities to address the
problem. A complete Knowledge Base Search Advisor
would assume the presence of two knowledge bases; a
General Knowledge Base (GKB) and a Domain-Specific
Knowledge Base (DKB). The GKB should contain
generalized knowledge that is normally applicable for
design-space search in most domains. The DKB should
contain specialized knowledge that is applicable only to
a particular domain or design problem area (ie., a
particular objective function or narrow classes of
functions). The complete Knowledge Base Search
Advisor should then provide the following capabilities:
(1) it would be able to recommend overall optimization
techniques for any general design problem using its
GKB and (2) it would be able to refine this recommen-
dation for each design problem using its DKB. Most
importantly, the search advisor would help decrease the
cost of design-space search through reducing reliance on
human design experts and also help increase the quality
of the resulting designs. It would also speed up the
design process. In this paper, we consider only an
automatic and adaptive Domain Knowledge Based
(DKB) Search Advisor for use with DES. We do this,
primarily, for simplicity in presenting the Search
Advisor. The case of GKB Search Advisor will be
addressed in detail elsewhere.

Note that throughout this paper a problem domain
refers to an engineering problem domain in part of
which designs are being optimized. Knowledge models
contain knowledge about the performance of search
routines on the design domain under study, generated
using the intentions of the designer; typically, this might
be to finish the design search as quickly as possible, to
achieve the best possible design or otherwise. The ‘Best
Performing Search’ (BPS) strategy is the search routine
that achieves the desired intention as well as possible
across the entire problem domain. In most engineering
domains, this will be for <100% of the problems
tackled. The ‘Artificial Intelligence Machine Learning
Selected’ (AIMLS) strategy is the search routine that the
proposed knowledge based advisor recommends for the
problem in hand. This will vary with the problem
details.
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2. Domain knowledge based search advisors

Companies usually have limited diversity of trade and
thus work-scope. For example, Airbus focuses mainly
on aircraft design; Rolls-Royce on engine design; while a
ship building company focuses on ship design. Depend-
ing on the complexity of a domain, some search routines
that may have proven to be useful in one domain might
not work so well in other domains. The same reasoning
applies to individual design problems within a domain.
This fundamental observation is the reason why it is
important for a design engineer to be supported with a
DKB Search Advisor that contains specific knowledge
on the performance of search routines on the design
domain under study.

The proposed methodology for building the DKB
Search Advisor is drawn from the experiences obtained
by the Problem Solving Community. The general
approach used by this community is based on ““Learning
from experience” techniques, where information ex-
tracted from past problem solving experiences is used
to assist in solving future problems, especially those that
are similar (Laird et al., 1985; Greiner and Jurisca, 1992;
Rentema et al., 1997; Houstis et al., 1998). Such an
approach has also been used in some engineering design
applications (Surma and Braunschweig, 1996; Rasheed
and Hirsh, 1997; KBSI, 1999) to improve the design
process in various ways. A good overview of the
approach used in design applications is also available
in (EAAI, 1996). In general, “‘Learning from experience”
techniques can be classified into two main categories that
have been studied by the artificial intelligence commu-
nity. Expert systems, Case-Based reasoning, Explana-
tion-based learning, Ontology based systems and others
fall into the first category, which we categorize as manual
knowledge acquisition approaches. Many of the systems
used in the Problem Solving Community (Laird et al.,
1985; EAAI, 1996; Rentema et al., 1997; KBSI, 1999) are
examples of this category. The second category is
automatic knowledge acquisition, and these often
employ machine learning techniques. Examples of the
second category may be found in (Wolberg et al., 1994;
Reich, 1996; Rasheed and Hirsh, 1997).

In this paper, machine learning is proposed to carry
out the role of automatic domain knowledge acquisition
from the data of past designs. The choice of an
automatic knowledge acquisition approach is a conse-
quence of the following factors:

1. There are currently no models for predicting the most
" appropriate search routine in general DES for design
search activities. Here, with an automated knowledge
capture approach for building such a model, the
search process is tested first from a heuristic
perspective and then refined through the observation
of new data acquired for related design problems.

