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Abstract

There are still considerable cost benefits to be
derived from improving aircraft designs both by
better searches in current design spaces and by
improved design space definition. The fastest way
to perform a constrained optimization is probably
using a classical quadratic programming (QP)
method.  However, it has been found difficult
to meet a large number of constraints in a fu-
ture concepts design program which consists of a
combination of engineering modules and using a
gradient based QP method. It was thought that a
genetic algorithm might ameliorate these problems.
Additionally, it is of interest to compare the QP
method’s performance with another gradient based
algorithm, with different constraint handling. This
paper therefore, compares QP, simplex (SIMPLEX)
and genetic algorithm (GA) search methods in a
future concepts design environment. The aim is
to compare both the quality of feasible solutions
and the search for new feasible parts of the design
space prior to running gradient search algorithms.
Reasons for the method choices and details of the
particular implementations used are given.

Four optimization methods (including a hypersur-
face fitting technique) were tested on two sam-
ple problems. These are a 4-dimensional and 34-
dimensional conceptual design for a high capacity,
long range transport aircraft, with 52 constraints in
both cases. Objective function evaluation time is
rapid for all the test cases used.

As preliniinary visualization showed that the design
space was not fundamentally multi-modal, the pri-
mary reason for resorting to use of the genetic algo-
rithm was to overcome non-linearitics in the data,
the superposition of which resulted in small local
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optima. Therefore a radial basis function (RBF)
hypersurface fitting algorithm was applied to cach
of the constraints and objective function and the
SIMPLEX method was used to optimise the re-
sulting design space. Although this worked well
in 4-dimensions, getting the right combination of
an accurate curve fit while still smoothing out the
local minima was too difficult to achicve in 34—
dimensions.

Comparison with the QP for known feasible and de-
sign of experiment (DoE) starts on a 34-dimensional
problem shows that QP is quicker and achieves a
better optimum when a feasible point is known.
However, QP appears to have difficulty in obtaining
a feasible point when starting outside the constraint
boundaries. The hybrid GA demonstrates poten-
tial for tackling this problem, although a heavily
constrained 34-dimensional space is a difficult prob-
lem, requiring a large number of evaluations. Such
searches may still be the quickest way of generating
a feasible design, however.

A deeper understanding of the relationship between
the objective function, penalty function and design
variables in the problem would enable better solv-
ing of the problem constraints. Extensive testing
of different weightings within the penalty terms was
not undertaken here. At present design space inte-
rior terms (i.e. terms involving satisfied constraints)
have only been tested in the hybrid GA and were

‘not utilized in the STMPLEX method. In the first

instance it is thought that further experimentation
should take place with the constraint weightings by
modifying the scaling in the optimization problems
and by modifying the form of the penalty functions
used. Further experimentation with the curve fitting
algorithms may also be productive.

American Institute of Acronautics and Astronautics

. Published by the American Institute of Aeronautics and Astronautics, Ir}c‘, with permission.




1 Introduction

In a conceptual design, in which an iterative search
is performed to find optimal aircraft layouts, there
are a large number of optimization methods (or al-
gorithms) that could be adopted. Roughly speak-
ing these methods can be divided into two. Those
which undertake a local search of the design space
and methods that use a global search. Typically the
local methods rely upon obtaining the gradient of
the design space about a particular point and then
iterating from this point using the gradient informa-
tion to find the nearest local optima. These methods
are limited. In particular:

e the methods are usually unable to escape local
sub—optima in the design space.

» depending upon the nature of the problem, the
result obtained from these methods may be very
dependent on the start point of the optimization
process (i.c. the initial design). ~

Global methods on the other hand are not as sus-
ceptible to these problems. These methods may be
further divided into two classes.

e Those which make approximations to the design
space, as, for instance, in the DACE kriging lit-
erature, see for example, Jones et al [7] and [8]
and the Space mapping literature, for example
Bandler et al [1] and combined approximation
and optimization, see for example the work of
Toropov et al [19, 20, 21].

o Those which probabilistically search the design
space. These are the stochastic methods such
as Simulated Annealing [12] and Genetic Algo-
rithms [3, 24].

The methodologies to be employed in a future con-
cepts design scenario need to robustly find optima
in a highly constrained multi-dimensional design
space. Recent work by Ong and Keane at South-
ampton University has considered the application of
a number of optimization strategies [15, 16] from
‘Keane’s OPTIONS suite [9]. Both the Genetic Al-

gorithm and Simplex method score highly in terms

of robustness and neither use gradients per se, al-
though the Simplex method is a local search. Cases
for which the evaluation calculation fails before com-
pletion can have a poor® value set for the fitness,
and either of these methods is robust to encounter-
ing such a poin.

*Poor here refers to a low value for a maximizing or hill
climbing optimization method and a high value for a mini-
mizing or downhill optimization strategy.

2

2  Methods Utilized

Four optimization procedures were used:

s The simplex algorithm (SIMPLEX) used was
the minimizing method of Nelder and Mead [14]
and [23] with restarts in conjunction with de-
creasing penalty function relaxation parameter.

