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ABSTRACT 

Experimental vibration responses of squeeze film dampers (SFDs) are obtained with four different central 

groove depths, two types of lubricant and various unbalance levels. Highly non-linear fluid stiffness and 

damping are observed, the damping being sensitively related to oil viscosity and unbalance. Existing oil film 

models are applied to predict the SFD behaviour. A special groove-two land model is able to predict the 

vibration behaviour of a very shallow grooved SFD and the conventional two-land theory is applicable to a SFD 

with a very deep groove. These observations provide useful guidelines for designing a shallow or deep grooved 

SFD-rotor assembly. 
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NOTATIONS 

1A   parameter defined by equation (5c) 

c             SFD radial clearance (m) 

gc           SFD circumferential groove depth (including the SFD radial clearance) (m) 

ccg /   groove-depth to radial clearance ratio 

C            damping coefficient (Ns/m) 

θ,rC   damping coefficients in radial ( r ) and tangential (θ ) directions (
εω
θ

c
Fr , , Ns/m) 

D   bearing diameter (m) 

4,3,2,1d   correction factors for fluid forces coefficients defined by equation (4c) 

de           SFD eccentricity (m) 

aF   applied unbalance force of the non-rotating SFD (N) 
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cF      unbalance force (N) ( 2ωuM ) 

dF̂  non-dimensional dynamic S.F. force per unit circumferential length defined in equation (4a, b) 

rF    squeeze film radial force (N) 

θF    squeeze film tangential force (N)   

srF   linear fluid static force (N) 

h      SFD oil film thickness (m) 

ĥ     non-dimensional SFD oil film thickness (
c
h

) 

gh   SFD groove oil film thickness (m) 

yxk ,       stiffness of the SFD retainer spring in Cartesian co-ordinates (N/m) 

L       SFD land length (m) 

gL    SFD groove length  (half of the groove width) (m) 

l   effective length of the oil supply pipe (m) 

m      mass  of the SFD (kg) 

rcenM     inertial coefficient relating to centripetal acceleration (kg) 

uM     unbalance mass (kgm) 

P̂     non-dimensional pressure (
( )2cR
P

µω
) 

sP̂     non-dimensional supply pressure of the SFD 

r   radius of the oil supply pipe (m) 

R     SFD journal radius (m) 

ReL   modified S.F. Reynolds number at the land (
µ
ωρ 2c

) 

Reg   modified S.F. Reynolds number at the groove (
µ
ωρ 2

gc
) 

V̂   non-dimensional surface velocity defined in equation (5.4c) 

z     axial co-ordinate of the SFD land. 
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ẑ     non-dimensional axial co-ordinate in the SFD land (
L
z ) 

Z   oil pipe flow resistance 

ω        shaft velocity (rad/s) 

nω     natural frequency of the shaft (rad/s) 

nω
ω

    frequency ratio 

ε       dynamic eccentricity ratio of the SFD (
c
ed ) 

µ       oil viscosity (Pa-s) 

jkλ      receptance at position j  due to a harmonic force at k  (m/N) 

jkλ̂       non-dimensional receptance ( 2ωλ mjk ) 

θ      circumferential co-ordinate from the position of maximum film thickness 

α      attitude angle measured in direction of unbalance force rotation 

β      parameter defined by equation (5c) (
gc
c

) 

σ   length ratio (
L
Lg ) 

τ   thickness ratio (
gh

h
ˆ
ˆ

) 

ξ   non-dimensional parameter defined by equation (4c) 

ρ   density of oil (kg/m3) 
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1 Introduction 

Squeeze film dampers (SFDs) are frequently used for the stabilization and vibration control of high speed 

rotating machines such as gas turbine engines and turbochargers. The oil-feeding groove within the SFD radial 

clearance is designed to prevent starvation of oil in the oil film. The pressure generated by the groove is 

traditionally neglected. Experimental evidence [1, 2, 3] has been found that the pressure produced in the groove 

relates to its depth, the shaft speed, the vibration amplitude at the SFD and the supply pressure. Various 

approaches have been demonstrated to tackle the problem particularly for SFDs with central grooves, such as 

those which consider the groove as a special damper land by using the simplified Navier-Stokes equations [3], 

those which use the fluid continuity theory to generate a more comprehensive model where the oil supply 

mechanism is taken into account [4] and those that include fluid compressibility in the Reynolds equation but 

only take due account of the low dynamic eccentricity ratio case [1]. The fluid damping, stiffness and inertia 

coefficients estimated by these models have been compared with the experimental measurements obtained from 

separate experimental rigs tested under restricted conditions and some agreement has been achieved. To date, no 

attempts have been made to assess the merits and weaknesses of each of these existing models when they are 

used to model a SFD with a wider range of parameters. Experimental support for these models in the vibration 

responses of rotor-SFD assemblies is also rare.  