2. Knowledge of the applicability and strength of a
search routine to a particular domain or problem is
normally based on the experience of human opera-
tors, which is difficult to extract, share and model.
Moreover, the capability of a given search algorithm
differs even among multiple implementations of the
same theory: this makes manual generalization from
theory almost impossible.

3. The main criticism of manual knowledge acquisition
are (1) the need for the availability of human domain
experts who are willing to share their experiences and
knowledge in a most unreserved manner, (2) the need
for qualified knowledge engineers to perform this
knowledge acquisition task, which is often difficult to
model and (3) the need for the acquired domain
theory to be relatively complete and consistent.

4. Design engineers may well have some intuition and
qualitative rules that give rise to biases (preferences
for particular search techniques). These may result in
non-optimum performance or even poor designs. It is
also unlikely for one designer to be able to make
decisions about all aspects of a design, which may
possibly be simpler for a machine.

5. A design related knowledge base has to be dynamic,
so that results from new searches initiated by the
design engineer generate new knowledge that can be
updated into the knowledge base. The use of
automatic knowledge acquisition enables this process
to be accomplished automatically.

6. Machine Learning is a recent approach to knowledge
elicitation often referred to as “knowledge mining”
(Piatetsky-Shapiro, 1989) or “knowledge discovery’”:
(Frawley et al., 1991). Grounded on various Al-based
techniques, the approach is automatic and acquires
knowledge, extracts features or identifies patterns
directly from examples or databases. Machine learn-
ing is thus particularly suitable here because it is able
to automate the process of generalizing past design
data on the applicability of optimization search
routines to different subsets of problems within a
given domain.

The methodology proposed for building the DKB
Search Advisor is described next.

2.1. Methodology for construction of domain
knowledge bases

The proposed methodology for the construction of
the DKB begins with a Sampling process. Sampling
generates a sample set of possible design problems for a
design domain based on the design parameters of
interest. This sample set of design problems is an
approximate representation of the entire problem
domain. This is followed by an Offline Simulation
process, where optimization design searches using every
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single search routine available in the DES are conducted
on each design problems in the sample set.” The data
produced during Offfline Simulation are archived for
knowledge discovery and acquisition. These include the
final design variables found; objective function value,
total evaluation count (time taken) during the searches
and violations of any kind (design problem not
computable, optimization variable boundary violations
and constraint violations). The simulation process can
be very time-consuming if the underlying analyses used
are of significant complexity—in most concept design
tools this is fortunately not so. The simulated data
together with those collected from previous design—
evaluate-redesign iterative cycles form the archived data
sources that are processed next at the Knowledge
Modelling stage. In this process, the desired information
is first derived from the archived data using Eq. (1):

Normalized Overall Quality;
= {[IMPS x NECQ,] + [(1 — IMPS) x NOFQ,]}, (1)

where Normalized Overall Quality is a measure of the
quality of a search routine j on a sampled design
problem i, IMPS’ is a user specifiable parameter that
determines the balance between speed or optimal design,
and ‘NECQ’ and ‘NOFQ’ are the Normalized Evalua-
tion Count Quality and Normalized Objective Function
Quality (both normalized to unity), respectively. The
quantity IMPS in the equation represents the intention
of the design engineer; typically, this might be to finish
the design search as quickly as possible (IMPS=1),
achieve the best possible design (IMPS=0) or other-
wise.> In the following sections, two strategies are
proposed for the generation of knowledge models using
this information.

2.1.1. Strategy I—'Best Performing Search ( BPS)
strategy’

The first strategy is the BPS strategy, which attempts
to recommend a single search routine that provides the
best performance for the entire problem domain. It uses
the information obtained via Eq. (1) to estimate the
average performance of each search routine over the
sampled design problems. The search routine that is
recommended is obtained using Eq. (2)

2In all the simulations performed, the control parameters used for
each search routine are based on the DES’s defaults. This adoption of
DES defaults is based on an analogue of designers relying on the
default setting of a DES in the initial stages of most design processes.
Clearly, a more sophisticated advisor might well supply advice on the
choice of search routine control parameters.

