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Abstract

In this paper we discuss two statistical techniques
for achieving computational economy during the op-
timization process. The first, the use of approxi-
mation methods is often applied when optimizing
expensive computational models of complex engi-
neering systems: the idea is to replace the expen-
sive analysis code by a cheap surrogate model for
the purposes of optimization. There are many ap-
proximation methods available in the literature, we
focus here on kriging. The second, screening experi-
ments, has received much attention in the statistics
community. This statistical tool has been applied to
the problem of structural optimization here. Indeed,
one purpose of this paper is to increase awareness of
these tools in the structural optimization communi-
ty. In particular, a focus here is on screening multi-
ple responses, as a structural optimization problem
typically requires optimization of at least one ob-
jective subject to at least one constraint. Finally,
both approaches are combined in order to provide
an algorithm which appears very efficient for large
dimensional (>10) structural optimization problem-
s. A structural optimization case study of industrial
interest demonstrates the approach.
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1 Introduction

In an industrial setting the role of a designer is far
from trivial. He or she is under continual pressure
to produce designs that are better than previous
variants, for instance: this might mean designing
a lighter and/or less costly structural component.
The resultant design must also meet stringent re-
quirements, e.g., meeting stress or displacement re-
quirements. It may also have to satisfy multidis-
ciplinary design criteria; an aero-engine component
designed by a structural engineer may also have to
satisfy certain aecrodynamic criteria. Not only is a
designer under pressure to produce such a design,
he or she is expected to produce it in ever shorter
timescales. We note that most scope for design im-
provements is during the preliminary design phase,
where less sophisticated models are invoked for the
analysis of a design. During final design only one
analysis of the design may be possible so it is essen-
tial that during the preliminary design phase a good
design satisfying all necessary constraints is chosen.

The idea of producing a better design leads natu-
rally to the idea of optimization. There are however
problems: even at the preliminary design stage a
finite element model or a CFD analysis (depending
upon the problem) would typically be used for evalu-
ating the design. Even at this early stage the cost of
running the computational model often proves to be
a bottleneck to the direct use of optimization meth-
ods. An alternative strategy is required.

To ameliorate these difficulties two statistical
techniques are discussed. The first of these uses ap-
proximation methods and the sccond is a statistical
screening study.

Perhaps the most common way of tackling
the problem of expensive function optimization is
through the use of approximations to the expensive
model. Response surface methods (see for example
Myers and Montgomery) seek polynomial approxi-
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mations to the function.® These models, once con-
structed, provide a cheap means of approximating
the expensive function/model. Expensive function
evaluation typically means an expensive computer
run, e.g. of an FE or a CFD code. An elegant opti-
mization algorithm employing kriging as the approx-
imation method was described in Jones et al.* Oth-
er approximation methods include the use of neural
networks and radial basis functions.'41® Of course,
this list is far from exhaustive: there arc a pletho-
ra of approximation methods in the literature, each
with its good and bad points. A full review of this
subject area is well beyond the scope of this paper
and we consider one approach, kriging, in some de-
tail. We note however that all these methods are,
in effect, forms of curve fitting built using selective
runs of the high fidelity model.

One potential problem with the above approach
is the accuracy of the approximation given the lim-
ited information available. This is particularly the
case in higher dimensions so a screening strategy to
overcome this burden is demonstrated.

The idea of a screening study is to obtain as much
information on how the input variables affect the re-
sponse using as few runs of the high fidelity code as
possible. The motivation here is that it may often
be the case that a few variables are responsible for
most of the variation in the response whereas most
of the other variables contribute little. Screening
experiments are used to find out which variables af-
fect the response the most. Once again, there are
a multitude of screening studies available in the lit-
erature. Amongst others Myers and Montgomery
discuss screening in the context of polynomial re-
sponse surface approximations.® Welch et al. suggest
an algorithm using the kriging hyperparameters to
suggest important variables.!® Elster and Neumaier
consider edge designs formed from conference matri-
ces whilst Clarich et ol. use t-tests applied to a latin
hypercube design.?!

