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ABSTRACT

In order to regulate the significant variations in the
dynamic characteristics of a distributed collector field in a
solar power plant, various control techniques including
feedforword control, gain scheduling and fuzzy control
have been considered in the past. This paper develops
some of these previous approaches by considering the
operating conditions of the plant and the desired
controlled responses. The result is a control scheme that
employs a fuzzy PI controller, with feedforward, for the
highly nonlinear part of the operating regime and gain
scheduled control over the more linear part of the
operating envelope. In order to satisfy performance
characteristics for the plant at different points in the
operating regime, a multiobjective genetic algorithm is
used to design the parameters of the fuzzy controller. To
reduce the size of the search space and the resulting fuzzy
controller, a hierarchical encoding is employed with the
multiobjective genetic algorithm. The resulting controller
is shown to both satisfy the desired performance criteria
and have a reduced number of terms compared with a
conventional design approach.

1. INTRODUCTION

In previous work, Tang et al [1] have demonstrated how a
hierarchical chromosome structure can be employed in the
search for parsimonious fuzzy controllers, i.e. ones with a
reduced fuzzy set and rule base. This approach has been
successfully applied to the control of a nonlinear system, a
solar power generation plant [2], and shown to offer
acceptable control and the possibility of a simple
hardware realisation. In this work, we extend this idea by
considering the use of a multiobjective genetic algorithm
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(MOGA) [3] with the hierarchical chromosome structure
to design the fuzzy controller to meet a set of performance
criteria at different points in the operating regime.

However, other researchers have demonstrated that the
solar plant can be controlled well over a large part of its
operating range using a gain scheduling approach [4]. So,
we consider the use of the fuzzy controller for control
within the regions of high nonlinearity of the solar power
plant and to make more effective use of a gain-schedule
controller by allowing it to operate only in the more linear
regions of the system. The overall effect of this approach
will be to reduce the search space for the hierarchical
MOGA, which itself will further reduce the number of
membership functions and rule-base required for fine-
tuning. This greatly improves the processing time when
tuning the fuzzy-PI controller, and also improves control
within the highly nonlinear regions of the plant.

2. PLANT DESCRIPTION

The ACUREX-field, Plataforma Solar de Almeria (PSA),
is located in the southern part of Spain. The field is
composed of 480 distributed solar parabolic collectors,
arranged in 10 parallel loops and is outlined in schematic
in Fig. 1. A collector uses the parabolic surface to focus
the solar radiation onto a receiver tube, which is placed in
the focal line of the parabola. The heat-absorbing oil is
pumped through the receiver tube, causing the oil to
collect heat, which is transferred through the receiver tube
walls. The thermal energy developed by the field is
pumped to the top of the thermal storage tank, whereupon
the oil from the top of the storage tank can be fed to a
power-generating  system, a  desalination plant,
detoxification plant or to an oil-cooling system if needed.
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The oil outlet from the storage tank to the field is at the
bottom of the storage tank.

For the initial start-up of the plant, the system is
provided with a three-way valve, which allows the oil to
be circulated in the field until the outlet temperature is
adequate to enter the storage tank. The oil pump, which
pumps the oil from the storage tank, through the collector
tubes and into the top of the storage tank is located at the
field inlet. To ensure that the collectors give optimum
solar absorption, every collector row has a sun tracking
system fitted to it.

A data acquisition system for the plant provides the
following data: the solar intensity, inlet temperature to the
field, outlet temperature of each loop and two other outlet
temperatures between the field and storage tank, the
current oil pump flow and requested value, and the
tracking status of the collectors. The plant can generate
1.2 MW of peak power with beam solar radiation of 900
W m? The oil-storage tank has a capacity of 140 m’,
which allows for storage of 2.3 thermal MWh for an
inlet temperature of 210 °C and an outlet temperature of
290 °C.
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Figure 1: Schematic representation of the solar plant

The operation limits for the oil pump are between 2.0
and 10.0 I s. The minimum value is there for safety and
to reduce the risk of the oil being decomposed, which
happens when the oil temperature exceeds 305 °C. The
consequence of exceeding the maximum oil temperature
is that all the oil may have to be changed leading to plant
down-time and loss of power generation. Another
important restricting element in this system is the
difference between the field’s inlet and outlet oil
temperatures. A suitable, or normal, difference is around
or less than 70 °C. If the difference is higher than 100 °C,

TO STEAM
! GENERATOR OR
DESALINATION

then there is a significant risk of causing oil leakage due
to high oil pressure in the pipe system.