3Many different models can be generated according to the intention
of the design engineers. Alternatively, other criteria may be included
into Eq. (1), such as search routine robustness etc., to better express
the intentions of the design engineers.

Best Performing Search Routine

Pk
= Max{ | {.Z1 Normalized Overall Quality;}1}  (2)
j=1 =

for sampled design problem i = {1...k}, where k is the
total number of sampled design problems available for
the domain, Search Routine j = {1, ...,p}, and p is the
total number of search routines available in the DES.

2.1.2. Strategy II—Artificial Intelligence Machine
Learning Selected (AIMLS) strategy

The second strategy proposed is the AIMLS strategy.
This strategy makes use of machine learning to carry out
knowledge discovery and modelling. To extract knowl-
edge about the merits and limitations of the many
optimization search routines on a design domain using
machine learning, it is necessary to perform further pre-
processing on the data obtained using Eq. (1). This
involves the conversion of the original data into table-
like datasets, such that the sampled design problems are
labeled and ranked according to the optimization search
routine that performs the ‘best’. ‘Best’ here is taken to
mean the search routine with the highest value of
Normalized Overall Quality for the particular sampled
design problem. Machine learning is then employed as a
classifier on the pre-processed table-like datasets. It aims
to generalize or learn as much as possible from the
datasets, so as to accurately identify clusters of design
problems from the sampled set that belong to the same
class. The resulting classes represent the search routines
that were observed to be ‘best’, among all those
available in the DES. If learning is successful, general-
izing from these data should be possible to aid in future
design sessions by successfully recommending the most
appropriate optimization technique that best matches
the new design problem to be searched.

A brief survey of the many machine learning
techniques described in (Aha, 1992; Paass, 1992; Deer-
wester et al., 1990; Holte, 1993; Langley and Sage, 1994;
Quinlan, 1993) has been performed to identify a suitable
learning technique for this application (see Fig. 1a for a
list of the different learning techniques investigated).
These techniques were evaluated according to their
accuracy, standard deviation and transparency. The
algorithms that have been found to be the most
competitive in this application are C4.5, Naive Bayes
and Probabilistic Neural Network (Quinlan, 1993;
Langley and Sage, 1994; Paass, 1992). Although most
of the machine learning techniques considered here
allow manual tuning, this has been considered to be too
time-consuming and computationally expensive. Among
the learning techniques considered, the use of a decision
tree inductive learning algorithm such as C4.5 (Quinlan,
1993) is preferred because they produce reasonable
classification accuracy at relatively low cost and more
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Abbreviations Machine Learning Techniques
1R Simple Classifier (Holte, 1993)
1D3 Decision Trees I (Quinlan, 1993)
C4.5 Decision Trees II (Quinlan, 1993)
1B Nearest-Neighbor (Instance-based) (Aha, 1992)
NB Probabilistic (Naive-Bayes) (Langley et al, 1994)
LSI Information Retrieval (Latent Semantic Indexing)
(Deerwester ef al, 1990)
PNN Neural Network (Probabilistic Neural Network)
(Paass, 1992)
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Fig. 1. Machine learning techniques and their abbreviations; (a) mean accuracics and standard deviation of each machine learning technique.

importantly, because they posses the ability to generate
trees or rules that provide the transparency, we seek to
give to designers. Designers often lack great expertise in
the use of optimization methods and therefore have little
confidence that extensive computational runs can
produce worthwhile results as opposed to just burning
up compute cycles. Therefore, when recommending
search routines for design activities, it is important for
the decision-making process to provide the necessary
transparency. Of the many machine learning techniques
available, knowledge derived in the form of decision
trees or rules seems to satisfy this human-centered
criterion best. Besides, human specialists can manually
validate these machine-generated decision trees or rules
and also use them to enhance the domain and

optimization knowledge of less experienced design
engineers.