Again, this is not an exhaustive list: it is by no
means obvious which is the best screening strategy
to use and when. The purpose here is-simply to
show how such stategies can lead to efficiency gains
in the optimization process. In this paper we opt
to use Edge designs for our screening study.? With
this approach we know in advance how many runs of
the high fidelity code are required for the screening
study: usually twice the dimension of the problem.
Also the algorithm is easy to implement and provides
a model independent estimate of the importance of
each variable.

We note further that it is natural to consider a
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combination of screening studics and approximation
methods to further increase the efficiency of the op-
timization process.

The rest of this paper is laid out as follows: Sec-
tion 2 introduces approximation methods (in par-
ticular, we focus on kriging). Section 3 briefly de-
scribes some screening strategies then considers one
in detail, Edge designs formed from conference ma-
trices, an algorithm we found very easy to implemen-
t. Section 4 discusses some potential optimization
strategies and in section 5 an industrial case study
is performed to demonstrate the approach. Finally,
in section 6 some conclusions are drawn.

2 Approximation Methods

Before we build an approximation we require a sys-
tematic means of selecting the set of inputs (called
a design of experiments, or DoE in short) at which
to perform a computational analysis.

In k dimensions the 2F vertices formed by the up-
per and lower bounds on each design variable form
the design bounding box within which the experi-
mental design is created. The idea with DoE is to in
some sense fill this design space with a limited num-
ber of points. As a result the algorithms are often
referred to as “space filling” designs.

Simple experimental designs include 2* factorial
designs which are created by specifying each design
variable at 2 levels, the upper and lower bounds on
each variable (this design considers every vertex of
the design bounding box). 3* factorial designs addi-
tionally include the midpoint of each input.

These experimental designs prove expensive {par-
ticularly for large k) so fractional factorial designs
or, alternatively, D-optimal designs could be consid-
ered. Many examples of these approaches exist in
the response surface literature; the interested reader
should consult Myers and Montgomery for further
details.’

One popular choice for generating an experimental
design for computational experiments is the Latin
Hypercube.” Such designs however are not guaran-
teed to have good “space filling” properties. As a
result optimum latin hypercubes can be considered.
These are latin hypercube designs that achieve op-
timality in some space filling sense (e.g., a max-
imin distance criterion).3 In this paper our exper-
imental designs are formed from optimal latin hy-
percube designs using this criterion. An algorithm
for generating such designs can be found in Morris
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Figure 1: Latin hypercube and optimal latin hyper-
cube design.

and Mitchell.® Examples of a latin hypercube design
and an optimal latin hypercube design using 7 points
with two independent variables (inputs) z; and z»
are shown in figure 1.

Once we have chosen a suitable DoE and evaluated
the high fidelity model at this set of inputs we can
construct an approximation.

In a typical approximation method the relation-
ship between observations (responses) and indepen-
dent variables is expressed as

y = f(x) (1)

where y is the observed response, x is a vector of k
independent variables

(2)

and f(x) is some unknown function. An approxima-
tion to this response

7= fx),

X = [T1,%2, .., L)

is sought.

Perhaps the simplest approximation model is a
polynomial response surface.® Here the response of
interest is replaced by a low order polynomial ap-
proximation. This is usually implemented as a local
model defined in a specific region of the design space,
namely around the current best design. The model
is only assumed valid in a small neighbourhood of
the current best design and the optimization algo-
rithm proceeds using a move limit or a trust region
strategy. Whenever the boundary of the trust region
is reached the model is updated and the process re-
peated.

Global approximations try to capture the be-
haviour of the response over the entire domain of
interest. Many approximations could be considered.
Amongst these are artificial neural networks, radial
basis functions and kriging.'4%4 In this paper we
focus on kriging; a brief description follows.

Kriging attempts to model some non-linear func-
tional relationship y = f(x). Given a set of \V train-
ing data [x™),x( . x™)] the kriging model can

(3)

3

be used to make a prediction § = f (x) at untested
points x in the design space.

A correlation matrix of the training data

R(x® x0)) = cxp{~d(x(i),x(j))] (4)

is first sought where d is some distance measure. For
example
k . .
d(x(’),xm) - Z 9h,f$§f) _ :I.ELJ) [P (3)
h=1

where 8y > 0 and 1 < pp, < 2 are some as yet
undetermined parameters. Note in the following we
fix pp = 2 as this has been found by experience to
be a good choice..