A control system for this plant has the objective of
maintaining the outlet temperature (in this case the
average outlet temperature of all the parallel loops) at a
desired level in spite of disturbances like solar irradiation
(clouds and atmospheric phenomena), mirror reflectivity
and inlet oil temperature. The oil flow rate is manipulated
by the control system through commands to the pump. It
should be noted that the primary energy source, solar
radiation, cannot be manipulated. The performance
measures of the control system are to keep the oil outlet
temperature close to its set point, and to avoid oscillations
in the oil pump flow rate.

3. GAIN-SCHEDULED CONTROL

In previous work, Johansen et al [4] employed a
traditional gain-scheduling approach for the solar plant.
This used a set of local linear controllers, each designed
by pole-placement, based on local linear ARX models that
were identified using the methods and software described
in Hunt and Johansen [5]. A feed-forward block was also
placed in the controller from the solar radiation input (1),
to improve disturbance rejection. The linear models were
designed for control in the more linear regions of the oil-
flow (q), i.e. above 51 s,

Their decomposition was carried out in the operating
range of, 0 < /< 1000 Wm?and 51s' < ¢ <101s". This
decomposition was selected such that the gain and time
constant of the linearisation of the simple model varies
with less than a factor of 2 between any neighbouring
regimes. Thus, assuming the local models are exactly
correct at the centre points of their corresponding regimes,
the interpolated model gain and time constant are never
more than a factor of V2 wrong.

Two local linear models presented in [5] were
identified from experimental data, using locally weighted
regression as described in [6]. These correspond to the
operating points with oil flow rates at 6 and 8 1 s
respectively. The plant was perturbed with PRBS signals
of amplitude 0.5 I s around both of these operating
points. Also, the gain of the local linear models was
corrected using the average solar radiation during each
PRBS test such that they corresponded to a solar radiation
of 800 W m? Furthermore, two new local models
corresponding to a solar radiation of 500 W m™ were
generated by reducing the gain by a factor of 5/8. This
gives a total of four local models corresponding to the
four operating regimes. The plant does not normally
operate in steady state at solar radiation levels below 400
Wm™.



In [6] it was also shown that the performance of the
gain scheduled controller was not ideal at the lower flow
rate of 4 | s?, with significant overshoot and some
oscillation of the control signal. Here, the authors will
demonstrate that this may be improved by refining the
models in this regime with an improved PRBS test signal.
Furthermore, the nonlinearities were more pronounced at
low flow rates. Thus, a finer decomposition into operating
regimes may be desirable as g becomes smaller. In view
of the uncertainties and difficulties of control at low flow
rates, the method chosen in this study was to use a
hierarchical MOGA tuned fuzzy PI controller to improve
these flow rates.

4. TUNING THE FUZZY PI CONTROLLER WITH
A HIERARCHICAL MOGA

In an initial study [7], fuzzy PI type controllers were
designed for low flow rates that offered an improved
performance compared with the standard controller. A
MOGA was used to design the rule-base and membership
functions for the controller against a number of
performance criteria including rise time, overshoot and
stability. In the work presented here, improvements to the
work of Loebis [7] are developed to reduce the number of
membership functions, the size of the rule base and the
multiobjective genetic algorithm search space.

The result of this study was to vastly reduce the
processing time required to tune the fuzzy PI controller.
The search space was reduced by allowing the fuzzy PI
controller to operate only in the high nonlinear areas of
the system, i.e. where the oil flow is under 5 I s'. A
hierarchical MOGA (HMOGA) was also designed in
order to obtain the optimum number of membership
functions and fuzzy rules. Further, the multiobjective GA
was designed to allow more control objectives to be
employed such as settling time and steady-state error. The
HMOGA is designed in such a way that the genes of the
chromosome are classified into two different types. One
type of gene (control) affects the activation of the other
type of genes (parametric). The effectiveness of this
genetic formulation enables the fuzzy subsets and rules to
be reduced while maintaining the system performance at
the desired level.

