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ABSTRACT

With the development of increasingly sophisticated
adjoint flow-solvers capable of providing objective
function gradients at reasonable computational (costs,
modern deterministic gradient-based search methods
have come to be regarded as amongst the most
powerful tools in aerodynamic shape optimization and
MDO problems. However, their performance can be
. disappointing when the objective function landscape
features multiple local optima, long valleys, noise or
discontinuities. Equally, stochastic global explorers,
such as Genetic Algorithms (GAs), while less affected
by these problems, are relatively slow to converge. In
this paper we propose GLOSSY (Global/Local Search
‘Strategy), a generic hybrid approach, which combines a
global exploration method with gradient-based
exploitation. We analyze the performance of two
optimizers based on the GLOSSY framework (fusing a
GA with a quasi-Newton local search method) and we
show through a set of comparative tests that on the
moderately noisy objective landscape of a jet-engine
inlet shape optimization problem the hybrid
outperforms both of its components used individually.
We also look at the issue of what global / local search
effort ratio gives the hybrid the best performance.

INTRODUCTION

In the optimization community in general and in the
field of aerodynamic shape optimization in particular,
there has been a long-running debate about the use of
gradient-based local improvement procedures versus
stochastic global exploration methods. Both categories
- have seen significant developments over past decades.
While in the early days of numerical aerodynamic
shape optimization' (late 70’s) the concept of gradient-
-based search was almost equivalent to that of the
steepest-descent algorithm, by now a wide range of
sophisticated optimizers of this class have entered
everyday design practice. Steepest-descent is still used
occasionally, but it has been gradually superseded by
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modern algorithms based on the Newton method (with
line-search or trust-region-type implementations),
quasi-Newton methods (BFGS, DFP) and conjugate
gradient optimizers (Fletcher-Reeves, Polak-Ribiere)?.
On the other side of the argument, stochastic
exploration methods have also evolved from tentative
simulations of physical and biological phenomena into
a set of powerful search tools, the most popular being
Simulated Annealing (SA) and Genetic Algorithms
(GA). Hajela® provides a recent survey of these and
other zeroth-order methods from a Multidisciplinary
Optimization (MDO) perspective.

As the body of experience on these two main categories
of search techniques grew, so did the design
community’s awareness of their respective limitations.
Gradient-based local searches, while very efficient on
many smooth, unimodal objective function landscapes,
often provide less then satisfactory results when the
problem exhibits valleys and/or multiple local optima.
Once trapped in a valley or at a local optimum the
search needs to be re-launched from a new (commonty
random) starting point. This operation usually involves
wasteful, lengthy exploration of unpromising regions of
the search space, such as those with very poor objective
values or virtually flat regions (until the neighborhood
of a local optimum is reached) and one can only hope
that the new starting point is in the basin of attraction of
a thus far unexploited local (or perhaps the global)
optimum. Conversely, global explorers, such as GAs,
are good at leaving poor objective value regions behind
quickly, while simultaneously exploring several basins

of attraction. What they lack is high convergence speed

and precision in the exploitation of individual local
optima.

To summarize: global explorers are good at locating
basins of attraction — gradient-based local searches are
good at descending into them. Additionally, like most
zeroth-order methods, global explorers are less affected
by noise in the objective landscape. A solution that
suggests itself is attempting to get the best of both
worlds by combining a local gradient-based
improvement procedure with a global explorer to form
a hybrid method that allocates the available
computational resources between the two in an efficient
manner. As the search engine that we are proposing in
this paper is based on the global/local hybridization
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principle, we delve more deeply into this issue in the
next section.

A crucial factor that affects the performance of any
gradient-guided search (“pure” or hybrid) is the
computational cost and quality of the gradient. Finite
differencing, the most straightforward gradient
calculation method is problematic on both counts. As
the evaluation of each component of the gradient in a
given point of the search space requires an evaluation
of the objective function, its computational burden can
be immense. This is a particularly great drawback in an
MDO context, where the number of dimensions of the
search space (and hence the number of components of
the gradient) is likely to be high. Using cheaper,
partially converged objective function values is not a
solution, as the noise on the gradient thus obtained by
finite differencing 1is usually too high to be of any value
for an optimization algorithm.*

A paper published by Jameson® in 1988 signaled a
breakthrough in the gradient evaluation problem. In this
seminal contribution he introduced the adjoint method
for aeronautical computational fluid dynamics (CFD), a
technique -whereby a new set of equations can be
constructed (based on the solution of the flow
equations), which, at a computational cost similar to
that of the solution of the flow equations, yields all
components of the objective function gradient.
Jameson, Reuther and other coworkers developed the
method for potential flow, the Euler equations and the
Navier-Stokes equations, at the same time proving its
benefits from the optimization point of view with
applications ranging from 2D aerofoil design’ to the
optimization of high-lift systems®™ and full aircraft
configurations.> #1°

A number of other research groups have also performed
aerodynamic design optimization using adjoint flow
solvers: Monge and Tobio'!, Eliott and Peraire’?, Giles
and Pierce’®, Anderson and Venkatakrishnan!®, Kim,
Obayashi ef al.™>', Iollo, Salas and Ta’asan'’, Arian
and Vatsa’, Nemec and Zingg*, etc. (for a
comprehensive survey see Ref. 18).