When we wish to sample at a new point x, we form
a vector of correlations between the new points and
the training data

r(x) = R(x,xP) = [R(x,xM), .., R(x, xM)].

(6)
The prediction is then given by
§(x) = p+ Ry — 1p). (7)
The mean and variance of the prediction are
1TR 'y

W= ITRETT ®)

-1 TR Yy -1
52 Iy =1p) y =14 ©

N

The parameters 8y, and pp, are determined by max-
imizing the likelihood

1 oxp —(y = 1) R (y — 1p)
@r) ()T IR|F 20?

(10)
of the sample.

Another useful quantity here is the mean squared
error of the prediction defined by

(1-1TR"1r)?

Tr-1
rR7r+ TTR-11

(x)=0%|1- } , (11)
this quantity allows us to asses the accuracy of the
prediction. Note that as set out here kriging strictly

interpolates the training data.

This technique will be used later when consider-
ing increasing the efficiency of optimization in our
industrial case study.
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3 Screening Methods

The purpose of a screening study is to rank the de-
sign variables according to how they affect the re-
sponse. Minimizing the number of expensive com-
puter simulations whilst maximizing the obtained
information is the ultimate goal. The more impor-
tant variables can then be altered in an optimization
problem of reduced dimension. We note that screen-
ing will also allow approximations to be constructed
with less training data.

Myers and Montgomery lists a set of screening
experiments using factorial designs.® As highlight-
ed earlier, these can be computationally very expen-
sive, requiring many runs of the high fidelity model.
This is particularly the case in higher dimension-
s. As a result, more efficient screening designs are
considered. These include fractional factorial and
Plackett-Burman designs.

One approach when considering a large number
of design variables is group screening.® Here cer-
tain variables are grouped together and a screen-
ing experiment is performed on the groups. Fur-
ther screening experiments can be performed on any
group which has a significant influence on the re-
sponse. We note here that the choice of groupings
of variables is important to the success of this ap-
proach. If there is little information available on the
response of interest then it is by no means obvious
how to do this.

One factor at a time studies could also be con-
sidered. These designs are computationally very ef-
ficient but only allow the influence of each variable
to be determined in a small neighbourhood of the
design space. This is a local sensitivity study using
k + 1 high fidelity model evaluations for a %k dimen-
sional problem.

In Elster and Neumaier an efficient strategy based
on the one factor at a time idea but taking a global
view of the design space is described.? The cost of
generating the screening data is of the order of 2k
runs. The response is evaluated at certain edges of
the design bounding box and differences along these
edges are used to estimate each variable’s impor-
tance. These edges turn out to be optimally (in the
sense of a distance criterion) placed so maximal in-
formation on the behaviour of the response should
be obtained. The approach provides a model inde-
pendent estimate of the importance of each variable.
Due to these appealing properties, this method will
shortly be described in a little more detail and used
in later sections for performing the screening study
on the industrial case study.

4

In the design and analysis of computer experi-
ments literature, Welch et al. describe an approach
using the model hyperparameters to screen out vari-
ables of little importance.?® Firstly the response is
evaluated at an N point DoE (latin hypercube herce).
The choice of IV is based on a heuristic argument.
In terms of our kriging model defined in section 2,
the likelihood function in & dimensions depends on
k hyperparameters. These are first set to a constant
and the optimal value of this constant is chosen to
maximize the likelihood. Then the hyperparameters
are varied one at a time to see which most increases
the likelihood. The process is repeated thus high-
lighting the most important variables.

Finally, in a recent case study Clarich et al. the
response was again evaluated at an N point latin
hypercube design.! The student parameter was used
to determine the most important variables.!' This
information was used to reduce the dimension of the
problem when optimizing an axial compressor.

In general it is not obvious which is the best
screening strategy to use - ultimately it will be prob-
lem dependent. In the case of screening studies a
comparison of certain techniques can be found in
Trocine and Malone.!?