In the methodology presented here, our main
motivation towards the use of the AIMLS strategy is
based on the observation that a single search routine
does not always emerge as the ‘best’ method throughout
the problem space of a single design domain. This is in
contrast to the BPS strategy, which generates a knowl-
edge model that recommends a single ‘best’ search
routine for a complete design domain. Here, we attempt
to use machine learning to generate knowledge models
for predicting which search routine is ‘best” when given a
design problem from a familiar domain. From extensive
investigations, although AIMLS is generally found to
perform better than BPS, it has been noted that it can
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sometimes perform poorly under cases, where there is
insufficient sampled design problem data for training
(i.e., search routines are too similar in performance to
each other, so that more samples are required to enable
a true differentiation of the ‘best’) and in multi-class
problems (i.e., too many search routines have been seen
as ‘best’ in a design domain). In these cases, general-
ization from the labeled datasets fails. Under such cases,
BPS may be used instead. In effect, both strategies are
used in the proposed knowledge modelling methodol-
ogy. Heuristically, it is found that when the accuracy of
the AIMLS generated selection is estimated to be poor
(ie. <0.7)* or when the performance of BPS is
significantly high (> 0.7), the selection proposed by the
BPS is preferred over that from AIMLS.

2.1.3. Adaptability

It is important that any knowledge modelling
methodology be adaptable. Here, once the DKB for a
domain has been successfully generated, an Adaptability
process is invoked repeatedly to ensure the continued
usefulness of the existing knowledge base. Throughout
the design process, a great deal of data is produced as a
result of the design-evaluate-redesign actions conducted
by designers. The Search Advisor archives all these data
and indexes them according to the design problem being
studied. At other times, scheduled batch jobs are started
to update the DKB using information from the archive
to ensure good coverage. This helps enable the Search
Advisor remain relevant to current design problem
domains as well as to encompass new ones.

3. Case study demonstration on transonic civil
transport aircraft wing design domain

3.1. Case study description

The use of the DKB Search Advisor is next
demonstrated on the domain of aircraft design, speci-
fically the wing design of transonic transport aircraft
(Keane and Petruzzelli, 2000). The design of the wings
for transonic civil transport aircraft is an extremely
complex task. It is normally undertaken over an
extended time period and at a variety of levels of
complexity. Typically, simple empirical models are use
at the earliest stages of concept design, followed by ever
more complex methods as the design process proceeds
towards the final detailed stages. The parameters used to
describe the wing design problem considered here
consist of the free-stream velocity and coefficient of lift
of the wing together with a small number of overall wing
geometry variables. The geometry is characterized by
the plan-form shape of the wing together with several

#Accuracy estimation normalized to unity.

span-wise functions such as twist and thickness to chord
ratio. These are represented by ecleven parameters (i.e.,
eleven optimization design variables). In order to
prevent the search from driving the designs to unwork-
able extremes, several constraints are placed on the
wings designed. These are the under-carriage bay length
(which must be accommodated within the root to kink
section of the wing), the fuel tank volume (which must
be accommodated between the main spars within the
wing), the wing weight and the pitch-up margin. A
typical geometric view of such an aircraft with
streamlines, the wing design variables, constraints and
respective design limits are shown in Fig. 2. The goal in
this problem is to design a wing with minimal drag
based on empirical models.

3.2. Design Exploration system

The Design Exploration system used here is the one
described in (Keane, 1995), and known as OPTIONS.
Among the many different methods in OPTIONS, some
are from standard libraries (Schwefel, 1995; Siddall,
1982), while others have been specially developed for the
suite, based on ideas culled from the literature. The 30
optimization search routines of the OPTIONS DES
used in the case study together with the abbreviations
employed in the paper are listed in Table 1. For more
details on the OPTIONS DES and search routines, the
reader is referred to (Keane, 1995).