 

This paper investigates the dynamic responses of SFDs with central grooves only. Three possible fluid-film 

models are considered: those due to Holmes and Box [5], Tan et al. [3] and Zhang et al. [4]. The vibration 

responses predicted with the aid of each of these models are compared with the measured responses from two 

test rigs, namely: 

 

1. A non-rotating unsealed squeeze film damper, which is excited by two electromagnetic shakers in the 

horizontal and vertical directions. This rig has been used for squeeze film force identification [6, 7, 8] and 

has a similar configuration to those found in the experimental facilities mentioned in Tan et al. [3] and 

Zhang and Roberts. [4]. The damper is lubricated by 0.015 Pa-s and 0.006 Pa-s oil with groove depth-to-

clearance ratios of 3.27 and 10.09.  

 

2. A flexible shaft-unsealed sprung SFD assembly, which has been discussed in references [9, 10, 11, 12]. The 

vibration responses of the system excited by various values of unbalance mass added at an overhung disk 

were measured. The SFD with a groove depth-to-clearance ratio of 16.15 was initially tested with oil of 
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0.006 Pa-s viscosity. The groove was then deepened to have a 40.77 groove depth-to-clearance ratio and 

tested with 0.006 Pa-s and 0.015 Pa-s oil. 

 

Over the years, various investigations have been carried out separately to examine SFD vibration responses 

using different experimental rigs. However, work to summarise the distinct features of these experimental data 

has yet to be conducted. Furthermore, the experimental and theoretical analyses reported by other researchers 

mainly concern the study of the SFD with a relatively shallow groove, which usually has a groove depth-to-

clearance ratio between 2-10. Current work has extended this value to about 40 to observe a wider operating 

parameter range, intended to find a better correlation between the different theoretical models and experimental 

measurements.  

 

2 Theoretical models 

To date, four main approaches have been developed to model the flow interactions between the oil feeding 

groove and the squeeze film lands [1,3,4,5]. In this paper, three models are selected to compare their predictions 

with the experimental results measured from the test rigs and they are: Model 1: The conventional Reynolds 

Equation [5], Model 2: The Lubricant Supply Mechanism (LSM)-Centrally Grooved Short SFD Model by Zhang 

and Roberts [4] and Model 3: A Special Groove-Two Film Lands Model by Tan et al. [3]. The model proposed 

by San Andres [1] is not considered in this paper as it only caters for low vibration SFDs, where as the vibration 

amplitudes measured from the current test rigs are up to 0.8 dynamic eccentricity ratio. It is also important to 

note that this work is designed to study the vibration behaviour of centrally grooved SFDs only.  

 
2.1 Model 1:The Conventional Reynolds Equation 

The Reynolds equation [13], which is derived from the Navier-Stokes equations for incompressible flow 

conventionally forms the basis for calculating the pressure distribution within the oil film. The short bearing 

approximation is found to be appropriate for the case where the damper is fed from a central circumferential 

groove with L/D<0.25 [5]. Using this approximation, the pressure generated in the groove is assumed to be 

negligible compared to the supply pressure, and the pressure in each land is represented by a parabolic profile.  

A. The Two-Land Model 
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Assuming a full oil film in the clearance and that the SFD journal centre orbit is concentric around the bearing 

centre ( ωαε ==
••

,0 ), the two oil film forces acting on the journal i.e. the radial force ( rF ) and the tangential 

force ( θF ) can be written (Fig.1a) as, 

0=rF                                                       (1a) 

( ) 2
322

3

1

2

ε

εωπµ
θ

−
=

c
RLF                                                (1b) 

 

B. One-Land Model 

In some SFD applications, the groove can be made small either in depth or width. Therefore the non-linear 

squeeze forces may well be represented by a one-land model where the damper could be modelled as having one 

single land where its effective land length is equal to the sum of the two separate damper lands, ignoring the 

width of the groove. For a centrally grooved SFD with a circular journal-centre orbit, the radial and tangential 

forces are expressed as,      

0=rF                                         (2a) 

( ) 2
322

3

1

)2(

ε

εωπµ
θ

−
=

c
LRF                                      (2b) 

One may note from equations (1a, b) and (2a, b) that the one-land model produces a pair of squeeze film forces 

which are 4 times greater than those generated by the two-land model.  

 

C. A Complete SFD Width Model 

A shallow, centrally grooved SFD may alternatively be modelled as having an effective land length of 2 (Lg + L) 

(Fig.1), i.e. the complete width of the SFD. Applying this assumption results in the following forms for the full 

circular orbiting squeeze film forces, 

0=rF                                         (3a) 

( ) 2
322

3

1

)22(

ε

εωπµ
θ

−

+
=

c
LLR

F g                                                                (3b) 
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The inadequacies of these conventional models in simulating the squeeze film forces within a damper having 

various groove depths and supply pressures have been extensively reported. However, due to the lack of a 

comprehensive squeeze film force model, the present work aims to establish whether such models are still 

applicable under certain limited conditions. These findings should enable the effects of the known parameters 

such as the land length ( L ), journal radius ( R ), oil viscosity ( µ ) and radial clearance ( c ) to be taken into 

account more accurately in an actual rotor-bearing design.  

