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Abstract

We present a meshless method based on thin plate radial basis function method for
the numerical solution of advection-diffusion equation, which has been a long standing
problem. The efficiency of the method in terms of computational processing time,
accuracy and stability is discussed. The results are compared with the findings from
the finite difference methods as well as the analytical solution. Our analysis shows that
the radial basis functions method, with its simple implementation, generates excellent
results and speeds up the computational processing time, independent of the shape of
the domain and irrespective of the dimension of the problem.
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1 Introduction

The solution of the advection-diffusion equation is a long standing problem
and many numerical methods have been introduced to model accurately the
interaction between advective and diffusive processes. This modelling is the
most challenging task in the numerical approximation of the partial differential
equations [1] and the available numerical solutions are very sophisticated in
order to avoid two undesirable features: oscillatory behavior and numerical
diffusion, which are mainly due to the advection term when it dominates (see
also Brebbia et. al. [2, 3], Partridge et. al. [4, 5] for a detailed discussion).

In general, the numerical solution of advection-diffusion equations has been
dominated by either Finite Difference, Finite Element or Boundary Element
Methods. These methods are derived from local interpolation schemes and re-
quire a mesh to support the application. It is well known that Finite Difference
and Finite Element solutions of the advection-diffusion equation present nu-
merical problems of oscillations and damping. On the other hand, boundary
element solutions seem to be relatively free from these problems, as shown by
Brebbia and Skerget [3].

The numerical solution of this equation is a difficult task because of two
reasons; Firstly, the nature of the governing equation, which includes first-order
and second-order partial derivatives in space. According to the value of  (dif-
fusion coefficient) and v (advection coefficient), the equation becomes parabolic
for diffusion dominated processes or hyperbolic for advection dominated pro-
cesses. Traditional finite difference methods are generally accurate for solving
the former but not the latter, in which case oscillations and smoothing of the
wave front are introduced. This can be interpreted as the artificial diffusion
intrinsic to these methods [3, 4, 5, 6, 7, 8]. Secondly, since the above-mentioned
numerical methods are all mesh dependent, it is vital to construct an appro-
priate mesh to obtain a better approximation to the problem. However, the
construction of an appropriate mesh is not an easy task and sometimes the
problems cannot be solved because of the lack of an appropriate mesh structure
[1, 9, 10, 11, 12, 13].

Because of the complexity of mesh-generation, considerable effort has been
devoted in recent years to the development of mesh-free methods, also called
meshless methods. These methods aim to eliminate the structure of the mesh
and approximate the solution using a set of quasi-random points rather than
points from a grid discretization.

In this paper, we conduct a comparative study of mesh free and mesh depen-
dent methods. Radial Basis Functions (RBF) as a mesh free method is exam-
ined and the results are compared with the findings of Finite Difference Method
(FDM) and analytical solution. In the next section, we introduce the advection-
diffusion equation and its applications. Then, we briefly introduce a meshless
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scheme based on Thin Plate Spline (TPS) radial basis function method. In sec-
tion 4, we describe the solution of this equation using finite difference method in
order to make a comparison between the mesh-free and mesh-dependent meth-
ods. Section 5.1 shows the findings of our analysis and finally, we conclude in
section 6.

2 Advection-Diffusion Equation

The advection-diffusion equation can be written in the following form:

Ou(x,t)
ot

Together with the general boundary and initial conditions

= kV2u(x,t) + v - Vu(x,1), xeQcRLt>0 (1)

cau(x,t) + ca - Vu(x,t) = f(x,t), x€INt>0 (2)
u(x,t) = up(x), t=0 )
where u(x,t) is the temperature at the position x at time ¢, x = (x1,23,...,24)

is the vector position, d is the dimension of the problem, V the gradient differ-
ential operator,  is a bounded domain in R¢, 09 the boundary on £, x the
diffusion coefficient, v = [vg, vy, v,]T the advection coefficient or velocity vector,
¢, and ¢y are known constants, and f(x,t) and ug(x) are known functions.