Var.[Prob.|Prob. Starting Tower Upper

No.| 1 2 value bound bound
1 N ~/ | 0.6158320 x 10° | 0.5200000 x 10° |0.7000000 x 160
2 v v | 0.8535750 x 103 | 0.7500000 x 103 |0.1000000 x 104
3 x v 7.718800 7.000000 0.1100000 x 102
4 x v 0.6420070 0.4000000 0.8000000
5 x N 0.3094997 0.2000000 0.5000000
6 x N 0.1505300 0.1100000 0.1600000
7 x N 0.1022190 0.9000000 x 10~ 1|  0.1200000
§ % Vv 10.9390000 x 10~ |0.9000000 x 101 0.1200000
9 x v | 0.3850677 x 102 0.2500000 0.4500000 x 102
10 x v | 0.3850677 x 102 0.2500000 0.4500000 x 102
11 x v 5.525351 ~0.1000000 x 162{0.1500000 x 102
12 X N4 0.1634801 0.0000000 0.2000000
18 | x v 0.2577800 0.2000000 0.4000000
14 | x N 0.4180500 0.2000000 0.4500000
15 | x Vv 0.3299698 0.1000000 0.3500000
16| x X 0.7650000 0.6500000 0.8500001
17 | x x 0.7500000 0.4000000 1.000000
18 | x v | 0.2300000 x 102 0.0000000 0.2300000 x 102
19 x v | 0.3200000 x 102 ©0.0000000 0.3200000 x 102
20 | x x 1.000000 0.0000000 1.000000
21 | x Vv 4.017500 1.000000 6.000000
22 | x N 0.2542000 0.2500000 0.5000000
23 | x v | 0.1204770 x 103 | 0.3000000 x 102 [0.3000000 x 103
24 | x x 3.901000 0.0000000 5.000000
25 x v | 0.1986480 x 10% | 0.6000000 x 102 [0.3000000 x 103
26 | x X 2.832000 0.0000000 5.000000
27 | x x 0.0000000 —.1000000 1.000000
28 X X 0.0000000 ~.1000000 1.000000
29 x x | 0.1852000 x 103 | 0.9000000 x 102 |0.2000000 x 103
30 | x x 0.8900000 0.3000000 0.9000060
31 x x | 0.8397100 x 104 | 0.5000000 x 104 |0.1000000 x 103
32 | x x 0.8500000 0.7200000 0.8500000
38| x v | 08716750 x 10% | 0.2500000 x 10% |0.5000000 x 109
34 | x x | 0.1871600 x 105 0.0000000 0.1400000 x 10°
35 | x x | 0.1543333 x 10% | 0.5000000 x 102 |0.2000000 x 10°
36 | x x 0.8400000 0.2000000 0.8700000
37 | x x | 0.1543333 x 10% | 0.5000000 x 102 [0.2000000 x 103
38 | x x 0.8500000 0.2000000 0.8700000
39 | v | 0.3850400 x 16% | 0.3200000 x 106%® |0.4200000 x 106
0 | x x | 0.1066800 x 10% | 0.1000000 x 10% |0.120000¢ x 105
41| x x 0.8500000 0.8000000 0.9000000
42 | x v 0.5752550 0.5000000 x 1071 1.000000
43 | x x | 0.1188720 x 105 | 0.9450000 x 104 ]0.1200000 x 105
44 | x x 0.8500000 0.8000000 0.9000000
45 | x x 0.9496400 08000000 0.9500000
46 | x x | 0.1188720 x 10° | 0.9450000 x 10? {0.1400000 x 10%
a7 | x| . x 0.8500000 0.8000000 0.9000000
48 Vv v | 0.5200600 x 106 | 0.4000000 x 105 |0.6000000 x 106
49 X Vv 0.6524800 0.1000000 0.9000000
50 | x x 0.8980800 0.1000000 0.9000000
51 | x V| 0.3915600 x 10° | 0.8000000 x 10 |0.4500000 x 106
52 | x Vv | 0.2300000 x 10% 0.0000000 0.2300000 x 102
53 X v | 0.2007360 x 102 0.0000000 0.3200000 x 102
54 | x v | 0.2300000 x 102 0.0000000 0.2300000 x 102
55 | x v | 0.2535807 x 102 0.0006000 0.3200000 x 102
56 | x v | 0.1220400 x 103 0.0000000 0.3000000 x 103
5T | x v | 0.1205400 x 103 0.0000000 0.2000000 x 103
58 | x x | 0.6096000 x 104 | 0.8000000 x 102 }0.7000000 x 10%
59 | x /| 0.1830030 x 103 | 0.8000000 x 102 |0.2500000 x 10°

Table 1: Starting values and bounds for Problems 1
& 2. Variable scaling was by reference to the upper
and lower design variable bounds. A tick (/) indi-
cates the design variables in the specified problem.

¢ A classical quadratic programming (QP)
method, which utilizes both Gauss-Newton and
quasi-Newton optimization, the latter for the
case when the optimization is at a point distant
from the feasible set ([18]).
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* A Genetic Algorithm (GA). The features of this
approach are detailed in Appendix B and its
performance was tested on a well understood
analytical problem. In general it performs as
expected and well, although (of course) is not
guaranteed to find the global optimum. As the
number of dimensions increases the harder it
becomes to find the global optimum with any
optimization method.

* A linear radial basis function (RBF) (see for
example [8]) was used to fit a design of ex-
periments (DoE) of the objective function and
constraints separately. Then the STMPLEX
method was used to optimize the model. A
final evaluation of the objective function and
constraints is then required to be sure that the
curve fit is accurate in the region of the opti-
mum. If the result is inaccurate a new model
may be created including the previously found
optimum point.

3 The Conceptual Design

Problem

Figure 1: Side view of a typical aircraft design.
The following test cases were utilized:

1. A conceptual design problem in 4 dimensions.

2. A conceptual design problem in 34 dimensions.

The measure of efficiency utilized is the number of
objective function and constraint evaluations as the
cost of the rest of the optimization is relatively small
compared to these.

The conceptual design of a high capacity aircraft
considered here uses up to a total of 59 possible
design variables. Many conceptual design optimiza-
tions are difficult, non-linear, optimization problems
because the large number of constraints in the prob-
lem give a heavily constrained design space, with

3

small pockets of feasibility. The optimizations were
performed using QP, the SIMPLEX method alone
and a hybrid SIMPLEX/GA on subsets of these.
The design variables used for both the 4 and 34 di-
mensional problems were as shown in Table 1. The
problem has 52 active constraints in all cases, includ-
ing equalities and inequalities. From a large num-
ber of possible alternatives, the objective function
chosen for these test cases was direct operating cost
(DOC). The objective function calculation is in-
voked in the conceptual design program by calling
the subroutine design. A sketch of a side view of a
typical aircraft design is shown in F igure 1.

In all cases the hybrid GA was used with
SIMPLEX evaluations at the first, 100k, 200t
and 400" evaluations, see Appendix B. There are
200 members in the population at each generation
unless otherwise stated: Where the number of mem-
bers in the population is reduced, the convergence
criteria of the SIMPLEX method is increased so
that fewer evaluations take place when running the
SIMPLEX method part of the hybrid GA.

3.1 The conceptual design problem in
four dimensions. (Test problem

1.)
Prob. Var. Starting Final Movement
No. Na. value value
la 1 615832.0000 615485.4375 -0.1%
1la 2 853.5750 852.8229 - 0.1 %
la 39 385040.0000 384897.9375 -0.0%
la 48 529060.0000 528791.6873 -0.1 %
ib 1 615832.0000 615804.9375 - 0.0 %
ib 2 853.5750 852.7921 -01 %
1b 39 385040.0000 384980.3438 - 0.0 %
1b 48 529060.0000 520049.9375 -0.0%
ic 1 615832.0000 615483.5625 -01 %
le 2 853.5750 852.7855 -0.1%
lc 39 385040.0000 384895.1562 -0.0%
le 48 5208060.0000 528789.8125 -01%
1d 1 615832.0000 615434.5000 -01%
id 2 853.5750 853.1131 -0.1 %
id 39 385040.0000 384919.8750 -0.0%
1d 48 529060.0000 528845.0625 -0.0%

Table 2: Test result 1a: GA Results after 104657
calls to design from a DoE of 200 points includ-
ing & specified start, which meets all 52 constraints.
Test result 1b: QP Results after 54 calls to design
from the same specified start, which meets all 52
constraints. Test result 1c: GA Results after 114078
calls to design starting from a DoE of 200 points.
Here, the starting point shown is for comparison
purposes and was not used to obtain the solution.
Test result 1d: RBF & QP Results after 10 calls to
design from the specified start, which meets all 52
constraints.