 

2.2 Model 2: The Lubricant Supply Mechanism (LSM)-Centrally Grooved Short SFD Model 

The non-linear oil film force of a centrally grooved unsealed SFD was investigated by Zhang and Roberts [4] 

using an integrated theory which takes into account the pressure difference between the inlet of the oil pipe and 

the inlet of the groove, caused by the flow resistance in the oil pipe. In their work, a laminar incompressible 

Newtonian lubricant was assumed and no cavitation effect was included. Following the conventional 

assumptions, the SFD was considered to be short and the parabolic velocity profile in the fluid film to be not 

significantly distorted by any fluid inertia effect. This model gave a significant improvement in predicting the 

damping coefficient of the SFD.  

 

This model also led to the prediction of a nonzero fluid static stiffness, which is a characteristic of hydrostatic 

bearings, where deep recesses and orifices around the bearing housing are the sources of this stiffness [14, 15, 

16]. For SFDs to cope effectively with direction-changing loads, a circumferential groove together with equally 

spaced oil feeding holes and tubes around the bearing housing, may produce a fluid static stiffness similar to that 

in hydrostatic bearings. It is also reported [17, 18, 19] that the number of oil feeding holes around the SFD 

housing may affect the size and circularity of the damper orbits. Albeit with the absence of a circumferential 

groove, it has been demonstrated that as the number of oil holes increases (to 4), the difference between the 

maximum and minimum orbit displacements decreases, and the orbits tends to become more circular, with a 

slightly increased radius compared to zero hole orbits [18, 19].   

 

The full oil film forces for a circular centered orbit, which were derived in equations (16) to (26) in reference [4] 

are now shown as follows with a slight modification in notation: 

∫ −−=
π

θθ
µω 2

0
2

3

cosˆ2
srdr FdF

c
RLF                                     (4a) 

∫−=
π

θ θθ
µω 2

0
2

3

sinˆ2 dF
c

RLF d
                        (4b) 
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where 

( ) 







+= ∫

π

θ
ξ
θσµω 2

0
2

3 cosˆ2132 dP
c

RLF ssr
 







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
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3
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                                             (4c) 

This set of equations shows that the static fluid force ( srF ) increases the radial squeeze film force due to the 

consideration of the oil pipe flow resistance ( Z ) which is a function of the length ( l ) and the radius ( r ) of the 

supply pipes. It was also suggested that the inertia coefficient rcenM   (added hydrodynamic mass) of a full film 

concentric SFD could be estimated using the following equation, 

 









+= ∫∫ θ

θθεθ
θρ ππ

d
h

dd
h

d
c
RLM rcen

2

0

2
42

0

2
3

3

ˆ
cossin

5ˆ
cos

12
12

    (4d) 

 

 

2.3 Model 3: A Special Groove-Two Film Lands Model 

A study of the effect of the circumferential groove on the dynamic behaviour of an SFD was carried out by Tan 

et al. [3]. In the study, the groove was modelled as a special damper using linearised Navier-Stokes equations to 

consider the variations of fluid velocity and pressure, whereas the relatively small inertia effects produced by the 

oil within the two short damper lands were predicted by simplified conventional Navier-Stokes equations. The 

two parts of the analysis were combined by continuity conditions to study the interactions of the flow and the 

pressure between the film lands and the groove, resulting in a new model for a full film concentric SFD. The 
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tangential and radial forces of the new model were extracted from equations (46) and (47) in reference [3] and 

presented as the following equations with minor changes in notation, (subscript g refer to the parameters within 

the groove region), 

 

( )
( )3

21
2

02
1

2

3

1
32

512
Re

2
22

σ
σεεµω

+
+

+
+

=
II

c
LLR

F g
r

                                                   (5a) 

( ) ( )
( )3

120
32

3

1
21332

2
22

σ
σσσεµω

θ
+

++++
=

A
I

c
LLR

F g                       (5b) 
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                      (5c) 

The predictions of this theory were tested using experimental results obtained from a test rig in reference [4] 

which had a groove depth-to-clearance ratio (cg/c) of about 3.37. It was reported that this model gave better 

correlation with the experimental data than those generated by the conventional theory explained in section 2.1. 

 

3 Experimental Facilities 

The vibration responses measured from two different test rigs are presented below and the test facilities are 

briefly explained as follows, 

 

3.1 Test Rig No. 1: A non-rotating SFD with electro-magnetic shaker 

The non-rotating SFD (Fig.2) tested in this work has a similar configuration (see Tables 1 and 2) i.e. dimensions, 

oil supply conditions and force excitation methods found in the test facilities used by Zhang & Roberts [4] and 

Tan et al. [3], who developed Models 2 and 3 respectively. As a result, it is interesting to compare the 

observations obtained in this work with the conclusions drawn in references [3] and [4].   