To date, as far as we were able to ascertain, all reported
aerodynamic design applications of the adjoint method
have relied solely on deterministic gradient-based
optimization. Amongst these, quasi-Newton methods
(BFGS, in particular) and the smoothed gradient
method'® (based on the principle that aerodynamic
shapes are predominantly smooth) appear to have the
best performance.

A detailed comparative study of these approaches has
been conducted by Jameson and Vassberg'’ on the
brachistochrone, a classic calculus of variations
problem (with a known analytical solution), considering
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every mesh point on the curve (the shape of which is te
be optimized) as a design variable. However, very few
comparative studies exist in the literature that assess the
relative merits of gradient-based deterministic
optimizers and stochastic search methods (comparisons
between single runs of SA, gradient-descent and GA
have been described by Obayashi®® and Sasaki®'). As
pointed out earlier, pure gradient-based methods may
be the best choice on some smooth and unimodal
landscapes, but when several local optima and/or
convergence noise are present, their superiority is far
from obvious.” Additionally, as Ta’asan’™ points out,
high dimensional landscapes resulting from the
discretization of partial differential equations (such as
the conservation equations of a flow field) often have
badly conditioned Hessians (i.e., the level curves
around optima are long ellipses, rather than circles),
which reduce the efficiency of pure gradient-based

searches.

For such design cases we propose a global/local hybrid
approach and we measure its performance against that
of its two components, two optimizers often used
separately in aerodynamic design applications: a GA
and a quasi-Newton search using the BFGS update™.
We also look at one of the critical issues of global/local
hybridization: how to divide the available search time
between the two components of the hybrid.

The problem used in the empirical comparative tests
described here is the shape optimization of a jet engine
inlet. A full potential flow solver is- employed to
evaluate the objective function and its gradient via an
adjoint solution.

GLOBAL/LOCAL HYBRIDS

An increasingly popular way of overcoming the
shortfalls of global exploration methods (e.g., GA) and
gradient-based local searches is to combine them into a
hybrid. The backbone of such a hybrid 1s the scheme
that allocates the available search-time between the
exploration and the exploitation process and determines
which designs will take part in exploration or
exploitation.

The optimization literature provides a wide variety of
search-time division strategies. In an aerodynamic
shape optimization context, Vicini and Quagliarella™
describe an application of one of the most popular and
most straightforward such heuristics. They interrupt a
GA search once every second generation and then
perform 2-3 steps of conjugate gradient local search
(the gradients being evaluated by finite differencing) on
the best individuals (a conjecture is made that running
the local ' improvement - procedure to complete
convergence would have a negative effect on the

overall performance of the algorithm). The improved
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individuals are then fed back into the population where
they continue to evolve within the GA framework (this
is termed Lamarckian learning).

A similar approach is to run the GA for a preset number
of generations and then improve the best individual(s)
with the local search method. However, such two-phase
techniques involve a serious implementation difficulty:
there is no reliable way of determining the best moment
for switching from exploration to exploitation. This
problem exposes one of the major conundra in hybrid
optimizer design: “what percentage of the total
available search time should be devoted to exploration
as opposed to exploitation?” Several studies™?® have
looked at mathematical models aimed at calculating the
optimum search-time division ratio — however, the
results are difficult to apply in practice, mostly because
the proposed mathematical models require an in-depth
knowledge of the optimizers as well as of the landscape
under scrutiny.

A possible way of deciding when to shift from global
search to exploitation is to control the search time
division adaptively. In such hybrids the responses of the
system govern the resource allocation®. The
allocation heuristic usually takes feedback from the
search by measuring the improvements made by both
approaches and, based on this “reward” data, it decides
whether exploration or exploitation should have its
‘share of CPU time increased or decreased.

An added problem in devising evolutionary/local search
hybrids is that in most cases it is not obvious which of
the individuals resulting from the evolutionary process
should undergo local improvement. Common practice
is to pick the fittest member of the GA population —
however, as there is no reliable way of telling how far
from convergence a GA population is, there is no
guarantee that this will lead to the global optimun®.

With these considerations in mind we have constructed
a generic search time division control framework,
which allows the combination of a population-based
global explorer and a local improvement procedure
using either simple (deterministic) or adaptive control
of search time allocation. Our template is based on the
principle of reproductive isolation. This idea (often
encountered in  the evolutionary optimization
literature’™ %), spawned by the natural metaphor of
species competing for the same resources, involves
running the local and global optimizers in separate
populations with periodical spells of migration. The

* This difficulty suggests another line of attack: the
application of statistical population modcls for assessing the
modality of the scarch space. The interested reader is referred
to a preliminary study conducted on an artificial test function
by Hacker e al.”’
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adaptation is accomplished by resizing the populations
before the migration periods according to the relative
average objective function value improvements
achieved by the two methods in their respective
populations (i.e., the more successful species grows at
the expense of the less successful).

We next describe this family of hybrids in more detail.