A large number of problems in physics, chemistry and other branches of
science can be modelled by the advection-diffusion equation. For example, the
steady-state distribution of a passive substance dissolved in water and trans-
ported by the flow, transport of multiple reacting chemicals, the dispersion of
atmospheric tracers or the far-field transport of decaying radionuclides through
a porous medium can all be described by the advection-diffusion equation.

Industrial problems involving the solution of the advection-diffusion equa-
tions range from the solution of fluid dynamic problems such as the galvaniza-
tion of steel sheets and alloy solidification, heat transfer applications such as
the temperature increase in current carrying wires, the water jet cooling of a
moving hot rolled steel strip, to financial applications such as the variation of
asset prices in stock-market.

3 Radial Basis Function Approximation

The approximation of a function u(x), using RBF, may be written as a linear
combination of N radial functions:

N
u(X) =~ Z A (x,%;) for xe Q c R? (4)

=1
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where N is the number of data points, A’s are the coefficients to be deter-
mined and ¢ is the radial basis function.

We use the Thin Plate Spline RBF in our analysis. The reason is that pre-
vious analyses have shown that the MultiQuadrics (MQ) and Thin Plate Spline
(TPS) give the most accurate results for scattered data approximations [14].
However, the accuracy of the MQ method depends on a shape parameter and
as yet there is no mathematical theory about how to choose its optimal value .
Hence, most applications of the MQ use experimental tuning parameters or ex-
pensive optimization techniques to evaluate the optimum shape parameter [15].
While the TPS method gives good agreement without requiring such additional
parameters and based on sound mathematical theory [16].

An mth order TPS is defined as

¢(X,XJ’) = ¢(rj) = sz'mlog(rj% m=1,2,3,... (5)

where 7; = ||x — x;|| is the Euclidean norm. Since ¢ is C*™~! continuous, a
higher-order TPS must be used, for higher-order partial differential operators.
The advection-diffusion equation is of second-order, m=2 is used to ensure at
least C? continuity for u.

The collocation of equation (4) at N points results in a system of linear
equations, which is solved using Gaussian elimination with partial pivoting in
order to determine the coefficients (A1, ..., An).

4 Solution with FD and RBF Methods

Equation (1) is discretized using Crank-Nicholson (6-weighted) method
u(x,t+ At) —ul(x,t) = Atf (anu lirat +V - VU |rae)
+ A1 —-0) (kV?u |y +v - Vuly) (6)

where 0 < 8 < 1, and At is the time step size. Using the notation, u™ =
u(x,t") where t" = ¢"~! + At, equation (6) can be written as

T I v Ve N\ VA T R VA Vi (7)
where
a=-k0At  B=B 00" = 00ty 8
and
n = kA1 - 0) ¢ =[le, &y &7 = D1 = O)v 9)

We define the new operators Hy and H_ by

Hy=1+aV?+4-V, H_=1+nV*4+¢.V (10)
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In the FDM, the operators H,. and H_ are discretized by using the second-
order central difference for the diffusion terms and backward difference for the
advection terms. In the RBF method, the function u is approximated by a linear
combination of radial functions as in equation (4), and the operators H and
H_ are applied to the approximation. The time-discrete equation (6) becomes

Hyu"t = H_ " (11)

To be able to compare the FDM and RBF approaches, we use the same grid
(discretization in space) and assume x(z;,y;) for ¢ = 1,...,N to be a set of
discrete points that defines a uniform grid with Az and Ay being the step size
in the x- and y-directions respectively.

4.1 Finite Difference Method

In the FDM, the Laplacian and gradient operators are discretized using the
second-order central difference and backward difference respectively. When the
FD approximations are substituted in the operators H and H_, the boundary
and initial conditions are applied, and the equations are re-arranged, we obtain a
symmetric system of linear equations, which is solved using Gaussian elimination
with partial pivoting to get an estimate of u(x,?).