 

The test rig was developed to study the SFD alone, without the further complications of a rotating shaft and 

bearings. The SFD is mounted on a non-rotating beam, which in turn is clamped in two sliding support brackets 
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at its ends. The effective length of the beam can be changed by varying the positions of the support brackets as a 

result altering the system natural frequency. Oil is supplied at three locations, evenly spaced around the SFD 

circumference. The oil supply pressure is measured using a static gauge situated in the main supply line. (The 

dimensions of the damper and supply conditions are shown in Tables 1 and 2.) The damper journal is subjected 

to a constant rotating force produced by two electro-magnetic shakers lying in horizontal (x) and vertical (y) 

planes to simulate the out of balance force of a rotating system. The shakers are fed with two signals which are 

90o

 

 out of phase with each other but of the same amplitude, from a variable phase low frequency generator and 

power amplifier. The combination of the two forces gives a constant force rotating at the frequency of the input 

signal. Thus the orbits of the damper journal should be circular, having a constant dynamic eccentricity about the 

central axis.  

Assuming the structure is vibrating in a single mode and that the static eccentricity of the SFD is zero, a closed 

form solution of the steady state equations of motion can be derived by assuming circular centred orbits. Hence, 

the equations of motion for the test rig journal shown in Fig.2 can be written as [8], 

 

( ) 2cos εωεαω mckcFtF ra −=−−−                                                   (6a) 

( ) 0sin =−− θαω FtFa                                                                                                                                  (6b) 

 

Eliminating the sine and cosine terms, we have  

 

2222 )( ar FFmcFkc =+−+ θεωε                                                                                                          (7) 

 

Equation (7) can be easily solved by a root finding numerical method (e.g. the bisection method) to find the 

eccentricity ratio (ε ). The tangential and radial forces derived from the various models discussed in the previous 

section are inserted to compute the forced response of the SFD with the dimensions shown in Table 1. 

 

The SFD was tested under the conditions shown in Table 2 and the experimental results were taken when the rig 

reached its equilibrium temperature of between 32oC and 34oC. More details of the experimental facilities can be 

found in references [6, 7, 8]. 
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3.2 Test Rig No. 2: A Flexible Shaft-SFD Assembly 

Fig.3 shows the schematic diagram of the test facility of a flexible shaft provided with an unsealed SFD. The rig 

consists of a stepped shaft supported on two bearings, one of which is self-aligning and the other flexibly 

mounted on four support bars ( k =123.4x103 N/m) via a damper ring. At the far end of the shaft an overhung 

disk is attached. One of several unbalance masses can be screwed into the overhung disk for excitation purposes. 

The shaft is driven by an induction motor through a timing belt, drive shaft and flexible coupling.  The shaft has 

a main cross sectional diameter of 50 mm, stepped section diameter of 25 mm and a total length of 1.3m.  The 

open-ended SFD has the dimensions shown in Table 3. This configuration has been tested experimentally in 

previous work [9, 10, 11, 12] and shown to have two undamped natural frequencies at about 14 and 41 Hz.  

Displacement at the SFD position was measured in the x and y directions using a pair of proximity displacement 

transducers. The shaft was tested under the conditions shown in Table 4. Details of the data acquisition system 

can be found in [11, 12]. 

 

The flexible shaft is modelled as 41 pin-jointed lumped masses using the Modified Iteration Method presented in 

reference [12]. According to an analysis suggested by Thompson [20], the gyroscopic effect at the overhung disk 

for the system studied is small and therefore is assumed to be negligible. If the SFD is assumed to be concentric, 

the equations of motion at the damper position can be expressed in terms of receptances (λ ) as follows. 

 

dcdcrddd FFe βλλ cos+−=                                                     (8a) 

dcdcdd FF βλλ θ sin0 +=                                                    (8b) 

 

From equations (8a, b), we obtain 

 

( ) ( )
c

FFF
c
e rddddcdc λλλ

ε θ −−±
==

22

                                           (9) 

 

Equation (9) is solved by the bisection method [21]. The unbalance responses at the SFD position are calculated 

and compared with the predictions of the available fluid film theories.  
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4 Results 

Six sets of experimental results measured from a concentric SFD mounted in the two test rigs are discussed. The 

average values of the x and y eccentricity ratios measured at a number of unbalance force frequencies [Test rig 

no.1: non-rotating SFD] or steady-state rotor speeds [Test rig no. 2: flexible shaft-SFD assembly] are plotted 

together with the predictions of various theoretical models (all π2 -film) in Figs.4 to 9 (model numbers follow 

the headings outlined in section 2). The calculated response curves of Model 1c which considers a damper 

having an effective land length equal to a complete damper width are only shown in Figs.4a and 4b. According 

to the previous research, this model is expected to be applicable to a damper with a very shallow groove, i.e. the 

configuration found in Test no. 1 and therefore its prediction is omitted in Figs. 5 to 11 for a clear presentation.  

 

The first point to make is that no single theoretical model is able to produce a good qualitative and quantitative 

agreement with all the experimental results. Each model has its own merits and weaknesses in modelling the 

response of a SFD excited under a particular set of conditions.  