3.3. Case study results

In aircraft wing design, wings are often designed for
minimal drag using a DES at given combinations of
cruise height, mach number and fuel weight® by varying
the various wing design variables. Here, a set of 729
design problems is first sampled using the Latin
hypercube method (McKay et al., 1979), each defined
by different cruise height, mach number and fuel weight
fraction, bounded between 7500-12,000, 0.1-0.85 and
0.2-0.5m, respectively.’ Each sample design problem
is then optimized using each search routine available
in the DES. The following offline simulation data
are archived; (1) Evaluation Count, (2) Minimum
Wing Drag (Objective Function Value), (3) Design
Boundary Violations, (4) Constraint Violations, (5)
Non-Evaluable Design problems and (6) Optimized
Design Variables.

>Note that here cruise height, mach number and fuel weight are not
variables to be optimized but rather considered the fixed parameters of
a design problem and vary only for different problems within the
aircraft wing design domain.

®The ranges of cruise height, mach number and fuel weight fraction
were obtained from design engineers working within the aircraft wing
design domain.
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11 Wing Design Variable Definitions
Lower Limit | Upper Limit Quantity (units)
100 250 Wing Area (m’)
6 12 Aspect Ratio
0.2 045 Kink position
25 45 Sweep angle (degrees)
0.4 0.7 Inboard taper ratio
0.2 0.6 Outboard taper ratio
0.1 0.18 Root thickness/chord
0.06 0.14 Kink thickness/chord
0.06 0.14 Tip thickness/chord
4.0 5.0 Tip wash (degrees)
0.65 0.85 Kink washout fraction
Four Design Constraints
2.5 Under-Carriage bay length
135000 Wing weight (N)
40.0 Wing volume (m’)
54 Pitch-up margin

Fig. 2. Geometric view of streamlines over a transonic civil transport aircraft with its wing design variables, constraints and respective limits shown.

The normalized average design search pel.rforrnances7
(i.e., search efficiency and quality) of each search routine
working on the aircraft wing design domain are
summarized in Fig. 3. Each abbreviation in the figure
represents an optimization search routine available in
the OPTIONS DES. The percentage measure of each
search routine’s robustness across the sampled design
problems are summarized in Fig. 4. From these figures,
it is evident that no single routine always generates the
best performance on each problem in the design domain,
irrespective of design speed, quality or robustness. These
results support the conclusions drawn in the literature
and mentioned in the introduction.

As previously discussed, different forms of knowledge
models representing the intention of the design engineer
can be generated from the archived data sources. In this
case study, we illustrate three common knowledge
models often desired by design engineers. By setting

"This may be achieved using Eq. (2).

IMPS in Eq. (1) to 0.5, the information necessary for
Balanced-Overall (BO) knowledge modelling can be
obtained. The Best-Speed (BS) model is obtained by
having IMPS set to 1.0, while setting IMPS to 0.0
enables the Best-Quality (BQ) model to be generated.

3.3.1. Knowledge modelling strategy I: Best Performing
Search (BPS) strategy

Using BPS, the various results of the DKB Search
Advisor can be read directly from the information
summarized in Fig. 3c. The routine giving the best speed
is seen to be Successive Linear Approximation (AP)
(Siddall, 1982)—the BS knowledge model emphasizes
the importance of speed and therefore ignores the final
result of the wing drag values as long as the final
searched design parameters are feasible. Simulated
Annealing (SA) (Kirkpatrick et al., 1983) gives the best
quality by providing the most-optimal designs on
average across the entire design domain. Finally, the
BO model balances speed and quality and the best
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The 30 optimization search routines employed from the OPTIONS DES

Abbreviations

30 Optimization search routines from OPTIONS DES

AP Method of successive linear approximation by Siddall (1982)

AD Adaptive random search by Siddall (1982)

BC Bit climbing algorithm (Keane, 1995)

CO Complex strategy of box by Schwefel (1995)

DA Davidon-Fletcher—Powell strategy by Siddall (1982)

DF Davidon-Fletcher-Powell strategy by Schwefel (1995)

DH Dynamic hill-climbing algorithm (Keane, 1995)

DO Design of experiments based optimizer (Keane, 1995)

DP Davis, Swan and Campey with Palmer orthogonalizational by Schwefel (1995)
DS Davis, Swan and Campey, with Gram-Schmidt orthogonalization by Schwefel (1995)
EP Evolutionary programming (Keane, 1995)