Four results were obtained for the 4 design variable
problem. The first, result Ia, from the hybrid GA
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with a start from a DoE of 199 pointst and the point
which satisfies the constraints given in Table 1. The
second, result 1b, from QP with a start from the
point which satisfies the constraints given in Table
1. The third, result I¢, from the hybrid GA from a
DoE of 200 points ezcluding the point which satisfies
the constraints. The fourth result was obtained by
fitting the objective function and constraints with
an RBF and using the SIMPLEX method to op-
timise the derived design space. The final values of
the design variables and constraints for problem 1
are given in Tables 2 and 3 respectively and a com-
parison between the achieved values of the objective
function, DOC is given in Table 4.

Constraint Constraint|Constraint[Constraint]Constraint
No. & Type value -1a | value -1b | value -1c | value -1d
Initial 1# 0.8360 0.3359 0.8359 0.3362
Initial 4# 1.3604 1.3604 1.3604 1.3608
Initial 6 1.4072 1.4072 1.4072 1.4073
Initial T8 0.2676 0.2676 0.2676 0.2676
Initial 9% 0.1946 0.1946 0.1946 0.1947
Initial 20= 0.0000 0.0000 0.0000 6.0000
Initial 27# 0.0068 0.0068 0.0068 0.0068
Initial 20# 4.5762 4.5762 4.5762 4.5762
Initial 32# -38.4687 . 8.0000 -38.4062 -28.3437
Initial 33# 0.0006 0.0006 0.0006 0.0008
Initial 34# 0.0984 0.0984 0.0984 0.0984
Initial 36# 0.0077 0.0077 0.0077 0.0077
Commonality 45 0.0549 0.0549 0.0549 0.0850
Commonality 46% 0.6876 0.6875 0.6875 0.6879
Longit. S&C 84# 0.0000 0.0000 0.0000 0.0002
Longit. S&C 67T# 0.2077 0.2077 0.2077 0.2078
Longit. S&C T1# 0.0300 0.0300 0.0300 0.0302
Longit. S&C 737 0.1934 0.1935 0.1935 0.1932
Longit. S&C T4# 0.2077 0.2077 0.2077 0.2078
Longit. S&C 76# 0.0008 0.0008 0.0008 0.0007
Longit. S&C 78# 0.0671 0.0671 0.0670 0.0673
Longit. S&C 79# 0.0164 0.0163 0.0164 0.0162
Longit. S&C 80# 0.1934 0.1935 0.1935 0.1932
Longit. S&C 81# 0.2077 0.2077 0.2077 0.2078
Longit. S&C 82# 0.0427 0.0427 0.0427 0.0427
Longit. S&C 84# 0.0929 0.0929 0.0830 0.0927
Longit. S&C 85# 0.0591 0.0591 0.0590 0.0593
Longit. S&C 8T# 0.2680 0.2680 0.2680 0.2678
Longit. S&C 88# 0.2827 0.2827 0.2827 0.2828
Longit. S&C 897 0.0306 0.0306 0.0306 0.0306
Longit. S&C 90z 0.0088 0.0308 0.0308 0.0307
Lateral S & C 944 0.2141 0.2218 0.2234 0.1418
Engine Out 1124 0.0165 0.0165 0.0165 0.0165
Takeoff 113 0.0001 0.0000 0.0001 0.0000
Takeoff 114# 210.0 206.9 209.9 210.7
Takeoff 116= -61.2 0.0 -61.2 -165.6
Climb 118# 4.234 4.209 4.284 4.231
Climb 119# 1.1604 1.1511 1.1602 1.1604
Climb 127# 2.0558 2.0485 2.0558 2.0548
Cruise 1214 0.7708 0.7613 0.7706 0.7714
Cruise 129# 2.0955 2.0883 2.0954 2.0947
Hold 150% 0.01 0.01 0.01 0.01
Overall Mission 151# 10820.2 10679.5 10798.6 10870.1
Overall Mission 1529 -51.4 0.0 -52.4 -24.0
Climb 159#% 6.2746 6.2746 6.2746 6.2747
Cruise 161# 5.6330 5.6330 5.6330 4.4326
Climb 167# 4.4325 4.4324 4.4324 0.2195
Cruise 169# 4.5356 4.5556 4.5555 4.5559
Climb 176# 0.2193 0.2163 0.2193 5.63331
Cruise 190# 0.00 0.00 0.00 0.00
Overall Mission 1924 148.5 66.1 151.3 126.8
Low speed Perf. 193# 0.0293 0.0203 0.0280 0.0396

Table 3: Results for Test Problem 1. # - inequality
constraint, = - equality constraint, S&C - stability
and control, Longit. — Longitudinal and Perf. —
Per formance.

The two results from the GA were very similar, both
in terms of modification to design variables, values
of the constraints and the final value of DOC ob-
tained. This indicates that the G4 is searching well
in a design space for which prior knowledge is un-
available. QP converged, after just 54 evaluations

TSee McKay [11] for a description of the DoE used.

4

having a smaller reduction in DOC. In fact the re-
duction in DOC was small for all three cases, indi-
cating that the design space is tightly confined by
the constraints in the problem and that the initial
design was of high quality.

Figure 2 shows a contour plot of the sum of the con-
straint functions for design variables 1 and 39 for a
reduced portion of the design space. Although the
individual constraint functions are linear with some
noise, the space is complicated as there are 52 de-
sign variables in total. The plane of symmetry in
the plot is caused by the equality constraints in the
problem. Figure 3 shows a Hierarchical Axes Tech-
nique (HAT) plot [13] of a reduced portion of the
4-dimensional design space. Viewing this domain
more closely and in just one dimension shows that
local minima can be created due to superposition
of constraints when slight deviations from the lin-
ear occur in some individual constraint evaluations.
The problem with these is that they generally stop
the gradient search method before it can reach the
true optimum.