 

4.1 Test Rig No.1: A non-rotating SFD with electro-magnetic shaker 

In Fig.4 the forced response of a very shallowly grooved SFD (cg/c =3.27) was tested with a lubricant of 0.015 

Pa-s viscosity and two different applied unbalance forces (i.e. 25 N and 50 N, Test no.1, Table 2). Both Figs.4a 

and b show that Model 3 fits the two experimental curves very well compared to the rest. It is apparent that the 

theoretical predictions of Models 1b and 1c also give good qualitative agreement with those obtained 

experimentally. Their predictions are able to give upper and lower bound limits to the response produced by the 

SFD with such a shallow groove.  

 

In Fig.5 the groove of the damper has been deepened to give cg/c =10.09 (Test no.2, Table 2) and is tested under 

the same conditions as those shown in Fig.4. The eccentricity ratios of this configuration are notably higher than 

those measured from the shallowly grooved damper for all applied force frequencies. This is consistent with 

other experimental findings [2] where a greater groove depth reduced the damping generated by the oil 

squeezing effect within the groove. However, none of the models used in the current study is able to give good 

correlation with the test results. Although the two-land model (Model 1a) is generally good in calculating the 

qualitative trend of the test data, its predicted amplitudes are grossly in error especially in the higher forcing 

frequency region. 
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Fig.6 shows the SFD response of the damper with the same groove depth as in Fig.5 but the oil has been changed 

to a slightly lower viscosity with µ  = 0.006 Pa-s (Test no.3, Table 2). With this thinner oil the resonance of the 

rig is clearly shown and located at about 33 Hz, which is about 2 Hz higher than the measured natural frequency 

of the rig. This shift of resonance peak is probably caused by the static fluid stiffness [4] produced by the 

lubricant supplied with 68.95kPa pressure. It can be seen in the low frequency range of Figs.6a and 6b that the 

amplitudes are lower than the predicted values of all the theoretical models which do not consider such an effect 

(i.e. all except Model 2). As mentioned in the previous section, Model 2 includes the influence of the oil supply 

mechanism which leads to the calculation of the static fluid force. However, present data show that such a model 

overestimates the magnitudes of SFD forces and hence does not make it more attractive than the other theoretical 

methods in computing the experimental response for the test results discussed so far.  

 

Fig.6 also shows that the SFD used in Test no.3 is sensitive to the applied unbalance force. The vibration 

amplitudes are found to be closer to the one-land predictions (Model 1b) when the unbalance force is low (Fa = 

20 N) and conforms more to the two-land predictions (Model 1a) when a higher unbalance force was used ( Fa = 

40 N). This was initially thought to be due to the occurrence of cavitation within the damper clearance. However 

an increase of supply pressure did not produce a significant effect on the vibration amplitude. A similar 

phenomenon was also reported by Holmes and Box [5] where the unbalanced response of their SFD tended 

toward that of the two-land model as the unbalance was increased. This is probably because larger vibration 

orbits resulting from the higher unbalance increase the pressure gradient between the groove and squeeze film 

lands. Consequently, the influence of the lands becomes more distinct. A more detailed report on the effects of 

unbalance on the pressure recorded at the edge of the groove and at the mid-land can also be found in the work 

of Levesley and Holmes [22] where a similar conclusion was drawn. 

 

It is suspected that some amount of fluid static stiffness may be produced by the SFD used in Tests no. 2 and 3. 

Its possible effect is depicted in Fig. 7 where the experimental eccentricity ratios of the damper at very low 

forcing frequency ( 0→ω ) are plotted against the applied unbalance force. The measured beam stiffness and 

the calculated static fluid stiffness of Model 2 are also shown. Fig.7a shows that for large applied force the low 

frequency experimental eccentricity ratios vary non-linearly with the applied unbalance forces. This suggests 

that the oil film may have produced a stiffness, which is non-linearly related to the eccentricity ratio. The oil film 

stiffness becomes apparent when the low frequency eccentricity ratio is higher than 0.7. As shown in Fig.7a, for 

the case when a 50 N applied unbalance force was introduced, about 42.8 kN/m static oil film stiffness was 

generated. This is about 16 % higher than the measured linear beam stiffness.  



 14 

For the damper with a lower viscosity lubricant (0.006 Pa-s) and the beam with higher stiffness (Test no.3, Table 

2), the static stiffness effect of the squeeze film is demonstrated in Fig. 7b. The experimental eccentricity ratios 

of the damper at low frequency are plotted against the applied unbalance force up to 40 N. With such a thin oil 

and relatively low unbalance force excitation, the observed static oil stiffness is roughly linear. Comparing the 

measured beam stiffness with the total static stiffness observed in Test no.3, one can see that about 47.5 % in 

static oil stiffness may have been added to the system. Referring also to Fig.6 where the dynamic responses of 

Test no.3 are shown, we find that this amount of apparent oil stiffness has possibly caused the shift in the 

resonance to a higher frequency compared to the expected system natural frequency at about 31 Hz. 

 

To gain more insight into the influence of the static oil stiffness on SFD response, Fig.8 shows the unbalance 

responses of the non-rotating SFD computed with some added stiffness determined from Fig.7 for Tests no. 2 

and 3. The experimentally determined total stiffness at low frequency is inserted into Models 1 and 3 for further 

comparison (i.e. k  in equation (7) is replaced by the observed total static stiffness).  