ES Evolution strategy based on the earlier work of Bick et al. (Keane, 1995)

FI Repeated one-dimensional Fibonacci search by Schwefel (1995)

FL Fletcher’s 1972 method by Siddall (1982)

GA Genetic algorithm based on clustering and sharing (Keane, 1995)

GO Repeated one-dimensional Golden section search by Schwefel (1995)

HO Hooke and Jeeves direct search by Schwefel (1995)

JO Jacobson and Oksman method by Siddall (1982)

LA Repeated one-dimensional Lagrangian interpolation search by Schwefel (1995)
MM Schwefel’s multi-membered evolution strategy by Schwefel (1995)

NU Powell routine in the Numerical Recipes cookbook (Keane, 1995)

PB Population-based incremental learning algorithm (Keane, 1995)

PD Powell direct search method by Siddall (1982)

PO Powell’s strategy of conjugate directions by Schwefel (1995)

RO Rosenbrock’s rotating co-ordinated search by Schwefel (1995)

SA Simulated annealing (Keane, 1995)

SE Hooke and Jeeves direct search by Siddall (1982)

SI Simplex strategy of Nelder & Meade by Schwefel (1995)

SM Simplex strategy of Nelder & Meade by Siddall (1982)

M Schwefel’s two-membered evolution strategy by Schwefel (1995)

The abbreviations for each search routine used in the paper are as shown in alphabetical order.

overall routine is found to be the Powell Direct (PD)
search routine (Siddall, 1982).

3.3.2. Knowledge modelling strategy II: AI machine
learning selected strategy (AIMLS)

In AIMLS, unlike BPS, the information available for
learning undergoes further data processing as table-like
datasets, before the knowledge models are built. The
sampled aircraft wing design searches are labeled and
ranked according to the search routine that performs
‘best’. So for example, in the case of the best-speed
model, ‘best’ represents the search routine that provides
a feasible design within the shortest period of time.
Here, the following statistics were obtained from the
datasets:

® Five routines rank as ‘Best Speed’. Even though there
are 30 optimization search routines available in the
OPTIONS DES, across the entire sampled wing
design domain of 729 sets of parameters, only five
search routines ever rank as ‘Best Speed’. They are
AP, PD, PO, FL and LA and form 56.0%, 21.7%,
16.6%, 4.7% and 1.0% of the BS dataset. Table 2
shows a portion of the pre-processed BS dataset.

® Seven search routines rank as ‘Best Quality’ and these
are SM, PD, SI, 2M, AD, CO and SA, with
respective  percentages 28.2%, 18.4%, 15.1%,
12.5%, 9.2%, 8.9% and 7.7% in the BQ dataset.

® Finally, six search routines rank as ‘Best Overall’.
These are AP, PD, PO, FL, LA and 2M, with
respective percentages of 49.1%, 28.4%, 14.1%, 4.7%,
2.2% and 1.5%, respectively, in the BO dataset.

The C4.5 induction algorithm is next used to extract
the knowledge models from these datasets in the form of
decision trees or rules. Fig. 5 shows one such decision
tree generated by the C4.5 induction algorithm from the
BS dataset. The accuracy estimation and standard
deviation of the different machine learning techniques
when applied on the datasets are also summarized in
Fig. 1b. It is evident that the C4.5, Naive Bayes and
Probabilistic Neural Network are generally most com-
petitive in this application.

4. Performance comparisons

In assessing the DKB Search Advisor, it is useful
to develop standards for comparison. The following
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Fig. 3. Average performance of each Search Routine in the OPTIONS DES across the set of 729 Sampled Aircraft Wing Design Problems (larger
values indicates faster searches or better designs). (a) Average Normalized Objective Function with rankings in descending order; (b) Average
Normalized Evaluation Count with rankings in descending order; (c) A Plot of Average Normalized Evaluation Count against Average Normalized

Objective Function for each Search Routine.

approaches, termed ‘Common Designer Strategies’

(CDS), have been derived from analogues to
typical designers’ behaviors (both novices and
optimization experts) when working on design
problems using a DES that requires design engi-
neers to choose the optimization search methods
manually. Five potential strategies have been
identified:

® The simplest and most basic strategy adopted by a
design engineer (usually a novice) is (CDS1) ‘Ran-
dom Guessing’. This just means randomly choosing
optimization routines from those available in the
Optimization engine to search on each new design
problem.