We now turn our attention to the construction of
edge designs. These have been built here using El-
ster and Neumaier and the references therein.? One
construction when k is an odd prime is to consider

0 ifi=j
= 1 if j —i € Rmod(k)
~1 otherwise

S»;j (12)

where R is the set of quadratic residues mod(k) (see
Elster and Neumaier for a table of quadratic residues
for k < 50).2 Of course, this approach is not re-
stricted to odd prime dimensions. In general if our
dimension is k& and the next odd prime is &* we sim-
ply introduce k1 dummy variables (which have no
influence on the response) such that k + &k = k*.
Then apply the above.

The design matrix (on [~1,1]*) is then defined as

x=|

where 1 is a k& x 1 vector of 1’s. The difference over
the edges can then be used to determine the most
influential variables. See Elster and Neumaier for a
simple example.? In the case when k = 3 the edges
are shown in figure 2. We now go on to discuss
various possible optimization strategies.

1 S+IJ (13)

1 S-1
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Figure 2: Edge design for k& = 3.
4 Optimization Strategies

We first consider the use of ideas described in sec-
tions 2 and 3 to a problem involving a single objec-
tive and no constraints.

The most obvious strategy when considering ap-
proximation methods is given in figure 3. Here a de-

Construct
approximation

l

Optimize

approximation

. Terminate

Evaluate /[ at
predicted optimum zad
2dd to 1raining data

Figure 3: Algorithm using approximation methods.

sign of experiments is chosen and the expensive anal-
ysis code is run for this selection of inputs. An ap-
proximation is then constructed, this then replaces
the expensive analysis code for the purposes of op-
timization.

Once an optimum on the surrogate surface is
found, we evaluate it by making an extra run of the
original analysis code. We can then check whether
the design satisfies any convergence criteria and if
so, terminate. If not, then we can add the predicted
optimum to the training data, reconstruct the ap-
proximation and repeat this process. This can be
continued until either some convergence criterion is
achieved or the maximum number of allowable calls
to the high fidelity model is reached.

One potential problem here is that this algorithm

may locate and become trapped in a local minimum.
Using a kriging model we could replace the step “op-
timize the approximation” with the step “optimize
the expected improvement”, see Jones et al. for de-
tails on expected improvement.? This makes for a
sophisticated optimization strategy which balances
the need for a good solution with our uncertainty in
the model. This information is available to us since
kriging gives us an estimate of the error in predic-
tion via equation (11). The advantage of the ex-
pected improvement approach is that it will not be-
come trapped in a local minimum, it’s disadvantage
is the extra cost in terms of calls to the high fideli-
ty model. We opt for optimizing the approximation
in the example in section 3 but mention expected
improvement as an approach when the objective is
multimodal.

In terms of screening strategies, the most obvious
approach is to use the screening strategy to highlight -
important variables, then perform optimization on
the reduced dimensional problem (see figure 4). The

Screening study

Direct optimization
of reduced problem

Figure 4: Algorithm using a screening strategy.

idea is that the reduced problem will require many
fewer calls to the expensive model than a full direct
optimization. This approach is considered in, for
example, Clarich et al.!

A combination of both approaches appears natu-
ral. We propose this in the manner shown in figure
5. We could again consider expected improvement
in place of direct optimization of the approximation
surface. Note that the use of a screening study can
significantly reduce the number of training data re-
quired to build a model of sufficient accuracy, and
the use of approximation methods can significantly
reduce the cost of optimization, so a dual approach is
appealing. Moreover the results from the screening
study may be used to help build the approximation.

When we consider multiple objectives subject to
multiple constraints there are various strategies we
could consider. We here consider one objective sub-
ject to one constraint only, the ideas generalize easily
to more than one of both.

We first screen the objective and find the impor-
tant variables (the ones that affect the objective the
most) and label these as

(), 0. vf0)

vy, v o << k. (14)
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Sereening study

Do for reduced
prohlem

¥
Construct reduced
dimension approx.

Optimize reduced
dimension approx.

Yes r
}——-at Terminate J

[ Convergence?

|

Evaluaie S at
predicted optimum and
add to training data

Figure 5: Algorithm using approximation methods
and a screening strategy.