 

In Fig.7 it was found that oil film Model 2 greatly overestimated the oil static stiffness, resulting in large errors 

in predicting the vibration responses measured in Tests no. 1, 2 and 3 (see Figs.4, 5 and 6). In order to re-

examine the dynamic force prediction using Model 2, the static fluid force ( srF ) shown in equation (4a) was 

discarded and only the dynamic squeeze film forces were used as derived. Static oil film stiffness was taken into 

account by increasing k  in equation (7) to the value found in Fig. 7 (i.e. k  equal to the total of the measured 

beam stiffness and observed fluid static stiffness).    

 

In Figs.8a and 8b it is shown that all the modified models, especially the one proposed by Zhang and Roberts 

(Model 2) have now been able to match the measured data more accurately throughout the frequency range. 

Under these conditions, the two-land pressure assumed in Model 1 is still grossly in error. However, when the 

unbalance force is increased and low viscosity oil is supplied (Fig.8c), the modified two-land damper prediction 

still gives a reliable estimate.  

 

These figures suggest that the oil film forces may not have the relationship with unbalance and oil viscosity that 

has been assumed to date. This is consistent with Arauz and San Andres [23] who proposed that conceptually 

these forces should have non-linear stiffness (K), mass (M) and damping (C) terms, which need to be identified 

and modelled accurately.   
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4.2 Test Rig No.2: A Flexible Shaft-SFD Assembly 

Fig. 9 illustrates the unbalance response of the sprung SFD supporting a flexible shaft (Fig.3) with two different 

values of unbalance added at the overhung disk (Test no.4, Table 4). No cavitation bubbles were observed within 

the operating speed range. The groove was about 16 times deeper than the radial SFD clearance. It is shown in 

the test results Figs.9a and 9b that the damping provided by the groove cannot be neglected in the low speed 

range, i.e. at speeds which are close to the first undamped natural frequency of 14 Hz. As the rotational speed 

approaches the second critical speed (40 rev/s), the vibration amplitudes increase and tend towards the two-land 

predictions (Model 1a).  

 

The flexible shaft-sprung SFD assembly was then tested with a very deeply grooved damper having cg/c = 40.77. 

Two different lubricants were used, to correspond to typical aero-engine conditions, having viscosities of 0.006 

Pa-s (Test no.5, Table 4) and 0.015 Pa-s (Test no.6, Table 4).  Their respective unbalance responses are plotted 

in Figs.10 and 11. Under these test conditions, the SFD behaves very closely to a theoretical two-land damper 

(Model 1a) for most speeds, unbalance values and oil viscosities. Migration of resonant peaks either due to static 

fluid stiffness or fluid inertia effects was small.  

 

5 Possible sources of error 

The present work shows that the very shallowly grooved damper (cg/c = 3.27) used in Test no.1 may be modelled 

using Model 3 and that the SFD with a very deep groove (cg/c = 40.77 in tests no.5 and 6) behaves more like a 

two-land damper as assumed in Model 1a. These findings could be useful guidelines for the designer who is 

dealing with a particular rotor-SFD application. However, some errors are observed between the theoretical 

predictions and the experimental measurements, particularly for the cases when the groove depth to clearance 

ratio is between 3 and 41 (Figs.5, 6 and 9). This may in part be due to the following reasons: 

 

For ease of computation, the models proposed by Zhang & Roberts (Model 2, [4]) and Tan et al. (Model 3, [3]) 

both assume a SFD having a small groove depth to clearance ratio, which is less than about 5, so that a 

simplified form of the Navier-Stokes equation can be applied. As a result, we can see in Fig.12 that the radial 

( rC ) and tangential (
θ

C ) force coefficients (which are calculated by equation (10)) for Model 3 only show a 

small change within the low cg/c region, i.e. cg/c =1 ~5. This may explain why Model 3 can only give a good fit 

to the test results when a shallowly grooved damper is used, i.e. cg/c =3.27 (Fig.4).  
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εω
θ

θ c
F

C r
r

,
, =                                                                            (10) 

 

For Model 2, the change of force coefficient is more related to the value of supply pressure, particularly in the 

radial direction (Fig.12a). Model 2 overestimates the static force provided by the oil film (Figs.4, 5, 6, 9, 10 and 

11) and for this reason becomes less able to predict the vibration responses in the test results studied in the 

present work (see also Fig.7). According to Zhang & Roberts [4], the prediction of the static fluid force may be 

improved by taking into account the flow resistance of the connector between the feeding groove and the oil 

pipe, and the modelling of circumferential oil flow within the damper land and oil feeding groove. It is shown in 

Fig.8 that the accuracy of Model 2 may be improved so long as a good estimation of the static fluid force can be 

achieved.   