THE GLOSSY TEMPLATE AND TWO
IMPLEMENTATIONS

GLOSSY (Global/Local ~Search Strategy), the
hybridization framework that we propose in this paper
is shown in figure 1. This general structure can be used
for the implementation of several types of

‘exploration/exploitation methods.

First, an initial population of designs is generated. This
is followed by an allocation step, which splits up these
individuals into two populations (GP and LP)
according to a pre-established initial size ratio. The
designs in the Global Population (GP) will participate
in -the exploration procedure (for a number of SG
generations — this value is also set at the allocation
step), while those in the Local Population (LP) will
each be improved using the exploitation procedure (for
a number of SL steps — again, SL is set at the initial
allocation stage).

On a parallel architecture the two procedures would
take place simultancously — in that case SG and SL have
to be chosen such that approximately the same wall-
time/cycle will be required by the two methods. If the
flow solver itself is capable of domain decomposition
and thus efficient parallel computation, the values of
SG and SL can be selected to optimize the convergence
speed of the algorithm (in terms of overall number of
evaluations of the objective function and its gradient)
without  compromising  overall  computational
efficiency.

Each cycle is concluded by a reallocation step, which
decides the size and composition of the two populations
for the next cycle. The number of global search
generations or local improvement steps per cycle can
also be adjusted here — again, this may become
necessary in a parallel implementation if during the
search, say, the number of objective function
evaluations per local search iteration increases and
therefore idle time starts appearing on the nodes
processing the global population. The reallocation step
determines the nature of the search-time division
control scheme (deterministic or adaptive). Many
reallocation schemes are possible, so it is perhaps more
enlightening to look at some possible techniques with
reference to specific global and local search methods;
therefore, we first tackle the issue of what strategies we
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want to combine for the application presented in this
paper.

Choosing an optimizer for a particular type of
application is still a black art, since, as we mentioned in
the introduction, there are very few truly conclusive
comparative studies. In keeping with what seems to be
the prevailing opinion in the optimization community,
we have selected a quasi-Newton method with the
BFGS update scheme as the local (exploitation)
element of our hybrid searcher.

Generate initial
population

!

Allocate population to
>GP, LP
Set parameters
SG, SL

[
1
SG Global search
generations in GP

SL Local search steps on
each individual in LP

Reallocate > GP, LP n
(change SG, SL
if necessary)

Stop criteria
reached?

Figure 1. Flowchart of the GLOSSY hybrid template.

With regards to the global searcher, the most difficult
task in applying methods of this class to real-life
problems is the appropriate tuning of their parameters
(mutation step sizes, operator probabilities, SA cooling
schedules, etc.). We have selected a simple GA as the
global component of the hybrid mostly because a
substantial amount of historical data is available (both
in the literature and in the authors’ own work) on
parameter choice for this type of algorithm. We stress
here that the GLOSSY framework is by no means
limited to these two types of searches — other
combinations could include GA+SA, GA+Simplex,
SA+BFGS, etc.

Returning now to the reallocation scheme, perhaps the
simplest strategy is to maintain the population sizes
constant and after a number of SG GA generations (in
the global population) and SL BFGS iterations applied
to each individual in the local population reshuffle the
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populations. The migration of individuals can be done
in several ways — the simple heuristic we have opted for
is illustrated in figure 2. In the following we will refer
to this strategy as GLOSSY Mkl.

GLOSSY Mk1 (GA-BFGS) We start with a randomly
generated population (each circle represents one individual)...

ORCHONONORONONONC)

...and allocate the individuals into two populations where they will
undergo local exploitation (for SL=2 iterations in the case shown
here) and global exploration (for SG=4 generations) respectively.
These sequence lengths and the population sizes (2 and 7 in this
case) are set in advance.

LOCAL | GLOBAL
POPULATION : POPULATION
/"‘*“‘ﬁs I S ™

| Initial population

OO0 0000000

w% o E Generation 1
551 1 10000000

= v v E Generation 2
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: : : Generation 3
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Egv v ! Generation 4
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End of the first sequence. We perform the first reallocation step —
we simply reshuffle the populations. The size of the smaller of
the two populations (the local one in this case) is two: this is the
number of individuals that will change populations.

%The next sequence begins...
O 0000000

Generation 1

fooooooo

BFGS
iteration 1

- Q

vy

Figure 2. GLOSSY Mkl.

As with all deterministic hybrid schemes one needs to
know (or guess) before starting the search what the
optimum resource allocation ratio is. We will examine
this problem wusing an empirical approach in the
following sections of this paper. Our application may
be, to some extent, representative from the optimum
resource allocation point of view of aerodynamic
optimization problems in general. Nevertheless, the
ratio found to give the best results here may not be
optimal in other circumstances (objective function
values generated by higher fidelity flow solvers, other
global/local optimizers).