RBF’s can be used to perform regression on the con-
ceptual design space to try to eliminate these lo-
cal minima. However, a balance is required between
smoothing the data and not being so far away from
the original data that the design point located no
longer satisfies the constraints. This is easily possi-
ble in four dimensional space, as found in result 1d
shown in Tables 2 to 4, but results satisfying all the
constraints were not achieved in higher dimensions.

Start Result|no. of| Start Final | Movement
evals
specified (GA) la 104657 [118784.22{110768.36 -0.013%
specified (QP) ib 54 [116784.22|110779.52] -0.004%
from DoE (GA) 1c  |114078 - 119768.12] -0.013%
specified (RBF&QP)| 1d 10 |110784.22[118769.24] -0.013%

Table 4: GA and QP Results for test problem 1.

3.2 The conceptual design problem in
34—dimensions. (Test problem 2.)

Five sets of results are presented for this problem.
The first (result 2a) is for a specified start, using
the hybrid GA. These results are compared to those
from QP (result 2b). Then a DoFE is used to provide
all the starting points for both the hybrid GA (result
2¢) and QP (result 2d). Finally, a larger run of the
hybrid GA using the DoE to provide all the starting
points is performed (result 2e).

result 2a in which the starting point specified in Ta-

ble 5 and a DoE of 99 points is optimized using
the GA and gives just a 0.1% improvement in DOC

American Institute of Aeronautics and Astronautics



No Scaling Starting Lower Upper
factor value bound bound
1 [0.5000000 x 10°10.6158320 x 10°] 0.520000 x 10° | 0.700000 x 10°
2 |0.800000 x 103 |0.8535750 x 10| 0.750000 x 103 | 0.100000 x 104
o T T EOTYRRCE B5STE 3 10.100000 x 102 | 0.7718800 x 10 | 0.700000 x 10 | 0.110000 x 102
. ) 4 0.600000 0.6420070 0.400000 0.800000
5 0.300000 0.3094997 0.200000 0.500000
6 0.100000 0.1505300 0.110000 0.160000
7 0.100000 0.1022190  [0.900000 x 101 0.120000
8 0.100000  [0.939000 x 10~ 1{0.900000 x 10~1 0.120000
9 10.300000 x 107 |0.3850677 x 10° 0.250000 0.450000 x 102
10 | 0.300000 x 102 |0.3850677 x 102 0.250000 6.450000 x 162
11 5.00000 0.5525351 x 10 |-0.100000 x 10%|~0.150000 x 102
12 0.150000 0.1634801 0.000000 0.200000
13 0.300000 0.2577800 0.200000 0.400000
= 14 0.400000 0.4130500 6.200000 0.450000
w 15 0.200000 0.3299698 0.100000 0.350000
w 18 0.200000 x 162 | 0.280000 x 102 0.000000 0.230000 x 102
& 16 {0.300000 x 107 | 0.320000 x 102 0.000000 0.320000 x 162
& 21 0.500000 0.4017500 x 10 | 0.100000 X 10 | 0.600000 x 10
B 22 0.300000 0.2542000 0.250000 0.500000
23 0.200000 x 103 [0.1204770 x 10%| 0.300000 x 102 | 0.300000 x 103
25 {0.200000 x 103 |0.1986480 x 103 | 0.600000 x 102 | 0.300000 x 103
33 |0.300000 x 10 |0.3716750 x 100} 0.250000 x 10° | 0.500000 x 108
39 |6.200000 x 10 {0.3850400 x 10% | 0.320000 x 108 | 0.420000 x 106
42 0.500000 0.5752550  |0.500000 x 10~} 0.100000 x 10
48 10.100000 x 10 |0.5200600 x 10| 0.400000 x 108 | 0.600000 x 106
49 0.100000 0.6524800 0.100000 0.900000
51 |0.100000 x 100 [0.28915600 x 10%| 0.300000 x 108 | 0.450000 x 106
. 52 10.200000 x 102 | 0.230000 x 102 0.000000 0.230000 x 102
fats e 1 53 | 0.200000 x 103 0.2007360 X 1q’2 0.000000 0.320000 x mf
54 |0.200000 x 102 | 0.230000 x 102 0.000000 0.230000 x 102
55 | 0.200000 x 102 |0.2535807 x 102 0.600000 0.320000 x 102
56 |0.200000 x 102 [0.1220400 x 108 0.000000 0.300000 x 103
57 [0.200000 x 102 |0.1205400 x 10° 0.000000 0.200000 x 102
Figure 2: Contour plot of two design variables in the 5¢ 10.100000 x 10% {0.1830030 x 103 | 0.800000 x 102 | 0.250000 x 163

Four Dimensional Design Space. Variables 2 and 48
are held fized. (The numbers on the axes denote pizel
number (289 in total)).

Table 5: Starting values, bounds and description for
results 2a and 2b. Variable scaling by reference to
the upper and lower design variable bounds for the
hybrid GA result 2a. The scaling values shown were
used for QP result 2b.

from the specified start in 71747 evaluations, with a
population size of 100 per generation. However, no
constraints were violated in this result. This can be
compared directly to result 2b, in which a run with
QP having 39878 calls to design gives a 3.941% im-
provement in DOC from the specified start, again
with no violations. Clearly the GA explored the
wider design space to no effect while a concentrated
search by QP produced better results.

EERE -3

In result 2¢, which uses a Latin hypercube DoE
and hybrid G A without a specified start, after 71039
evaluations the optimum still violates constraint 52
significantly. The final DOC is 113811.23, which is
4.986% better than the specified start used in results
2a and 2b.
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An alternative to this strategy, for comparison pur-
poses is performed in result 2d. Here, a DoE with
200 points and QP was started from the best 5
points in the DoFE. In all cases two or more con-
straints were violated. The GA software was easily
adapted to perform the DoFE and select the 5 best
solutions ready for input to QP. This complete pro-
cess uses a similar number of evaluations to running
the hybrid GA. These results are compared in Table
6.