4.2 Radial Basis Function Method

In contrast to FDM, in RBF method, we never discretize the differential oper-
ators, instead the operators are applied to the basis functions directly.

That is, if we assume that there are a total of N collocation points (called
also centers), u(x,t") = u(z,t") is approximated by:

N
uMx) = ) Afe(rs) (12)
i=1
where r; is the Euclidian distance between the points x and x;. To determine
the interpolation coefficients (A1, Az,..., AN—1,An), the collocation method is
used by applying (12) at every point i = 1,..., N, giving:

N
uM(zi) = Y Ap(rij), i=1,...,N (13)
i=1
where r;; = /(z; — ;). Since the radial basis functions method de-

pends only on the relative distance between the nodes, it is easy to extend
this method to the higher dimensions by just taking the relative distance r as

rij = /(@i — 33)2 + (yi — v5)% + (2 — 25)*.
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The operators Hy and H_ are applied to the approximation (12) to get:

N N
STXNFH (rij) = Y NpH-¢(ry), i=1,...,N (14)

j=1 j=1
The above equation is applied at every point ¢ = 1,..., N. In order to de-
termine the interpolation coefficients (A1, Az,. .., An), the Gaussian elimination

method with partial pivoting is used and the X’s are back-substituted to get an
approximation of u(z,t).

5 Numerical Examples

5.1 Example 1

For the comparison of TPS-RBF and FDM solutions, consider following one-
dimensional problem with its analytical solution. It consists of a Dirichlet prob-
lem defined as:

ou(x,t) nazu(:c,t) 3 U(’)u(x,t)

= 1
ot dz? Oz (15)
u(0,1) = ae®, u(6,t) = ae’™%, t>0 (16)
u(z,0) = ae™ (17
The analytical solution is given by
4+ /D2
u(z,t) = ae® and c= vk VR + deb >0 (18)

25

We have made an extensive investigation of this equation by considering
many different values of £ and v. We have observed that FDM and RBF so-
lutions are in perfect agreement with the analytical solution for the diffusion
dominated problems. This is demonstrated in Figure 1. However, for the ad-
vection dominated calculations, FD method shows spurious oscillatory structure
whereas RBF approximation gives excellent agreement with the exact solution.
As it is well known, finite difference methods are generally accurate for solving
the diffusion dominated cases but not the advection dominated ones [4]. The
reason for this inaccuracy might be due to the artificial diffusion introduced by
the numerical approximation. We know that the error term in the backward
or upwind difference method has the even (second) derivative as the dominant
term since the method is first-order accurate and even derivatives are associated
with dissipation errors. Thus sharp gradients within the solution are smeared,
resulting in an inaccurate solution.
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The results of these advection dominated calculations are shown in Figures
2 and 3. The linear damping of the disturbance as it is marched forward in the
x-direction in Figure 2 and Figure 3 is clearly due to the numerical problems
associated with the method. The disagreement between FDM and analytical
solution becomes clear at large distances and the error increases with time. As
it is clearly seen from these figures, FDM results at large distances blow up
because of the artificial diffusion created by the domination of the advection
term.

In order to increase the accuracy for FDM, one can do grid refinement. How-
ever, this also involves computationally intensive and expensive operations, and
may not be possible in many cases. Thus, it is desirable to increase accuracy by
employing higher order finite difference equations. These different analyzes are
very significant when extracting information from physical system under con-
sideration without any numerical accuracy problem. The interpretation of such
physical phonema using FDM as shown in Figures 2 and 3 may be completely
misleading otherwise.