A possible way to overcome this problem is to start
with a “sensible” resource (population) division,
measure the performances of the two methods before
each reallocation and resize the populations according
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to the relative improvements per individual per GLOSSY Mk2 (GA-BFGS) We stat with a randomly

ObjGCtiVe function evaluation achieved by the two generated population (each circle represents one individual,
: : : : the color of the circle indicates the objective value of the
methods. The varying populatxon size raises  the indvidual — the lighter the color, the better the objective value)...

question of which individuals to migrate from one
population to the other. Again, several schemes are
possible — the one we have adopted for is shown in

@ 0eo0cesoe

...and allocate the individuals into two populations where they
will undergo a sequence of local exploitation and a sequence of

figure 3. We call this adaptive strategy GLOSSY MK2. global exploration respectively. The population sizes (4 and 4 in
- this case) and the sequence lengths (SL=2 and SG=4 in our
In order to assess the feasibility and performance of example) are set in advance.
these hybrld schemes we have conducted a npmber of LOCAL POPULATION GLOBAL POPULATION
test runs on an aerodynamic shape optimization A - DN
problem. We now go on to briefly describe this - o - ) A
: : Initial population
application. o
© © P @ 0 @
- t N
APPLICATION — SHAPE OPTIMIZATION OF A g5 1 1 1 Cenerend
TURBINE INLET ; g0 00 1 @ @
= 1 .
When planning the comparative study presented here YV ¥V V | Generaton2
we had to reconcile two conflicting objectives. First, we ] @ &
had to fit into the available computing time a Nt oo | Generation 3
~ - ... puting g5 : ! ]
sufncwn_tly large number of optimization runs to ensure L% E P - e
the statistical relevance of the collected optimizer 2 TV ¥ Y | & )
H eneration 4

performance data. In our experience about 50 runs are
60606 /| ®

required to get a reasonable estimate of the mean and

the variance of the objective function values obtained ) ) )
End of the first sequence. We perform the first reallocation step.

by the optimizers at various stages (this is particularly The populations will be resized according to the average
important when comparing the performance of the same objective value improvement per evaluation achieved in
optimizer with slightly different parameter settings) them during the last sequence.
D ghily " b SERet in this case the improvement calculated for the GA, was, say,
Therefore, we have opted for 50 runs on each optimizer three times higher than that achieved by BFGS. Thus, 3 will be
te . the ratio of the sizes of the two populations for the next
/parame T set sequence. Therefore, the Local Population has to relinquish two
: - . : individuals to the global one. Those two that have achieved the
The second objective has b_ecn fo use a con?putatlonal least improvement during the last sequence (individuals one
model of a real aerodynamics problem that is accurate and four in this case) will migrate. Those that have improved well
enough for useful conclusions to be drawn (With respect locally are allowed to continue in the local population.
to relative optimizer performance) that could be applied / \ *
to some extent in the case of high-fidelity flow models -
as well. ® 0O © 06 ©0 @
Generation 1
. . . . [} 1
With this tradeoff in mind, we have chosen the two- - ® o
dimensional model of the steady potential flow around @ % b
a turbine inlet lip. An input mass flow rate has been L's YV
specified on the right-hand boundary (the fan face). The 2 ndso on, sequence 2 confinues, until...
flow is subsonic throughout the domain. We have used Generation 4
a solver with an adjoint capability to determine the peak O 0 0
value of the surface flow velocity (around the inlet) as } /
well as the gradient of this objective function. End of sequence 2. We perform the second reallocation step. Let
. - us suppose that the efficiency of the GA has diminished slightly,
In order to be able to achieve reasonably fast full so the performance ratio (and thus the population size ratio for
: : : : the next sequence) is 5/3. Therefore, the Global Population now
Convergel,lce (agam, han.g l.n mind the large nur_nber of has to concede one individual to the global one. The individual
runs required for each optimizer / parameter setting) we with- the highest objective value will migrate (the rationale
have adoptcd a low variable-number shape being that the best individuals are likely to be in promising basins
o NN . N of attraction, i.e., they are worth improving locail
parameterization approach: the bump function method . v
introduced by Hicks and Henne' (as recommended, \
e.g., in Refs. 30, 31). OO0 |

Two such bump functions have been added to the
profile: one to the outside skin of the inlet and one to
the inside (the leading edge point separates the two
regions— see figure 4).

...and sequence 3 begins.

Figure 3. GLOSSY Mk2.
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They have the following general form:

!
In2

b(x)= A]sin zx ™ ’ ., xel0] (1

J

where A4 is the height of the bump, x, is the location of
the peak of the bump and 7 is a parameter that controls
the width of the bump (large values of 7 correspond to
sharp bumps). Thus, we used six variables in total — the
two 4, x,, ¢ triplets defining the two bumps.

Running the flow solver complete with the solution of
the adjoint system takes about 130 seconds to full
convergence — for the purposes of these experiments we
have only converged the solutions partially. This results
in a slight noise in the objective function (particularly
in its gradient), but the run time was cut down to about
80 seconds (such noise is present in more sophisticated
flow solvers anyway).

w
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Figure 4. Half-section through the inlet. The baseline
shape (dotted line) is visible inside the contour resulting
from the addition of two Hicks-Henne bumps
(randomly generated in the case shown here).