Figure 3: HAT plot of the sum of the constraints in
the Four Dimensional Design Space. The tile one in
from the right end siz tiles from the top is detailed in
Figure 2. In an individual tile the slow variables (2
and 48) remain fized. Going from tile to tile in the
z-direction represents a change in design variable 2
and in the y-direction a change in design variable

48.
As a final comparison a larger GA run was under-

3
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Res~Start] start final |% imp—jno. violated no. of]
ult of extra
point] DOC DOC roved [viols]| constraints evals

2¢ GA - 113811.23] 4.986% 1 32 71039
2d 1 |117436.58[115288.80] 1.828% 32, 64, 113 3157
2d 2 117440.81|111277.48] 5.248% 4 2,94, 114 25520
24 3 ]117445.05/113885.16| 3.031% | 4 2, 64, 113 9907
2d 4 ]117449.00|111412.09; 5.140% 9 .76,04,113,114] 20764
2d 5 |117453.53]113245.39} 3.583% 2 32,76 9121

Table 6: Test result 2d used a DoE with 200 points
and started QP from the best 5 of these. The total
number of evaluations for result 2d was 68669. result
2e¢ is also shown, in which a DoE with 200 points
was used to start a hybrid GA.

taken (result 2¢). This used a starting population
consisting of a DoE of 200 points. The results are
given in Tables 7 and 8. This optimization used a to-
tal of 161094 evaluations in all. Only constraint 152
is outside the tolerance for this result and this has a
scaled value of 2.0 x 1072 compared to the value of
1.0 x 107 which was the set tolerance. It is likely
that this value would be improved by changing the
relative scaling of this parameter in the problem and
tuning the other parameters. (Extensive testing of
relative scalings and parameter settings lies outside
the scope of this work.)

Variable Starting Final Movement
No. value value
T 615832.0000 | 599900.6250 375%
2 853.5750 $22.8808 +8.1%
3 7.7188 7.2042 -6.7%
4 0.6420 0.6105 —4.9%
5 0.3095 0.3821 +23.5%
6 €.1505 0.1347 ~10.5%
7 0.1022 0.0910 ~10.9%
8 0.0939 6.0909 —3.2%
9 38.5068 38.9042 +1.0%
10 38.5068 38.0002 +1.0%
11 5.5254 5.2000 —5.9%
12 0.1635 0.1719 +5.1%
13 0.2578 0.3046 +18.1%
14 0.4130 0.3455 —16.3%
15 0.3300 0.3409 +3.3%
18 23.0000 21.3569 ~T7.1%
19 32.0000 29.4349 ~8.0%
21 4.0175 3.6786 —1.0%
22 0.2542 0.2530 -0.5%
23 120.4770 134.4109 +11.6%
25 198.6480 259.1774 +30.5%
33 371675.0000 | 350576.0812 -5.7%
39 385040.0000 | 386220.0038 +0.3%
42 0.5753 0.4474 -22.2%
48 520060.0000 | 513187.2812 -3.0%
49 0.6525 0.6899 +5.7%
51 391560.0000 | 403604.5000 +3.1%
52 23.0000 21.5397 —6.3%
53 20.0736 6.0470 —69.9%
54 23.0000 20.6249 -10.3%
55 25.3581 6.3736 -74.9%
56 122.0400 118.1193 -3.2%
57 120.5400 192.0125 +59.3%
59 183.0030 157.5008 —13.9%

Table 7: GA Results after 161094 calls to design
from a DoE of 200 points, ezcluding the specified
start (shown here for comparison purpeses). Only
design variables which are varied are shown in this
table. Test result Ze.

It seems that the best application for the GA here
is in the search for feasible points and not to opti-
mize once in the vicinity of an optimum, a task that
gradient methods, such as QP seem better suited
for (they require fewer evaluations to reach a better
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optimum). However, @ P has significant difficulty in
finding solutions where all the constraints are satis-
fied; this is typical of gradient based optimizations in
gencral. However, the number of evaluations using
the GA to perform this task are significantly more
than the designers have been using to date. Even
so such searches may still be quicker than manual
methods, in which solutions from QP are adjusted
manually until the constraints are solved and then
QP is used to improve the result. The known start-
ing point that yields result 2a is such a case and the
final answer from @) P remains the best result seen for
this problem. Without this information, QP alone
is unable to yield a feasible solution.

Comparison between the Si-
mplex and QP Methods

Constraint Constraint
No. & Type value
Initial 1# 0.1652
Initial 4# 0.5358
Initial 6# 1.3395
Initial 74 0.2057
Initial 9# 0.1469
Initial 20= -0.0040
Initial 27# 0.2412
Initial 20# 0.1366
Initial 32# -38.4687
Initial 33# 0.0077
Initial 34 0.0114
Initial 363 0.0017
Commonality 45% 0.1342
Commonality 46# 1.0013
Longit. S&C 79# 0.0235

0.2129 0.2129 0.2874
0.2008 0.2009 0.2008 0.2759
0.0334 0.0267
0.0002 0.0082 0.0302

Longit. S&C 73# 80# 8T#
Longit. S&C 67# 747 81# 88#
Longit. S&C 82z 89#
Longit. S&C 76# 83% S0#

Longit. S&C 84# 0.0802
Longit. S&C 647 Ti# 787 85# 0.0004 0.0304 0.0798 0.0718
Longit. S&C 94# 0.1386
Engine Out 1123 0.0141
Takeoff 113# 0.0185
Takeoff 1147 1.8
Takeoff 116= -41.6
Climb 118# 2.221

1.0988 0.5535 -1.5240
1.3241 1.0323

Climb 119#127#135*
Cruise 121#120#

Hold 150# 0.00
Overall Mission 151# 28515.4
Overal] Mission 152# -1240.7

4.5315 3.0266
4.2343 3.3488

Climb 159#167#
Cruise 161#169%#

Climb 176# 0.2845
Hold 190# 0.45
Overall Mission 192# 5796.6
Low Speed Perf. 103# 1.1830
Objective | Start Final |  Movement
5OC___| 11978492 11825827 |  -1.978%

Table 8: GA Results after 161094 calls to design. #
- inequality constraint, = - equality constraint, S&C
- stability and control, Longit. — Longitudinal and
Perf. — Performance. Test result Ze.

A test case was also chosen to compare the relative
performance of SIMPLEX and QP. The input for
both the SIMPLEX and QP methods in this test
case is given in Table 9. In each case the input deck
has been adjusted by the designers to best suit the
individual optimization technique, as would be done
ordinarily during their optimization procedure.
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The final values of the design variables and con-
straints are given in Tables 10 and 12 for the meth-
ods and a comparison betwcen the final values of
DOC achieved are given in Table 13. These results
show that the two methods probably give an equally
good optimum, but one that is different in each case.
However, the SIM PLEX method requires 2.5 times
the number of evaluations as QP and therefore takes
2.5 times as long to run. These numbers of evalua-
tions may be decreased by judicious reduction of the
number of evaluations in the individual SIMPLEX
method iterations and the number of SIMPLEX
iterations used.

