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1. INTRODUCTION

In a recent article, Renton [1] presented a comparison between the standing wave natural
frequency predictions of Timoshenko beam theory (TBT) for a long beam of thin
rectangular cross-section, when the flexural mode is sinusoidal in the axial co-ordinate x,
and those of a plane stress elastodynamic solution; the latter may be regarded as the exact
benchmark. Renton’s main concern was the accuracy of the lower of the two frequency
predictions of TBT (TBT1), although the results presented in Figure 1 of reference [1] also
show the frequency prediction of the so-called second spectrum (TBT2), and re-presents
evidence that this mode should be disregarded. Renton concluded that TBT1 may be
regarded as accurate when the wavelength exceeds the beam depth, and underestimates the
natural frequency by 5-8% when wavelength/beam depth is equal to unity, and that simple
(Euler-Bernoulli) beam theory overestimates natural frequency by 21-5% even when
wavelength is five times the beam depth. The value of the shear coefficient is not stated
explicitly in reference [1], but itis clearly x = 2; this value was derived previously by Renton
[2] as the limiting case of a more general expression for the rectangular cross-section, when
width/depth ratio approaches zero, as in plane stress conditions.
In what follows, this accuracy check is repeated using the shear coefficient
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an expression which has recently been derived by Hutchinson [3] for the thin rectangle,
together with some other published values. In reference [4] it is shown that Hutchinson’s
general expression for the coefficient is equivalent to that derived by the present author
[, 6] employing two different methods. Included in the comparison is a value derived by
Cowper [7] which, from the present author’s knowledge of the literature over the past 25
years, is probably the most popular choice, but not the best. Also presented are
the predictions of a two-coefficient theory [6], which employs both the above
expression (1), and Cowper’s. In addition, further comments on the second spectrum, TBT2,
are made.
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2. THEORY

The fourth order differential equation of TBT is
*v % EN oY piH %
—+pA—=—pl|1+—=|—=+"—==5=0, 2
Elgatrdza=r ( * KG> o kG ot @
where the customary notation is employed. For a standing wave, assume that the transverse
displacement is sinusoidal in both axial co-ordinate and time, that is

v = sin Ax sin wt (3)

and introduce the non-dimensional frequency parameter
2
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both in accordance with the notation of reference [1], then it is straightforward to obtain
the two frequency parameters as
<y1> [+ E/G + kA/I)}) F \/(x + E/G + xA/I12%)? — 4kE/G]
V2 2 .

When the shear coefficient takes the value x = 2, the above reduces to equation (2) of
reference [1]; note that wavelength is 27/ in this notation, and 1 is the wavenumber. As the
wavelength approaches zero, so

)

Y1 =K, Y2 —2(1 4 v). (6)

For the equivalent travelling wave solution, y is equal to (c,/c;)* where ¢, is the phase
velocity, and ¢, = /G/p is the shear wave velocity.

The exact, plane stress frequency determinant of equation (8) in reference [1] is equivalent
to that presented by Cowper [8] in his accuracy assessment, once the notations have been
reconciled and, in turn, is the plane stress equivalent of the well-known plane strain
Rayleigh-Lamb frequency equation, once the elastic constants have been adjusted to suit
plane stress rather than plane strain conditons. As the wavelength approaches zero, so this
equation reduces to

16— (1= 857~ )

and again this is equivalent to the well-known equation governing the velocity of Rayleigh
surface waves (see, for example, Renton’s reference [1, equation (64.42)]), once plane stress
conditions have been imposed by replacing the Poisson ratio v by v//(1 +v'), and then
dropping the primes. For the Poisson ratio v = 0-3, one finds y; = 0-83945.

3. TBT1 COMPARISON
Renton conducted his comparison over the range

05 < wavelength
= beam depth

and here this range is extended from 0-1 to 10. Figure 1 shows the error in natural frequency
prediction employing several different values for the shear coefficient. Except at very short
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Figure 1. Percentage error in natural frequency prediction. A: k=2, B: k=083945 C: x=10(1 + v)/
(12 + 11v), D: k = 5(1 + v)/(6 + 5v), E: two coefficient theory xy = 10(1 + v)/(12 + 11v), k3 = S(1 + /(6 + Sv).

wavelength, all of these values lead to an underestimate, and each shows a turning point in
their error characteristic when the wavelength is approximately equal to the depth of the
beam. The value x = 2 leads to a maximum underestimate of 2%, which suggests that
Renton’s conclusion of a 58% underestimate is too pessimistic. Cowper’s value
k= 10(1 + v)/(12 + 11v) leads to a maximum underestimate of about 1-2%, and this is in
agreement with the error estimate in Figure 2 of reference [6]. The value x = 51 +v)/
(6 + 5v) gives a maximum underestimate of about 0-4%. As wavelength becomes shorter, so
travelling waves approach the velocity of Rayleigh surface waves; to achieve agreement at
this extreme, when one would hardly describe the vibration as flexural, requires use of the
value x = 0-83945 (for the Poisson ratio v = 0-3). As can be seen this choice produces the
smallest error for wavelength/beam depth = 0-1, but for longer wavelengths gives an error
characteristic very close to that of Renton’s value. Figure 2 of reference [6] also shows the
error prediction from the two-coefficient beam theory
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in which x3 = 5(1 4+ v)/(6 + 5v) and «, is Cowper’s value. This error is also shown in
Figure 1 of the present note and is seen to provide a maximum underestimate of about
0-1%. Finally, which shear coefficient is best? TBT was constructed originally in order to
deal with the inadequacies of Euler-Bernoulli theory (nicely shown in Figure 1 of reference
[1]) at short, but not extremely short, wavelength. One would not normally expect an
approximate beam theory to predict behaviour accurately when the wavelength becomes
shorter than the beam depth, when depth-wise modes of vibration becomes a possibility.
Thus in order to answer this question, it is reasonable to restrict the range to
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wavelength/beam depth > 1. For a single coefficient theory that given by equation (1) is
clearly the best, although better accuracy can be achieved with a two-coefficient theory. On
the other hand, the other coefficients provide better agreement as wavelength/beam
depth — 0. In particular, the value k = 0-83945 provides zero error at the limit of zero
wavelength; but why should one ask TBT to predict the Rayleigh surface wave velocity,
when that velocity can be determined by other means?

4. SECOND SPECTRUM, TBT2

Referring to Figure 1 of reference [1], note that the TBT2 prediction, denoted by the
symbol (@), provides good agreement with the second branch predictions of the exact
theory, denoted (), at the longer wavelength range, for example when (wavelength/beam
depth) > 3, but provides better agreement with the third exact branch, denoted (3), at
shorter wavelength, for example when wavelength/beam depth < 1. Such behaviour, which is
also displayed by the so-called w,-mode of Mindlin plate theory [9], is one reason why
these second branch predictions should be disregarded. Figure 1 of reference [1] does not
show the myriad of other modes of vibration, for example longitudinal, to which the TBT?2
prediction also provides good agreement at these short wavelengths.
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