EMPIRICAL COMPARISONS

As one of the central issues of global/local
hybridization is how to split the available search time
and allocate. designs to the two components of the
combined optimizer, we have devoted most of our test
runs to finding an empirical answer to this question. We
have conducted the bulk of the tests using the GA-
BFGS hybrid based on the GLOSSY Mk! strategy,
which offers two possibilities for obtaining various
resource division ratios. One can modify either the
relative sizes of the two populations or the relative
sequence lengths (number of GA generations and
number of BFGS iterations). Of course, the effects of
modifying the exploration/exploitation time ratio with
these two methods will not be the same (for example,
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improving three individuals with two BFGS iterations
each at every GLOSSY Mkl cycle can lead to a very
different overall result than having one individual in the
local population, improved with six iterations in every
cycle — even though the total exploitation effort would
generally be the same).

The comparative tests presented include results
generated on optimization runs with a maximum budget
of 200 equivalent evaluations of the objective function.
The word “equivalent” refers to the fact that the BFGS
and the GLOSSY hybrids require not only the objective
function values but also gradient information. Using the
adjoint flow solver mentioned in the previous section
the latter together with the former can be obtained for a
design at about 2.5 times the computational cost of one
direct objective value. Therefore, if the cost of the

“ objective function alone is 1 unit then the cost together

with the gradient is about 2.5 units. All comparative
results contain data collected over 30 independent
optimization runs each.

In our experience the majority of evolutionary
algorithms work most efficiently on low-dimensional
problems of this type with relatively small population
sizes. Therefore, all runs presented here operate on
populations of N=8 individuals. The pure selecto-
recombinative GA, as well as the GA components of
the GLOSSY hybrids (the same GA algorithm has been
built into the hybrids) have been run with a probability
of ;:rossover of 0.8 and a probability of mutation of
0.1%

The results of the comparative tests are shown in table
1, which contains the mean objective values obtained
after 200 equivalent ecvaluations of the objective
function using the various optimizers / parameter
settings. In addition to the sample means, the table also
shows the standard deviations of the objective function
samples (over the 50 runs).

Let us make one final point before going on to the
discussion of these results. Testing heuristics is a
notoriously difficult task for several reasons®® and the
results are often controversial. First, one tends to fine-
tune one’s own proposed technique and compare it with
“the others” run with default parameter settings.
Furthermore, stochastic methods, almost by definition,

§ A small number of trial runs suggested that on this problem
these settings Icad to better results than those usually used as
defaults — 0.6 and 0.05. However, we note herc that no
substantial cffort was invested into fine-tuning the GA itself,
as our main goal was to compare the GA with a GA-BFGS
hybrid, as well as GA-BFGS performance results obtained
with different settings of the GLOSSY hybridization scheme,
rather than the GA with some other “pure” method.
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often perform very differently from one run to the next.
Therefore, any comparison is only as good as the
statistical relevance of the results. While admitting that
no comparison is perfectly fair, we believe that using
the same population size for every optimizer,
employing the same GA with the same parameter
settings in both its “pure” and hybridized form and
looking at both the mean and the variance of the results
over relatively large samples (50 runs) goes a long way
towards providing fair comparisons.

The first set of tests was aimed at investigating the
behavior of GLOSSY Mk1 with various global / local
population sizes. The performance figures are shown in
rows 1-4 of the table. The ultimate objective values, as
well as the standard deviations are clearly the lowest for
those cases where only one or two individuals are in the
local exploitation population, with the rest undergoing
global exploration.

In order to test the adaptation capabilities of GLOSSY
Mk2, we set up a test run where we started the adaptive
hybrid with equal global / local population sizes. As
figure 5 indicates, the adaptive heuristic also recognizes
that the algorithm works best with a small local
population. The plot shows the variation of the average
global population size, with the final value (after 200
equivalent evaluations) being just over 6.

3,
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Figure 3. Variation of the global population size when
using the adaptive hybrid (GLOSSY Mk2), starting
with equally split (4-4) populations. The plot is
averaged over 50 runs.

This matches the conclusions reached from the
GLOSSY MkI runs with different population sizes. The
actual performance figures (see row 12 in table 1) also
confirm the conclusion frequently encountered in the
adaptive optimization literature, that the performance of
a finely tuned optimizer is always better than that of an
adaptive one (i.e., GLOSSY Mk! when correctly set up
outperforms GLOSSY Mk2). In this case the ultimate
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objective value is similar to those obtained with the
GLOSSY Mkl runs with the largest global population
sizes, however the standard deviation of the ultimate
objectives reached by the adaptive heuristic is
considerably worse.

Returning now to our investigation of optimum
resource division in GLOSSY Mk, there is another
aspect to this problem: the sequence lengths of the two
optimizers. Initial tests suggested that the performance
of the algorithm is more sensitive to variations in the
length of the BFGS sequences (SL) than in the number
of GA generations per cycle (SG). Therefore, we have
performed a series of seven test runs with SL=1..7 and
SG held constant at 3. The population sizes, based on
our previous conclusions (from runs with both
GLOSSY Mk! and Mk2), were set to 1 in the local
improvement population and 7 in the GA population.

The results are shown in rows 5-11 of table 1. The best
results are achieved with BFGS iteration/cycle numbers
of 4 and 5 (rows 8 and 9) — both the mean ultimate
objective achieved and the standard deviations are the
best of the whole test series.

As the plot of the sample characteristics after 200
equivalent evaluations (figure 6) indicates, an iteration
number of 4 is probably the best choice, as the standard
deviation is already fairly large at an SL value of 5, in
spite of a slightly better mean.