It is interesting to note that none of the SIMPLEX
method resulting design variables sit on the bound-
ary, whercas the QP results do. The SIMPLEX
method penalty function currently does not drive
the optimizer to the boundary, whereas the QP algo-
rithm solves the problem at the boundary (although
it too does not contain penalty function terms for
satisfied constraints).

Var| Secaling Starting Starting Tower Upper
No factor value value bound bound
(QP) (SIMPLEX)
1 |0.5000 x 100[0.6145240 x 100 |0.6158320 x 100 | 0.52 x 10° [0.70 x 10°
2 |0.8000 x 103]0.8600500 x 10 |0.8535750 x 103 0.75 x 10% J0.10 x 10%
3 0.1000 x 102  7.718800 7.718800 7.000  [0.11 x 102
4 0.6000 0.6420070 0.6420070 0.4000 0.8000
5 0.3000 0.3084997 0.3094997 0.2000 0.5000
6 0.1000 0.1505300 0.1505300 0.11000 | 0.16000
7 0.1000 0.1022190 0.1022190  ]0.90 x 107 1| 0.12000
8 0.1000 |0.938000 x 10~ 1|0.939000 x 107 1}0.90 x 10™*| 0.12000
o |0.3000 x 102]0.3850677 x 102 |0.3850677 x 102| 0.25000 |0.45 x 102
10 |0.3000 x 102|0.3850677 x 102]0.3850677 x 102 | 0.25000 |0.45 x 102
11 5.000 5.525351 5.525351 ~0.10 x 10%{0.15 x 102
12 | 0.15000 0.1634801 0.1634801 0.0000 0.2000
13 0.3000 0.2577800 0.2577800 02000 0.4000
14 0.4000 0.4130500 0.4130500 0.2000 0.45000
15 0.2000 0.3209698 0.3299698 ©0.1000 0.35000
18 [0.2000 x 102] 0.23000 x 102 | 0.23000 x 102 0.0000 10.23 x 102
19 [0.3000 x 102 0.32000 x 10% | 0.32000 x 107 0.0000 {0.32 x 102
21 0.5000 4.017500 4.017500 1.000 6.000
22 0.3000 0.2527000 0.2542000 0.25000 0.5000
23 J0.2000 x 103]0.1217730 x 163]0.1204770 x 10%| 0.30 x 102 0.30 x 10
25 10.2000 x 108]0.1992000 x 10% [0.1986480 x 103 | 0.60 x 10 |0.30 x 103
33 0.3000 x 106}0.3707500 x 106 |0.3716750 x 108 | 0.25 x 10° 0.50 x 166
39 {0.2000 x 1050.3852800 x 106 |0.3850400 x 10| 0.32 x 105 j0.42 x 10
42 0.5000 0.6053700 0.5752550  0.50 x 10~1| 1.000
48 10.2000 x 108]0.5280600 x 108 {0.5200600 x 100 0.40 x 10% |0.60 x 106
49 0.1000 0.6524800 0.6524800 0.1000 0.9000
51 |0.1000 x 106]0.3917250 x 106{0.8015600 x 106 | 0.30 x 106 |0.45 x 10
52 0.2000 x 102| 0.23000 x 102 | 0.28000 x 102 0.0000 }0.23 x 102
53 10.2000 x 102[0.2007360 x 102 |0.2007360 x 102| 0.0000 |0.32 x 10>
54 |0.2000 x 102| 0.23000 x 102 | 0.23000 x 102 0.0000 {0.23 x 102
55 [0.2000 x 102]0.2535807 x 102 {0.2535807 x 102| 0.0000 |0.32 x 102
56 [0.2000 x 102]0.1220400 % 102 {0.1220400 x 10%| 0.0000 |0.30 x 103
57 0.2000 x 102]0.1205400 x 10%{0.1205400 x 10| 0.0000 |0.20 x 103
56 0.1000 x 108/0.1830030 x 102 ]0.1830030 x 103 |0.8000 x 102j0.25 x 103

Table 9: QP and SIMPLEX starting values and
bounds. Variable scaling utilized in the SIMPLEX
was determined by reference to the upper and lower
design variable bounds and for the QP method by
use of the values shown.

5 Conclusions

A comparison has been made between a quadratic
programming method, a stand alone SIMPLEX
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method and a hybrid SIMPLEX/GA with constraint
handling capabilities and clustering. The hybrid GA
includes a Latin hypercube DoE to obtain an initial
starting population rather than the random popula-
tion that is used more usually. It is thought that this
DoE gives better coverage through the design space.
The hybrid GA also uses a SIMPLEX method to
converge to local peaks in the population at genera-
tions specified by the user.

The slight non-linearities in some of the constraints
in the problem and interaction between these con-
straints causes the design space to be too compli-
cated to be solved directly using gradient based
methods without a starting solution which satisfies
the constraints. The actual design space seems to
be small as are the numbers of solutions obtained
which satisfied all the constraints. It is clear that
real problems contain more difficulties than may be
imagined at the outset.

Var. | Starting Final Move~—
No. value value rment
T 615632.0 | 575306.5625 S6.1 %
2 853.5750 §38.6968 17 %
3 7.7188 7.5173 - 26 %
4 0.6420 0.6047 - 5.8 %
5 0.3085 0.3770 +21.8 %
[} 0.1505 0.1447 -39 %
7 0.1022 0.0981 -41 %
8 0.0939 0.0991 +55%
9 38.5068 38.8596 +09%
10 38.5068 38.8533 +09%
11 5.5254 5.4566 -12 %
12 0.1635 0.1971 +20.5 %
13 0.2578 0.3209 +24.5 %
14 0.4130 0.3435 -16.4 %
15 0.3300 0.3483 + 5.6 %
18 23.0000 22.8644 - 0.6 %
19 32.0000 20.6856 -35.4 %
21 4.0175 3.7738 6.1 %
22 0.2542 0.2608 +26%
23 120.4770 117.7440 -23%
25 198.6480 207.8923 +47%
33 371675.0 | 326765.8125 -12.1 %
39 385040.0 | 371247.1250 -386 %
42 0.5753 0.5960 + 8.6 %
48 520060.0 | 491671.0312 -7T1 %
49 0.6525 0.8862 +35.8 %
51 391560.0 | 387539.2812 -1.0 %
52 23.0000 22.0185 - 04 %
53 20.0736 9.3408 -53.5 %
54 23.0000 0.1569 -99.3 %
55 25.3581 2.7812 -89.0 %
56 122.04 119.6032 -2.0%
57 120.54 166.4054 +38.0 %
59 183.00 154.5911 -15.5 %

Table 10: SIM PLEX method results after 5 itera-
tions and 43436 calls to design.