We then screen for the constraint and find the vari-
ables which have most influence on the constraint.
We label these as

(e} (c)

o b o)

s Vg

(15)
There may be some variables common to both, so
the total number of variables will be

@y << k.

a<a +ay << k. (16)

The first possibility is to consider a direct reduced
optimization problem of dimension « and use the
same strategy as before (figure 4). The second possi-
bility is to include the use of approximation methods
on this problem (see figure 3).

An alternative would be to consider two separate
optimization problems, one of size a; and one of
size a2 and consider some sequential strategy. For
instance we could optimize the problem of dimension
«; and then optimize the problem of dimension as
to move the design toward the constraint boundary.
It may be necessary to repeat the above.

The optimization could be performed using a di-
rect strategy or by utilizing approximation methods
as before. We note again, that the second approach,
considering two separate problems, can reduce the
number of training data required to produce an ac-
curate approximation.

5 Industrial Case Study

To demonstrate the ideas involved we consider ap-
plying various optimization strategies to the struc-

6

ture shown in figure 6. This model of a spoked struc-

ture was supplied by Rolls-Royce ple. The part of

=

Figure 6: The structure under consideration.

Figure 7: The part of the structure to be optimized.

the structure being optimized is shown in figure 7.
The rest of the model enforces realistic boundary
conditions on the structure. The structure is sub-
jected to realistic loadings. The optimization prob-
lem is as follows: minimize

w(x) (17)

subject to

o(x) < 30000 (18)

where w is the weight of the structure, ¢ is the max-
imum von Mises stress in the structure and x is an
11 dimensional vector defining the structural geom-
etry. This vector contains the design variables listed
in table 1. These are varied between realistic bound-
s, again supplied by industry. Each input is given
here in terms of a percentage where 0% refers to the
lower bound of each design variable and 100% refers
to the upper bound of each design variable.

First, the full 11d problem is optimized, we make
use of the OPTIONS design exploration system
here.’ The optimization algorithm employed is dy-
namic hill climbing, this is a gradient based op-
timization strategy using multiple restarts.!® We
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Table 1: Dcesign variables.

Design variable  Description

1 spoke rotation
T spoke section
T3 ring section 1
T4 ring section 2
Zs ring section 3
Tg ring section 4
z7 ring section 5
3 ring section 6
Zg ring curvature
T1p ring section 7
Z11 ring section 8

Table 2: “Optimal” design variables using 11d DHC
optimization.

Design variable Value

T3 100.00
T4 100.00
T 86.12

Zg 94.54

zg 100.00
o 98.68
Z10 100.00
L1 100.00
Resulting objective  Resulting constraint
7.8636 49793.50

made over 2500 calls to the finite element model;
the best final design is shown in table 2.

We show the optimization convergence history,
plotting the number of calls to the finite element
model against the best minimum weight in figure 8.
We note here that subsequent restarts have failed
to produce a better minimum than the first starting
point (all were worse), this will not generally be the
case. We further note that this direct search has not
found the global minimum of the problem, a better
design will be found shortly.

We next consider a screening study applied to the
objective and the constraint. An 11d screening s-
tudy is defined using edge designs formed from con-
ference matrices. This is shown in figure 9. Here
a + and a — refer to the upper and lower bound
of each design variable respectively. The differences
along edges can then be calculated and used to in-
fer the importance of each design variable. These

-
{

o 500 1000 1500 2000

neraticns

Figure 8: Convergence history of 11d DHC optimiza-
tion.

1 + + + - + + - = =+ -
2+ - 4+ 4+ - + + + = - = %
304+ + -+ o+ -+ o - -
4+ - + - + + = + + - -
5 0+ - - 4+ - + + = + + + =
6 + - - - 4 -~ + - 4+ 4+ o+
7 + - - =+ - 4+ o+ =+ o+
8 + + - - -+ - + - 4+
9 + + + - - -+ -+ o+ -
10+ - + + - - -+ -+ o+
T+ + - + 0+ - - -+ - o+
12+ - + - + + + - - - + =
3+ = = + = + + + - - - +
4+ + - = + - + 4+ + - - -
I5+ = 4+ = = 4+ - + 4+ + - -
16 + = = + = - + - + + + -
17+ - = = + - - + - + +
18 + - - - + - -+ - +