 

Due to the complexity of solving a set of second order non-linear partial differential equations, the theoretical 

models investigated in this paper assume an oil film with low inertia effects. However, a large fluid inertia could 

well be introduced under certain circumstances and was recorded in references [24] and [25] when a sprung end-

chambered sealed damper (8~80 rev/s) and an unsprung open-ended SFD (8~200 rev/s) were tested on a rigid 

and flexible rotor respectively. Therefore an attempt was made to estimate the Reynolds number in the film land 

and in groove using the following expressions, 

Reynolds number at the film land, 
µ
ωρ 2

Re c
L =          (11) 

Reynolds number at the oil groove, 
µ
ωρ 2

Re g
g

c
=         (12) 

In addition, the fluid inertia coefficients ( rcenM ) of the grooved SFDs are also calculated by substituting the 

experimental data into equation (4d) to give a rough indication of the added hydrodynamic mass. The results are 

shown in Table 5.  For all the tests conducted in this work, the fluid inertia at the film lands is small (ReL only 

varies between 0.01 to 2.1). At the groove, such an effect may be more profound because Reg may vary from 

0.19 to a maximum value of 2.5x103 

 

(Test No.5). 
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A small shift of the experimental resonance peak to a lower frequency as compared to the two-land model 

prediction is observed in Test no. 2  (Fig. 5). This may have been induced by a fluid inertia effect at the oil 

groove which is about 10 times deeper than the SFD clearance. For this case, Reg 

 

varies between 1.79 to 62.86 

and the added hydrodynamic mass may be up to 0.48 kg (about 4.7% of the effective damper journal mass).   

It is also interesting to note in Table 5 that the Reg of Test No. 5 may be up to 2.5x103, although current findings 

suggest that the conventional inertialess two-land model (Model 1a) provides the best comparison with the 

experimental measurements (Fig.10).  A possible explanation for this is the relatively small hydrodynamic mass 

(about 0.409~0.608 kg) produced by the current damper compared to the total rotor/damper mass, which is 21.3 

kg.  

7 Conclusions 

This paper assesses the efficacy of various theoretical methods available for use in the analysis of a 

circumferentially grooved squeeze film damper. Experimental data collected from two separate test rigs which 

have a groove depth-to-clearance ratio ranging from 3.27 to 40.77 were used for comparison so that a wider 

picture of the non-linear vibration response of the damper could be seen. The conclusions of the study are as 

follows, 

 

1. Damper with a shallow groove (cg/c ≤ 3.27): The non-linear vibration response of this type of damper 

(Fig. 4) may be accurately modelled by Model 3 (that of Tan et al.) which takes into account the small 

inertia effects and flow interactions between the groove and the thin film land using the Simplified 

Navier Stokes Equation. It is found in this study that the damper with this groove depth does not fit the 

predictions of the one-land nor of the complete damper width model. These latter models are only able 

to provide upper and lower limits for the damper response.  

 

2. Damper with an intermediate groove depth (3.27< cg/c <41): None of the evaluated methods in this 

study is able to provide good predictions for the SFD’s tested (Fig.5 and 6). It is found that the stiffness 

and damping effects generated by the oil squeezing motion within the damper clearance are highly non-

linear. Static oil stiffness as high as 47% of the structure stiffness is observed and is sensitively related 

to oil viscosity and unbalance (Fig.7). However when fluid static stiffness was estimated experimentally 

and added to the models, it was found that model 2 (that of Zhang & Roberts) provided a good 
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estimation for the case where a higher viscosity oil was applied (Fig.8a), but that with low viscosity oil 

and higher dynamic eccentricity ratio, the behaviour approaches that of the two-land model (model 1a).   

 

3. Damper with a very deep groove (cg/c ≥ 41): Albeit with the SFD performance moderated by the 

flexible rotor, the experimental measurements (Fig.10 and 11) obtained from the flexible shaft-sprung 

SFD configuration suggest that the SFD with such a groove depth behaves very closely to the ideal two-

land model, where the oil film effects in the supply groove can be neglected, implying that the deep 

groove uncouples the pressures between the two film lands and therefore that they can be modelled as 

two separate parabolic pressures under the various unbalance and oil viscosity conditions.  

 

Some of the poor correlations of the applied theoretical models with the test data may be due to the fact that 

tested groove depths were much larger than permissible when using some of the models, failure to allow for 

large fluid inertia effects and flow resistance caused by the connectors between the oil feeding tubes and the 

holes. A more comprehensive mathematical model is needed but conclusions drawn from this paper, particularly 

those mentioned in 1 and 3 above, should be sufficient to provide useful guidelines to design a very shallowly or 

very deeply grooved SFD-rotor assembly with some degree of confidence. 
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Captions 
 

Fig.1 Schematic diagrams of a SFD 

 
Fig.2 Schematic diagram of the non-rotating SFD (Test Rig No.1) 

 
Fig.3 Schematic diagram of the flexible-shaft incorporated with a SFD  

(Test Rig No.2) 
 

Fig.4 Comparison of predicted and experimental response of the non-rotating SFD (Table 2) 
(Test No.1: sPaccg −== 015.0,27.3/ µ ) 

 
Fig.5 Comparison of predicted and experimental response of the non-rotating SFD (Table 2) 

(Test No.2: sPaccg −== 015.0,09.10/ µ ) 

 
Fig.6 Comparison of predicted and experimental response of the non-rotating SFD (Table 2) 