Comparison with the gradient based method, QP,
on the 4~ dimensional conceptual design problem
demonstrates that the hybrid GA can perform better
than QP and that performance does not necessar-
ily depend on starting point. However, a very large
number of evaluations are required by the hybrid
GA for a small improvement in DOC during local
scarches.

Comparison with the QP for known feasible and
DoE starts in 34-dimensions shows that QP is
quicker and achieves a better optimum for a fea-
sible starting point. However, Q)P appears to have
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Var Starting Final Movement
No value value
1 614824.0000 579744.1250 -5.7 %
2 8§60.0500 8§78.3734 +21%
3 7.7188 7.7997 + 1.0 %
4 0.6420 0.6472 + 0.8 %
3 0.30935 0.3315 +71%
6 0.1503 0.1432 -4.9 %
7 0.1022 0.0900 *LOWER*
g 0.0839 0.0900 *LOWER*
9 38.5068 38.2133 -0.8%
10 38.5068 38.2133 -0.8%
11 5.5254 5.2120 - 5.7 %
12 0.1635 0.1438 -12.1 %
13 0.2578 0.2149 -16.6 %
14 0.4130 0.4351 +.5.3%
15 0.3300 0.3418 + 3.6 %
18 23.0000 23.0000 *UPPER*
19 32.0000 31.5136 -1.5 %
21 4.0175 4.0283 + 0.3 %
22 0.2527 0.2542 + 0.6 %
23 121.7730 128.0341 + 51 %
25 196.2000 209.648¢ +32%
33 370750.0000 327129.6250 -11.8 %
39 385280.0000 375586.4375 -235 %
42 0.6054 0.6188 +22%
48 528060.0000 492989.1250 - 6.6 %
49 0.6525 0.6561 + 06 %
51 3981725.0000 375528.7500 -4.1 %
52 23.0000 20.3109 -11.7 %
53 20.0736 18.7838 - 64 %
54 23.0000 23.0000 *UPPER™
85 25.3581 25.9294 +23%
56 122.0400 122.5491 +04%
37 120.5400 121.0918 + 0.5 %
59 183.0030 185.6261 + 1.4 %

Table 11: @ P Results after 226 iterations and 17118
calls to design.

difficulty in obtaining a feasible point when starting
outside the constraint boundaries. The hybrid GA
demonstrates potential for tackling this problem, al-
though the heavily constrained 34-dimensional de-
sign space proves to be a difficult problem, requir-
ing a large number of evaluations. However, such
searches may still be the quickest way of generat-
ing a feasible design. The DoFE part of the hybrid
G A was used successfully to provide useful multiple
starts for QP.

As visualization showed that the design space was
not fundamentally multi-modal, the primary reason
for resorting to use of the genetic algorithm was to
overcome non-linearities in the data which resulted
in small local optima. Therefore an RBF hypersur-
face fitting algorithm was applied to each of the con-
straints and objective function and the SIMPLEX
method was used to optimise the resulting design
space. Although this worked well in four dimensions,
the right combination of an accurate curve fit and
smoothed local minima was too difficult to achieve in
34-dimensions for this problem with 52 constraints.

Comparison between QP and the SIMPLEX
method alone show that QP is faster and is more
likely to obtain an answer on the design boundary.
However, preliminary speeds of the SIMPLEX
method may be significantly improved by judicious
trimming of the number of evaluations per iteration
and iterations per optimization.

It is thought that the application for the hybrid GA
will not be to simply optimize designs, but rather to
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find feasible starting points for input to a gradient
search technique, such as the SIMPLEX method
in isolation or QP.

It is clear that the performance of the SIMPLEX
method alone and hybrid GA will improve with use
and tuning of the multiple input parameters and de-
sign variable and constraint scaling factors.

Constraint Constraint Constraint
No. & Type Value - SIMPLEX | Value - QP
Initial 1§ 0.1461 0.4805
Initial 4% 0.3557 1.8577
Initial 63 1.2126 1.3894
Initial 79 0.1791 0.2334
Initial O3 0.0000 0.1768
Initial 20= -0.0064 0.0000
Initial 27¢# -0.0006 0.0000
Initial 20# 1.1465 6.0820
Initial 82# -170.5625 -0.0156
Initial 33 0.0035 0.1192
Inivial 343 -0.0001 0.0098
Initial 367 0.0007 0.0084
Commonality 45# 0.1331 0.0626
Commonality 46# 0.6077 1.0839
Longit. S&C 647 0.0028 0.0000
Longit. S&C 67# 0.2437 0.2122
Longit. S&C T1# 0.0328 0.0300
Longit. S&C 73# 0.2601 0.2188
Longit. S&C 7T4# . 0.2437 0.2122
Longit. S&C 76# " 0.0001 0.0000
Longit. S&C 78# 0.0829 0.0739
Longit. S&C 7T9# 0.0366
Longit. S&C 80# . 0.2601
Longit. S&C 81 0.2437
Longit. S&C 82# 0.0083
Longit. S&C 847 0.0771
Longit. S&C 85# 0.0749
Longit. S&C 87# 0.3347
Longit. S&C 88# 0.8187
Longit. S&C 89# 0.0004
Longit. S&C 90# 0.0301
Longit. S&C 94# 0.1647
Engine Out 112# 0.0116
Take off 113# 0.0000
Take off 114% 40.4
Take off 116= -119.4
Climb 118% 0.000
Climb 119# 0.5011
Cruise 1214 0.6373
Climb 1277 1.0906
Cruise 1203# 1.4592
Hold 1503 0.00
Owverall Mission 151# -15.9
Overall Mission 152# -363.6
Climb 159¢ 3.8644
Cruise 161# 3.6482
Climb 167# 3.1324
Cruise 1699 3.4219
Climb 176# 0.2158
Hold 190# 0.29
Overall Mission 192# 11055.7
Approach/Air-drop speed 193# 0.0056

Table 12: SIMPLEX method results after 5 itera-
tions and 43436 calls to design. QP results after 226
iterations and 17118 calls to design. # - inequality
constraint, = - equality constraint and S&C - stabil-
ity and control.

Final
113882.76
113613.52

no. of evals]}
43436
17118

Movement
~4.918%
-5.084%

Start
119784.19
119699.58

Objective
SIMPLEX DOC
QP DOC

Table 13: Comparison of QP and SIMPLEX
method final DOC values.