T
$& 1
3

4§

Kean and sigev, of sitivate cigestive v alues

£ 3

Figure 6. Mean ultimate objective values (u,...p7)
achieved by GLOSSY Mkl with different numbers of
BFGS iterations/cycle. The error bars indicate the
ranges (u+o;, W-Gy), i=1..7, where o;...0; are the
corresponding  standard  deviations  (the  values
represented are those from table 1, rows 5-11).

Finally, let us look at the other main point of this study:
how does the GLOSSY-based GA-BFGS hybrid
compare with its components when they are used
separately (as they are in all the adjoint-optimization
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work seen to date by the authors)? Rows 13 and 14 of
table 1 contain the performance results for the pure
BFGS and the pure GA. Figures 7 and 8 give a clearer
msight into the comparative performances of these
optimizers. Figure 7 shows the averaged optimization
histories of the GA and GLOSSY Mk1 (run with a local
population of a single individual, undergoing 4 BFGS
iterations of local improvement and 3 GA generations
per cycle, i.e., as per row 8 of table 1). The two history
curves as well as the variation of their standard
deviations have similar shapes, indicating the effect of
the GA in the hybrid. However, the use of the adjoint
gradients via the Lamarckian local improvement
component (the BFGS) clearly makes a difference: the
GLOSSY objective values are better throughout the
runs and the standard deviation of the ultimate objective
value sample 1s also slightly better than that of the GA.

A slightly different picture emerges from figure §, a
comparison between the averaged history of a set of
pure BFGS runs and the same GLOSSY Mkl history as
shown on figure 7. The initial convergence (up to about
120 equivalent evaluations) of BFGS is better, but from
that point onwards the hybrid gives considerably better
improvement, accompanied by a dramatic reduction in
the standard deviation of the objective value sample
(0.06 compared to BFGS’s 0.48 at the end of the run).

The mean ultimate objective values for GA, BFGS and
for GLOSSY Mkl are 4.67, 4.65 and 4.45 respectively.
The best design overall (objective function value of
4.36) has been found using GLOSSY MkI. None of the
pure BFGS or GA runs has found this optimum. With
the parameter settings shown in row 8 of table 1 the 50
ultimate objective values produced by GLOSSY
optimizer fall into the range (4.36,4.92). The ranges for
GA and pure BFGS are (4.38,5.06) and (4.37,6.08)
respectively.

CONCLUSIONS

The advent of adjoint flow solvers opened up a whole
range of new possibilities in aerodynamic shape
optimization.  The  availability = at  reasonable
computational cost of objective function gradients
makes gradient-based searches vastly more efficient
-than they used to be with gradient information obtained
by finite differencing. Nevertheless, even the most
sophisticated techniques of this kind still have a major
shortcoming: their inability to tackle multimodal and /
or noisy landscapes efficiently. The GLOSSY
hybridization framework proposed in this paper is
aimed at overcoming this problem. We have shown
through a set of comparative tests on a simple
aerodynamic shape optimization application that such
an approach is feasible and that it is an efficient way of
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combining the global exploration capability of a GA
with the fast local convergence of the BFGS.

We do not claim that the conclusions drawn from the
simple problem used in this paper are universal. Indeed,
we plan to test our scheme using more complex
problems and high fidelity flow solvers in the future.
Yet, we do believe that the experimental results
presented here can serve as a useful set of guidelines for
designers.

Should the optimum population sizes found here for our
non-adaptive deterministic hybrid work badly on some
other problem, we recommend the adaptive variant.
This was shown to confirm the results obtained with
different settings of the deterministic optimizer.

The comparative tests presented here were based on the
assumption that the optimization process is serial (i.e.,
the results apply on parallel architectures only when the
flow solver itself is parallel). Nevertheless, the
GLOSSY  framework  does  allow  parallel
implementations, the only constraint being that for an
efficient parallelization one needs to choose the
sequence lengths in such a way that none of the
methods “runs over” the other by a significant amount
on each cycle.

The same general framework can also be used for the
implementation of a wide range of different global and
local search methods; we merely demonstrated the
capabilities of the scheme using GA and BFGS.

ACKNOWLEDGEMENTS

This work has been supported by the University
Technology Partnership for Design, a collaboration
between BAE Systems, Rolls-Royce and the
Universities of Sheffield, Cambridge and Southampton.

The authors would also like to thank Mike Giles, Mihai
Duta and Juri Papay for their help in obtaining the
results presented.

REFERENCES

! Hicks, R., Henne, P., “Wing Design by Numerical
Optimization”, Journal of Aircraft, Vol. 15, No. 7,
1978. pp. 407-412.

* More, J. I, Wright, S. J., “Optimization Software
Guide”, Frontiers in Applied Mathematics 14, SIAM
1993.

® Hajela, P., “Nongradient Methods in Multidisci-
plinary Design Optimization — Status and Potential”,
Journal of Aircraft, Vol. 36, No. 1, 1999.

4 Reuther, J. I., “Aerodynamic shape optimization
using control theory”, PhD Thesis, University of
California, Davis, May 1996.