19 + - - -+ - -+ -

20 + e T T
21 + =~ % + 4+ - = =+ - =%
22 4+ 4 - + + + - = - o+ = =

Figure 9: Experimental design for screening study.
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are plotted for weight in figure 10 and for von Mises
stress.in figure 11. From these figures it is clear that
variables z1, #2, 10 and z;; appear to have most
influence on the objective whereas variables z2, x5,
g and zg appear to have most influence on the con-
straint. Although variable z; is important for both

|

L . . . . .
o 1 2 3 4 5 5 7

Figure 11: Screening study applied to von mises
stress.

the objective and the constraint, the screening study
suggests that the value of z, that minimizes weight
(0%) also reduces stress. As a result the value of
variable zo will be fixed at 0% and will not be con-
sidered further. We can also use the information
provided by the screening strategy to suggest fixed
values for the other variables which have little influ-
ence on the response (i.e. the weight and von Mises
stress). These are set as z3 = 100%, z4 = 100%,
77 = 100% and zg = 100% and will not be consid-
ered further.

The first strategy we adopt is as in figure 4, a
direct 6d optimization on the remaining variables,
again using dynamic hill climbing. Here 300 calls to
the finite element model are taken and the results are
as shown in table 3. The optimization convergence
history is shown in figure 12. We note that a better
solution is found whilst using fewer calls of the finite
element model, even allowing for the 22 calls used in
the screening study.

8

Table 3: “Optimal” design variables 6d DHC opti-
mization.

Design variable Value

T5 87.22

Ty 95.12

T10 100.00

11 99.89

Resulting objective  Resulting constraint
7.8164 49907.94

{——_DHC on Zc croplem |

IEL

o
Figure 12: Convergence history for 6d DHC opti-
mization.

The next strategy we adopt is to split the six di-
mensional optimization problem into two three di-
mensional problems again based on the screening
study. We first optimize with respect to variables
z1, z10 and z17 and fix variables z3, xg and zg at
values which reduce the stress in the model. This in-
formation is also available from the screening study
and suggests that we fix 25 = 0%, zs = 0% and
zg = 100%. Although the constraint is the most
complex response in this model, the screening study
suggests it varies little when we alter variables z1,
z19 and z11, S0 we can perform optimization using a
relatively small number of function evaluations, 30
here. The resulting optimum is shown in table 4 and
a convergence plot is shown in figure 13.

We then perform optimization with respect to
variables z5, ¢ and zg using the design in table
4 as a starting point. The behaviour of the stress
in now likely to be more complex so more finite el-
ement evaluations are required (we use 250 here).
The final minimum is shown in table 5 and the re-
sulting convergence history is plotted in figure 14.
In total we perform 22 finite element evaluations on
the screening study, 30 on the first optimization and
250 on the second optimization, a total of 302 finite
element evaluations in all.
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Table 4: Optimal design variables 3d DHC optimiza-
tion (phase 1).

Design variable Value

1 OOO

g 0.00

Ty 100.00

10 100.00

T11 100.00

Resulting objective  Resulting constraint
11.1096 47284.34

— DHC an rst3a proctem

total mass.
@

5
|

.z ’1
|

N i
0 s 10 15 20 25 30
terations.

Figure 13: Convergence history for 3d DHC opti-

mization (phase 1).

Table 5: Optimal design variables 3d DHC optimiza-
tion (phase 2). '

Design variable Value
zs5 85.90
T 94.11
Zg 99.43
Z10 100.00
11 100.00
Resulting objective  Resulting constraint
7.8657 49509.96
1.5 L
al]
s |
_EE S.S-L‘
B L&‘
e “vLi
™
8 it

(1 56 100 150 200 250
erations

Figure 14: Convergence history for 3d DHC opti-
mization (phase 2).

Table 6: Optimal design variables using 6d approx-
imation.

Design variable Value

51 10.34

T3 87.36

Tg 93.92

Ty 70.22

Z10 100.00

Ty ].OOOO

Resulting objective Resulting constraint
7.8794 49425.17

Finally, to further improve the efficiency of the
optimization process we consider the use of approx-
imation methods. Here we apply the kriging model
discussed in section 2 to the six dimensional and the
two three dimensional optimization problems.