6 Future Work

This report highlights a number of topics for future
work. The first is that understanding of the design
space to be optimized is limited duc to the large
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number of design variables and constraints utilized
and the complexity of the objective functions to be
optimized. This sort of understanding would help
the set up of the optimization problem to be solved.
A number of visualization techniques, such as hier-
archical axes techniques [5] and [13] and Kohonen's
Self-Organizing Maps (SOM’s) [10] have been pro-
posed although they may not extend well into 34 di-
mensional design spaces. Future work will use tech-
niques such as these to derive an understanding of
the interplay between the design variables and con-
straints. It is expected that this type of visualization
would provide insight in addition to the viewing of
aircraft general arrangements that currently takes
place in aircraft conceptual design teams.

A deeper understanding of the relationship between
the objective function, penalty function and design
variables in the problem would enable better solv-
ing of the problem constraints. Extensive testing
of different weightings within the penalty terms was
not undertaken here. At present design space inte-
rior terms (i.e. terms involving satisfied constraints)
have only been tested in the hybrid GA and were
not utilized in the stand alone SIM PLEX method.
In the first instance it is thought that further ex-
perimentation should take place with the constraint
weightings by modifying the scaling in the optimiza-
tion problems and by modifying the form of the
penalty functions used. Further experimentation
with the curve fitting algorithms may also be pro-
ductive. '

It is also clear that a considerable amount of user
knowledge goes into the optimizations which is not
being fully brought to bear in the automated pro-
cess described here. In an improved process the
knowledge capture activities being undertaken by
the University Technology Partnership (UTP, see for
instance Wallace et ol [22]) may also be implemented
to good effect.

Finally, it is good optimization practice to remove
equality constraints completely from the problem,
by elimination of design variables. The conceptual
design problem has a number of equality constraints
‘the elimination of which, if possible, should improve
the G A results in particular.
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A Definition of Terms Used

The nature of the terms penalty function, fitness,
objective, constraints and penalty and are all some-
what arbitrarily defined in the optimization litera-
ture. Therefore to clarify, for the purposes of this
paper the definitions used are as follows:

e The term penalty function i1s applied to the
function used to calculate the fitness, includ-
ing terms for the objective and constraints. The
penalty function used in the Genetic Algorithm
and SIMPLEX method used in this paper
is given in equation 1, and further description
of this and other examples are provided and
discussed in Siddall’s book, [17].

pl) = Objx) + = >l ()

2L
Pl s O

The quadratic programming method utilizes:

L Q
p(x) = Obj(x) + 3_ X' () +v 3 (e (x)*.
(2)

where superscript A4 indicates an “active” con-
straint as determined by the quadratic program-
ming method.

e The term fitness is chosen to denote the single
figure of merit for an individual in the popula-
tion including contributions from the objective
and constraints. Any single number numerical
result from equation 1 would be a fitness.

o The term objective and objective function is ap-
plied to the cost, to be maximized or minimized,
-excluding the constraints. In equation 1, Obj(x)
is the objective.

e The term constraints is applied to those func-
tions which limit the extent or range of the ob-
jective. These are to be satisfied during the
optimisation and may include design variable
bounds which may be included in the problem

in the same or different ways. The terms c;/ (x)
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and cf (x) are the violated and satisfied con-
straints, respectively, in equation 1.

o The term penalty is applied to the terms asso-
ciated with the constraints and their weightings
in the penalty function. In equation 1 the terms:

L

1

o> )
I=1

are the penalty terms.

and 1° i L
Jj=1 CJS(X)

B The Genetic Algorithm

A more detailed description of the Genetic Algo-
rithm (GA) method can be found in Davis [2] and
Holland [6]. The procedure for the GA used in this
paper is summarized in Figure 4.

Figure 4: Schematic to show the constituents of the
proposed hybrid GA. The hill climbing does not nec-
essarily take place at every generation.

Genetic algorithms are usually started using an ini-
tial population randemly selected from the design
space. This population provides an initial sample of
the design space. However, the quality of the sta-
tistical sample of the data is improved by using a
Latin hypercube DoE (from McKay [11]). The de-
sign space is evenly divided into a number of levels
corresponding to the number of design variables in
the problem and on each level of every design vari-
able one point is placed at random.

This Genetic Algorithm provides design variable en-
coding in terms of a variable number of decimal dig-
its. This is thought to be a compromise between bi-
nary coding which is not as efficient or often as accu-
rate (although this depends on the number of digits
used) and real number coding which can spend to
long searching irrelevant regions of the design space.

The Genetic Algorithm uses a set of operators on
the current population of solutions to create a new

11

generation of candidate solutions. At the basic level
there are two main operators . These operators are
crossover, which combines the information between
two solution strings, and rnutation, which is the ran-
dom perturbation of the digits in the solution string.

The Genetic Algorithm used here also uses a cluster-
ing or niche forming algorithm to delay the conver-
gence of the algorithm, so that more widely spaced
global optima are located as opposed to similar lo-
cal ones [24]. To cffect this, the fitness is modified so
as to penalize population members in large clusters
and those close to the cluster centroid. This encour-
ages the formation of new clusters. The new fitness
is given by:

5

; 3
fi m} (3)
where:
o
m =7, —n¢ X (2‘1‘{:”)
@ is a constant
die is the distance between the
individual ¢ and its niche’s centroid
Gmaz 1S the maximal distance that
clusters can be apart ;
Te is the number of individuals in the

cluster
and the individual z; belongs to the cluster C.

Constraint penalty functions are used to drive the
result of the optimization away from the constraint
boundaries. Strings are selected for crossover ran-
domly on a basis of their fitness. That is a more
fit string is more likely to be selected as a parent,
for combination with another string. The intention
here is to propagate aspects of the fit solutions into
the next generation such that as the algorithm iter-
ates from one generation to the next the fitness of
the solutions increases, hopefully converging to the
optimal solution. So called 'roulette wheel’ parental
selection is utilized in this algorithm to achieve this.

The literature shows that so called hybrid methods
potentially give better solutions than genetic algo-
rithms in isolation, see for instance [4]. In the hybrid
method, once promising regions have been located,
an efficient local technique (e.g. the SIMPLEX
method) can be used to converge on precise minima.

In keeping with the Darwinian idea of survival of
the fittest, the GA is a maximizing optimization al-
gorithm. The G4 also does not recalculate objective
or constraint values already known from the previous
generation, but uses the previously calculated value,
the fitness itself is though always recalculated.
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