(Test No.3: sPaccg −== 006.0,09.10/ µ ) 

 
Fig.7 Experimentally determined static fluid stiffness of the non-rotating SFD (Table 2) 

(a) Test No.2 : 09.10/ =ccg , sPa −= 015.0µ  

(b) Test No.3: 09.10/ =ccg , sPa −= 006.0µ  

 
Fig.8 Comparison of predicted and experimental response of the non-rotating SFD (Table 2) 

(a) Test No.2 : 09.10/ =ccg , NFsPa a 50,015.0 =−=µ  

(b) Test No 3: 09.10/ =ccg , NFsPa a 20,006.0 =−=µ  

(c) Test No 3: 09.10/ =ccg , NFsPa a 40,006.0 =−=µ   
 

Fig.9 Comparison of predicted and experimental response of the sprung SFD-flexible shaft assembly  
(Table 4)(Test No.4 : 15.16/ =ccg , sPa −= 006.0µ ) 

 

Fig.10 Comparison of predicted and experimental responses of the sprung SFD-flexible shaft assembly  
(Table 4) 

 (Test No.5: 77.40/ =ccg , sPa −= 006.0µ , Re=0.1228~1.5345) 
 

Fig.11 Comparison of predicted and experimental responses of the sprung SFD-flexible shaft assembly  
(Table 4) 

(Test No.6: 77.40/ =ccg , sPa −= 015.0µ , Re=0.0508~0.6350) 
 

Fig.12 Tangential and Radial Force Coefficients of Various Theoretical Models 
(Note models 1a-1c do not predict a variation in radial force with ccg / )  
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Table 1 Dimensions of the non-rotating SFD 
 

Table 2 Test conditions of the non-rotating SFD 
 

Table 3 Dimensions of the SFD supporting the flexible shaft 
 

Table 4 Testing conditions of the SFD supporting the flexible shaft 
 

Table 5 Reynolds numbers and fluid inertia coefficients of the tests 
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(a) Squeeze film forces    (b) Side view of a SFD 
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       Figure 3 

 

 

 
1. Squeeze film damper.  5. Unbalance mass on the disk. 
2. Retainer spring.   6. Flexible coupling 
3. Self-aligning bearing.  7. Pulley driven by motor 
4. Flexible rotor 
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       Table 1 

 
Journal Radius ( R )= 68.1 mm Land Length ( L ) = 9.1 mm Oil Pipe Radius ( r ) 

= 2.15 mm 
Radial Clearance ( c ) 

= 0.22 mm 
Groove Length ( gL ) = 1.9 mm Length of the Oil Pipes 

( l ) = 1.563 m 



       Table 2 

 
 
Test 
No. 

Beam 
Stiffness 

( k )  
kN/m 

Effective 
Mass 
( m ) 
 kg 

Supply 
Pressure 

( sP )  
kPa 

Oil 
Viscosity 

( µ )  
Pa-s 

Oil 
Density 

( ρ ) 
kg/m3 

Applied  
Force 
( aF ) 

 N 

Groove 
Depth 
( gc )  
mm 

Groove 
Depth-to 

Clearance 
Ratio 

( ccg ) 

1 225 10.40 68.95 0.015 870 25, 50 0.72 3.27 
2 262 10.14 68.95 0.015 870 25, 50 2.22 10.09 
3 387 9.95 68.95 0.006 841 20, 40 2.22 10.09 

 



       Table 3 

 
Journal Radius ( R )= 50 mm Land Length ( L ) = 9.72 mm Oil Pipe Radius ( r )  

= 1.5 mm 
Radial Clearance ( c ) 
= 0.132 mm 

Groove Length ( gL ) = 1.9 mm Length of the Oil Pipes  
( l ) = 1.44 m 

 



       Table 4 

 
Test 
No. 

Supply 
Pressure 

( sP )  
kPa 

Oil 
Viscosity 

( µ ) 
 Pa-s 

Oil 
Density 

( ρ )  
kg/m3 

Unbalance  mass, 
(Mu) 
kgm 

Groove 
Depth ( gc ) 

mm 

Groove 
Depth-to 

Clearance 
Ratio ( ccg ) 

4 120 0.006 841 2.59e-4, 5.1e-4 2.132 16.15 
5 120 0.006 841 2.59e-4, 5.1e-4 5.382 40.77 
6 120 0.015 870 2.59e-4, 5.1e-4 5.382 40.77 

 
 
 
 



       Table 5 

 
 

Test No. 1 2 3 4 5 6 
Reynolds 

Number at 
the land  

(ReL) 

0.017~0.889 0.035~0.529 0.085~2.131 0.122~1.534 0.122~1.534 0.050~0.635 

Reynolds 
number at 
the groove 

(Reg) 

0.188~9.445  1.796~62.861 8.686~217.02 32.03~400.31 204.08~2.551x103 84.447~1.05x103  

Inertia 
Coefficient 

( rcenM ) 
kg 

0.315~0.506 0.236~0.480 0.28~0.498 0.4307~0.608 0.409~0.609 0.409~0.631 
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