Results of optimizing the six dimensional approx-
imation are shown in table 6. Here an optimal latin
hypercube design consisting of 30 finite element runs
is used to construct the approximation. A further 27
calls to this model are then made during optimiza-
tion. A total of 22 + 30 + 27 = 79 finite clement
evaluations are made in total.

When considering the two three dimensional prob-
lems, as highlighted earlier, the first three dimen-
sional problem appears to be relatively simple, so an
experimental design (optimal latin hypercube) con-
sisting of eight finite element runs is used to con-
struct the approximation. We then optimize the
approximation surface, immediately producing the
design in table 4. We then add this point and recon-
struct the approximation. Optimizing again gives
the same point so the algorithm terminates requir-
ing a total of nine calls to the finite element model.

We then consider the second three dimensional
problem. Due to the increased complexity we start
with a larger experimental design (here we chose an
optimal latin hypercube design consisting of 15 run-
s). We then optimize the approximation and evalu-
ate the finite element model at the predicted opti-
mum, reconstruct a new approximation and repeat
(see figure 3 for a schematic of this approach). We
consider 15 further calls to the finite element mod-
el requiring 30 finite element evaluations in total.
The final design obtained is shown in table 7. This
requires a total of 22 + 9 4+ 30 = 61 finite element
evaluations.

We briefly summarize all these results it table 8.
We note that in general all we require is a good de-
sign and not necessarily the true global optimum. A
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Table 7: Optimal design variables using two 3d ap-
proximations (phase 2).

Design variable Value

] 0.00

z5 86.98

Zg 95.58

Ty 80.56

Z10 100.00

T11 100.00

Resulting objective Resulting constraint
7.8203 48194.18

Table 8: Summary of findings.

Opt. strat. # FE evals. Min. weight
Direct 11d DHC 2786 7.8636
6d problem DHC 5322 7.8164
2 3d problems DHC 302 7.8657
6d approx. 79 7.8794
2 3d problems approx. 61 7.8203

comparison of the four approaches is shown in fig-
ure 15 (the 22 finite element evaluations required for
the screening study are also included here). A com-
bination of a screening study and an approximation
method produces the best strategy in terms of effi-
ciency allowing a very good design to be produced
with relatively few calls to the finite element model.

. (B¢
-+ Reduced aporox. 2 (3d)

Figure 15: Comparison of approaches.

6 Conclusions

Efficient strategies for optimizing expensive models
have been described. The first, approximation meth-
ods, are well known to the structural optimization
community. The second, screening studies are less
known and are used to reduce the dimensionality of
the optimization problem. This makes optimization
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subject to a large number of design variable (> 10)
more realistic. In particular, the combined use of
both screening strategies and approximation meth-
ods is demonstrated. This allows accurate surrogate
modcls to be constructed and optimized with very
few calls to the computational model of interest.

Further, it is often the case in structural optimiza-
tion that there will be multiple objectives and/or
multiple constraints and several strategies for opti-
mization are proposed, based on either grouping all
the important design variables together or by using
some sequential strategy. It is not obvious which
will perform best in general: a sequential strategy
strategy may require fewer evaluations of the expen-
sive model but it runs the risk of potentially miss-
ing out important interaction effects between design
variables.

We have demonstrated the approach with encour-
aging results on an industrial case study provided by
Rolls-Royce ple. Despite these results much remains
unanswered. Our approach involves the use of DoE,
screening and approximation methods. There are
many ways of doing all three but which is the best
combination in general is by no means obvious. No
doubt it would be problem dependent but we feel
that guidelines as to which will work well in certain
situations would be beneficial. This is beyond the s-
cope of this paper and would require many different
test cases encompassing a broad range of engineer-
ing problems before any real conclusions could be
drawn.

In this paper we opt for approaches which in our
(limited) experience work well. We are by no means
suggesting that the approaches we utilize form the
best overall strategy.

Further work of interest to us is the application of
the above techniques to multidisciplinary optimiza-
tion.
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