® The second strategy (CDS2) is the notion of always
using the same randomly selected optimization
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Fig. 4. Robustness measure of each Search Routine in the OPTIONS
DES across the set of 729 Sampled Aircraft Wing Design Problems.

Table 2

Processed best-speed table-like dataset

Mach number Fuel weight Cruise height ‘Best-speed’

(0.1-0.85) fraction (7500~12,000) search routine
(0.2-0.5)

0.35 0.225 8625.0 AP

0.725 0.425 10125.0 PD

0.1 0.45 7500.0 PO

0.85 0.275 8250.0 FL

0.22 0.475 10875.0 LA

routine, given that it was able to successfully generate
a feasible design the first time it was used in a
domain.

@ The third strategy (CDS3) is to utilize an optimiza-
tion method that is thought to be most robust, e.g.,
the Evolutionary Programming (EP) optimization
method is often regarded to be very robust and is thus
chosen here.

® The fourth strategy (CDS4) is an analogue to
optimization method favoritism that may be dis-
played by a designer. Here, the Genetic Algorithm
(GA) is chosen to be the design engineers’ favorite.

® The final strategy identified (CDS5), is utilizing a
optimization method that has generally been ac-
cepted as having the ability to provide a design within

the shortest time, e.g., Successive Linear Approxima-
tion (AP) is often regarded as the fastest available
method.

These five strategies are compared to the search
advisor system in Table 3. The performance statistics
shown in the table are based on design searches using
one-third of the 729 sample design problems as the
validation set, and using domain knowledge models
derived from the remaining samples as the training set.
Judging from these results, the Search Advisor manages
to generate significant improvement in design search
performance when compared to any of the traditional
‘CDS.

Finally, it should be noted that learning from
previous use of search routines is, of course, nothing
novel. It is just an analogue to designers’ actions in
deriving qualitative rules from their experiences on past
designs and using this knowledge to aid them in making
decisions on new designs. Here, the novelty lies in our
attempt to model and improve this process using
machine over human learning which is often tedious,
biased and error-prone.

5. Conclusion

In this paper, we propose a DKB Search Advisor that
supports design engineers in search activities. Results
from a case study where the Search Advisor is applied to
an existing engineering design problem domain are
presented. From these results, we have shown that a
DES supported by a DKB Search Advisor possesses the
advantage of improving the design process in terms of
both speed and design quality. The DKB Search
Advisor also helps to reduce the reliance of design
processes on optimization domain experts by ensuring
that designers require minimum knowledge of optimiza-
tion techniques. It helps eliminate any human biases
such as favoritism and makes full use of the data
generated by designers during design-evaluate-redesign
studies, which are otherwise often discarded. The results
presented also support the conclusions -of many pub-
lished papers that no single search technique is best
throughout a given design domain.
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Table 3

Normalized performance measures of the design searches using the OPTIONS DES supported by the DKB Search Advisor validated on 243 unseen
problems from the domain, in comparison with the respective ‘Common Designers Strategies” CDS 1-5

Strategy for conducting search design

Estimated search performance on the aircraft wing design domain

Best-Speed model

Best-Quality model Best-Overall model

CDS1 0.1007
CDS2 0.1351
CDS3 (EP) 0.0981
CDS4 (GA) 0.0981
CDS5 (AP) 0.5908
Domain knowledge-based search advisor 0.9447

0.4199 0.2496
0.5166 0.3155
0.6782 0.3882
0.6740 0.3861
0.2978 0.4443
0.7017 0.7191

The nearer the value is to 1, the better is the performances of each strategy in conducting design search.
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