A PI fuzzy logic controller is proposed were the error
(e) is defined as the difference between the plant output
temperature (7)) and the set point signal (7}). The error
and its increment (Ae) are considered to be the inputs for
the fuzzy controller and the output variable (Au) is the
increment to the control signal. A feed-forward term was
added after the FLC to improve the disturbance rejection
caused by wvariations in the solar radiation. This control
scheme is depicted in Fig. 2.

The HMOGA is utilised to optimise the fuzzy
membership functions, while the fuzzy rules are also
governed by an evolution process to obtain an optimal set.
The HMOGA is inspired by the hierarchical structure of
DNA in biological systems. There are two types of genes,
the control genes and the parametric genes, constructed in
a hierarchical manner. The control genes govern the
activation states of the parametric genes. Different
activation states of the parametric genes can result in
different structures in the phenotypes and therefore
different membership function sets. An example of one
particular fuzzy set within a chromosome is shown below
in Fig. 3.
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Figure 2: Solar power plant control scheme
(nonlinear regimes)
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Figure 3: HMOGA chromosome structure

Three fuzzy sets are required for the solar plant FLC,
namely e, Ae, and Au and these were encoded into such a
hierarchical chromosomes. The control genes, in the form
of bits, determine the membership function activation,
whereas the parametric genes are in the form of real
numbers to represent the membership functions. The
domain of all the fuzzy variables was normalised into the
range of [-100, 100]. The fuzzy rules for each



chromosome were classified, as the fuzzy subsets may
vary from one chromosome to another. Also to allow each
fuzzy rule table to evolve a special delta shift form of
mutation was designed for this purpose [2]. When
decoding the chromosomes to phenotypic values, a
remedial procedure was performed to ensure that there
were no undefined regions represented by the fuzzy
membership functions, i.e. that invalid fuzzy sub-sets
could be bypassed and the valid subsets enlarged to cover
all the undefined regions.

The HMOGA uses the same Pareto-optimality criteria
as Fonseca and Fleming [3] to determine fitness on the
basis of non-dominance of the individuals. The criteria
used to assess the performance of the fuzzy-PI controller
and its transition from the fuzzy mode to gain scheduled
are:

i. integral of the absolute value of the error
multiplied by a variable penalty factor [2]

ii. rise-time (at each operating point change)

iii.  overshoot (at each operating point change)

5. THE COMBINED CONTROLLER

The decision making for the combined controller, Fig. 4,
is determined by the oil flow rate. The HMOGA tuned
Fuzzy PI only being implemented at flow rates below 5 |
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Figure 4: The combined controller

6. RESULTS

Fig. 5 shows a typical response for the outlet oil
temperature tracking for the combined controller, i.e.
fuzzy-PI and gain scheduled. In the figure, each discrete
step point change corresponds to a separate design

objective for both ii and iii. The design of the final
controller is therefore a compromise that offers good
performance across the operating range and also
minimises that set point tracking error.
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Figure 5: Typical simulation results

A typical set of reduced subsets (3 x 5 x 5) for the
fuzzy membership functions obtained by the HMOGA are
shown in Fig. 6. It should be noted that the reduced
subsets do not degrade the system performance and are
generally comparable with those obtained using
conventional fuzzy design methodologies. However, as
HMOGA is a Pareto-based approach there will not be one
single ‘best’ solution. Rather, there will be a family of
solutions that offer different trade-offs over the design
objectives. The choice of the final solution could therefore
be made by the control and/or systems engineer on the
basis of performance criteria rather than the algebraic
properties of a weighting function as is generally the case
with single objective design techniques.

7. CONCLUDING REMARKS

The combined control of the solar plant was shown to be
more effective than that of using fuzzy or gain scheduled
control alone. It was also demonstrated that the size of the
fuzzy controller can be reduced, while still allowing it to
offer good performance over a set of objectives at a
number of different operating points. The reduction in the
size of the fuzzy controller is attractive because it is
simpler to both understand and validate, and also easier to
implement in hardware.
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Figure 6. Typical fuzzy subsets and membership functions
for the solar power plant

In future work, it is proposed to demonstrate the
application of this approach to situations where the plant
is subjected to external environmental changes, for
example during a brief period of cloud cover. In such
circumstances, there are wide variations in oil temperature
and flow rates in the system need to be adjusted
accordingly. The highly nonlinear region, below 5 1 s,
maybe better controlled by the fuzzy controller at these
operating points.
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