American Institute of Aeronautics and Astronautics



° Reuther, J. T, Jameson, A., Alonso J., Rimlinger,
M. J., “Constrained Multipoint Aerodynamic Shape
Optimization Using an Adjoint Formulation and
Parallel Computers, Part 17, Journal of Aircraft, Vol.
36, No. 1, pp. 51-60, 1999.

o Jameson, A., “Aerodynamic Design via Control
Theory”, Journal of Scientific Computing, Vol. 3, No.
3, pp. 233-260, 1988.

"Kim, S., Alonso, 1., T ameson, A., “Two-dimensional
High-Lift Aerodynamic Optimization Using the
Continuous Adjoint Method”, AIAA 2000-4741, §"
AIAA / USAF / NASA / ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Long
Beach, CA, 2000.

8 Reuther, J. J ., Jameson, A., Alonso J., Rimlinger, M.
I, “Constrained Multipoint Aerodynamic Shape
Optimization Using an Adjoint Formulation and
Parallel Computers, Part 27, Journal of Aircrafi, Vol.
36, No. 1, pp. 61-74,-1999.

® Jameson, A., “Re-Engineering the Design Process
Through Computation”, Journal of Aircraft, Vol. 36.,
No. 1, pp. 36-50, 1999.

1% Jameson, A., Vassberg, J. C., “Computational Fluid
Dynamics for Aerodynamic Design — its Current and
Future Impact”, AIAA 2001-0538, 39" 4144
Aerospace Sciences Meeting and Exhibif, Reno, NV,
2001.

n Monge, F., Tobio, B., “Aerodynamic Design and
Optimization by Means of Control Theory”, in
Computational ~ Mechanics — New Trends and
Applications, Barcelona, 1988. ,

">'Eliott, J., Peraire, J., “Practical 3D Aerodynamic
Design and Optimization Using Unstructured Meshes”,
AIAA Journal, Vol. 35, No. 9., pp. 1479-1485.

15 Giles, M. B., Pierce, N. A,, “An Introduction to the
Adjoint Approach to Design”, Flow, Turbulence and
Combustion, 65(3/4):393-415, 2000.

MAnderson, K. W, Venkatakrishnan, V.
“Aerodynamic Design Optimization on Unstructured
Grids Using a Continuous Adjoint Formulation”,
Computers and Fluids, Vol. 28, No. 4-5, pp. 443-480,
1999.

" Kim, H-J., Sasaki, D., Obayashi, S., Nakahashi, K,
“Aerodynamic Optimization of Supersonic Transport
Wing Using Unstructured Adjoint Method”, Al44
Journal, Vol. 39, No. 6, 2001. pp 1011-1020.

' Kim, H-J.,, Obayashi, S., Nakahashi, K., “Flap-
Deflection = Optimization for Transonic Cruise
Performance Improvement of Supersonic Transport
Wing”, Journal of Aircraft, Vol. 38, No. 4, 2001. pp
709-717.

3

7 Tollo, A, Salas, M., Ta’asan S., “Shape
Optimization Governed by the Euler Equations Using
an  Adjoint Method”, Institute for Computer

Applications in Science and Engineering, Report 93-78,
1993.

9

'8 Newman, I. C. IIL, Taylor, A. C. IIL, Barnwell, R.
W., Newman, P. A., Hou, G. J-W., “Overview of
Sensitivity Analysis and Shape Optimization for
Complex Aerodynamic Configurations”, Journal of
Aircraft, Vol. 36., No. 1, pp. 87-96, 1999.

¥ Jameson, A., Vassberg, J. C., “Studies of
Alternative Numerical Optimization Methods Applied
to the Brachistochrone Problem”, Computational Fluid
Dynamics Journal, Vol. 9, No. 3., 2000. pp. 281-296.

20 Obayashi, S., Tsukahara, T., “Comparison of
Optimization Algorithms for Aerodynamic Shape
Design”, AIA4 Journal, Vol. 35, No. 8, pp. 1413-1415,
1997.

*! Sasaki, D., Obayashi, S., Kim, H-J., “Evolutionary
Algorithm vs. Adjoint Method Applied to SST Shape
Optimization”, CFD2001, The Annual Conference of
the CFD Society of Canada.

z Alonso, J., Kroo, 1. M., Jameson, A., “Advanced
Algorithms for Design and optimization of Quiet
Supersonic  Platforms”, 40" Aerospace Sciences
Meeting and Exhibit, Reno, NV, 2002.

® Vicini, A., Quagliarella, D., “Airfoil and Wing
Design Through Hybrid Optimization Strategies”, AI44
Journal, Vol. 37., No. 5., pp. 634-641, 1999.

* Whitley, D., “Modeling hybrid genetic algorithms”
in Winter G., Cuesta P. (eds): Genetic Algorithms in
Engineering and Compuiter Science, pp. 191—201,
John Wiley, 1995.

* Goldberg, D. E., Voessner, S., “Optimizing Global-
Local Search Hybrids”, GECCO-99: Proceedings of the
Genetic and Evolutionary Computation Conference, pp.
220-228, 1999.