We see from Figures 2 and 3, where FDM fails, that RBF method gives ex-
cellent agreement with the analytical solution. In these calculations, the impor-
tance of the RBF method becomes apparent. The numerical results show that
RBF based meshless schemes achieve comparable results as other mesh-based
methods such as finite differences and DRM. Furthermore, they are remarkably
simple, especially for complicated domains and higher dimensions:

5.2 Example 2

As a second example, we investigate following linear advection-diffusion equation
in two dimensions:

Ou 9%y &u du du

B =g T e e Ty

Together with the Dirichlet type boundary and initial conditions

(19)

u(0,y,t) = ae?t (1 4+ e~ ), u(l,y,t) = ae” (e7% + e~evY)
u(z,0,t) = ae® (1 +e~%), u(z,1,t) = ae” (e7%=" + e ) t>0 (20)

uw(z,y,0) =a (e"me + e—cyy) (21)

The analytical solution is given by

u(z,y,t) = ae® (7% + e )

3 vy + 1/ V2 + 4bky
Vg + /02 + dbkg and y 22)

2Kz = 2Ky

Cx = Cy =
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This equation is solved using TPS and FDM with 121 points on an equiv-
alent grid system. The results are shown in Figures 4 and 5 and compared
with the analytical solution. The TPS and FDM are in perfect agreement with
the analytical solution for low Péclet numbers. However, when advection dom-
inates, we observe that, as in the case of one-dimensional calculations, FDM
becomes unstable and produces large errors. The RBF method generates better
agreement with the analytical solutions with respect to FDM.

We also examined the effect of the number of nodes in the calculations. If
we increase the number of nodes, as expected the error gets smaller and smaller.
This is illustrated in Figure 6 with filled-circles for the two-dimensional case.
The solid lines in the same figure is obtained from the logarithmic fit of the
curves. From this figure, it can be seen that when the number of nodes starts
increasing FDM and RBF solutions converge.

As regards the computational speed of the two methods, RBF method can
be thought slower than FDM due to the fact that RBF method generates a
fully-populated matrix, whereas FD method generates a symmetric tridiagonal
matrix. However, when comparing the two methods for a given accuracy RBF
method is much faster than FDM. This is illustrated in Figure 6. For a given
accuracy, say 0.006, RBF method requires = 100 nodes and a CPU time of 1.6
seconds (it takes 0.28 seconds for the FDM to compute the solution for the same
number of nodes). But in order to achieve the same accuracy with FDM, we
need between 500 and 700 nodes and the calculations require 60.8 seconds for
529 nodes and 357.3 seconds for the 676 nodes. This clearly demonstrates that
RBF method is much faster than traditional methods for a given accuracy.

6 Conclusion

We have presented and discussed the solution of advection-diffusion equation
using RBF and FD methods. The solution of advection-diffusion equation has
been a difficult task for all numerical methods because of the nature of the
governing equation. According to the value of x and v, the equation becomes
parabolic (for diffusion dominated processes) or hyperbolic (for advection dom-
inated processes). Traditional finite difference methods are generally accurate
for solving the former but not the latter, in which case oscillations and smooth-
ing of the wave front are introduced. This can be interpreted as the artificial
diffusion intrinsic to these methods.

However, as shown in this paper RBF method does not introduce such ar-
tifial effect and it is not important for the RBF method whether the process
is advection/convection or diffusion dominated. From application viewpoints,
the implementation of RBF method is very simple and straightforward, irre-
spective of the dimension of the problem and the shape of the domain under
consideration. As our numerical results show, they achieve similar results as
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more complicated grid/mesh methods such as finite differences method and
work when the latter fails.
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Figure 1: Example-1: Comparison of FDM and RBF solutions with the analyt-
ical one for the diffusion dominated calculation, x = 1.0 and v=0.1.
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Figure 2: Example-2: Comparison of FDM and RBF solutions with the analyt-
ical one, k = 2 and v=1 at times (from below) t=0.1s, 1.0s and 2s.
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Figure 3: Example-2: Comparison of FDM and RBF solutions with the analyt-
ical one, x = 6 and v=1 at times (from below) t=0.1s, 1.0s and 2s.
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Analytical o v
RBF = a °
FD+ °© o

Figure 5: Example-3: Comparison of FDM and RBF solutions with the analyt-
ical one, v;=0.1, v,=0.1, Kz=1.4, K=1.7.
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Figure 6: Variation of the total error with the number of nodes for RBF and

FDM at time t=1.0s.
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