% Sinha, A. Goldberg, - D, “Verification and
Extension of the Theory of Global-Local Hybrids”,
IlliGAL Report No. 2001010, 2001.

*" Hacker, K., Eddy, J., Lewis, K., “Tuning a Hybrid
Optimization Algorithm by Determining the Modality
of the Design Space”, in Proceedings of ASME Design
Engineering Technical Conferences and Computers
and Information in Engineering, Pittsburgh, September
9-12, 2001, p.10.

% Lobo, F. G., Goldberg, D. E., “Decision making in
a hybrid genetic algorithm” in Proceedings of the IEEE
International Conference on Evolutionary
Computation, 1997.

» Magyar, G., Johnsson, M., Nevalainen, O., “An
Adaptive Hybrid Genetic Algorithm for the Three-
Matching  Problem”, [EEE  Tramsactions on
Evolutionary Computation, Vol. 4, No. 2, 2000.

* Jameson, A., “A Perspective on Computational
Algorithms for Aerodynamic Analysis and Design”,
Progress in Aerospace Sciences, No. 37, 2001, pp 197-
243,

*' Samareh, J., “Survey of Shape Parameterization
Techniques for High-Fidelity Multidisciplinary Shape

American Institute of Aeronautics and Astronautics



Optimization”, AIAA Journal, Vol. 39, No. 5, May
2001.

2 Hooker, J. N, “Testing heuristics: We have it all
wrong”, Journal of Heuristics, No. 1, pp 33-42, 1996.

3 Kim, 8., Alonso, J., Jameson, A., *“Design
Optimization of High-Lift Configurations Using a
Viscous Continuous Adjoint Method”, 40" Aerospace
Sciences Meeting and Exhibit, Reno, NV, 2002.

* Nemec, M., Zingg, D. W., “Towards Efficient
Aerodynamic Shape Optimization Based on the Navier-
Stokes Equations”, 15" AI4A Computational Fluid
Dynamics Conference, Anaheim, CA, 2001.

3 Ta’asan, S., “Introduction to Shape Design and
Control”, VKI Lecture Series on Inverse Design and
Optimisation Methods, 1997.

36 Kelley, C. T., “Iterative Methods for Optimizati-
on”, Frontiers in Applied Mathematics, SIAM, 1999.

*7 Herdy, M., “Reproductive Isolation as Strategy
Parameter in Hierarchically Organized Evolution

Stategies”, Parallel Problem Solving from Nature II,
pp. 207-217, Elsevier, 1992.

¥ Autere, A., “Employing Gradient Information in a
Genetic Algorithm”, Second European Congress on
Intelligent Techniques and Soft Computing EUFIT 94,
Aachen, 1994,

39 Schlierkamp-Voosen, D.,Muhlenbein, H., “Stra-
tegy Adaptation by Competing Subpopulations”,
Proceedings of Parallel Problem Solving From Nature
111, Jerusalem, pp. 199-208, Springer, 1994.

“ Eiben, A. E., Sprinkhuizen-Kuyper, 1. G., Thijssen,
B. A, “Competing crossovers in an adaptive GA
framework™, Proceedings of the 5th IEEE Conference
on Evolutionary Computation, IEEE - Press, pp. 787-
792, 1998.

‘' Arian, E., Vatsa, V. N., “A Preconditioning
Method for Shape Optimization Governed by the Euler
Equations”, JCASE Report No. 98-14, 1998.

Mean / standard deviation
Optimizer parameters of objective valL{e
Row samples after 2QO equivalent
nr. oo i evaluations
oca oba .
sequence length | sequence length GlObaleX psize. u o
(sL) (SG) ©4)
GLOSSY Mk1
1 3 3 4 4.71 0.24
2 3 3 5 4.68 0.28
3 3 3 6 4.57 0.17
4 3 3 7 4.55 0.17
5 1 3 7 4.65 0.17
6 2 3 7 4.63 0.17
7 3 3 7 4.55 0.17
8 4 3 7 4.46 0.06
9 5 3 7 4.45 0.10
10 6 3 7 4.47 0.14
11 7 3 7 447 0.22
GLOSSY Mk2 (GA-BFGS)
12 ] 3 | 3 | 4 (initial) | 4.56 | 0.28
pure BFGS (random initial designs)
13| n/a | n/a { n/a | 4.65 | 0.48
pure GA
14 | n/a | n/a | 8 | 4.67 [ 0.20

-Table 1. Mean and standard deviation of objective function value samples collected over 50 runs of GLOSSY
Mk, the adaptive GLOSSY Mk2, the pure BFGS (started from random initial designs) and the pure GA.
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Figure 7. GLOSSY Mk! and GA optimization histories on the inlet problem. The error bars indicate the sample
standard deviations of the objective function values achieved over 50 runs.

75 " )
aEas
BFGE stdey
—— GLOGSY MK1
oL —— GLOSSY Wi sidev
85
2 s-
®
=3 P oy
©
z
&555
£
8
5 .
455
) o 60 %) o 420 146 180 189 200

Mumber of squivalent evalustions

Figure 8. GLOSSY Mk! and BFGS optimization histories on the inlet problem. The error bars indicate the sample
standard deviations of the objective function values achieved over 50 runs.
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