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Abstract: Photonic Crystals (PCs) are materials with a pcriodically modulated dielectric constant, 
through wluch certain frequencies of electromagnetic radiation cannot propagate. The modes 
admitted by PCs can he investigated effectively using the finite element method with the assistance 
of the Floquet-Bloch theorem, by considering a unit cell of the material and imposing periodic 
boundary conditions. Along with the Dirichlet and metric matrices, a third type of elemental 
matrix emerges. The types of results that are of interest to photonic crystal manufacturers are 
introduced and presented; in this context, the benefits of using the subspace iteration method to 
solve the eigensystems are discussed. The performance of the algorithm is investigated with respect 
to mesh granularity and interpolation order. 
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1 Introduction 

Photonic band gap (PBC) materials are periodic dielectric 
crystals that exhibit a PBG analogous to the electronic band 
gap present in semiconductors. Photons in the frequency 
range of the band gap are completely excluded so that 
atoms within such materials are unable to spontaneously 
absorb and re-emit light in this region [I]. 

PCs offer enormous potential in the development of 
highly efficient narrow band (tuneable) lasers, integrated 
optical computing and high-speed optical communication 
networks, particularly in the production of purely optical 
circuits for dense wavelength division multiplexing [2]. An 
example of a bridge waveguide structure is shown in Fig. 1. 

Fig. 1 
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The electric permittivity of a PBG material varies 
periodically on a scale comparable to the wavelength of 
the forbidden photons [3]: hence, the manufacturing of PCs 
that operate in the visible region of the electromagnetic 
spectrum requires fabrication techniques with a resolution 
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of approximately I P m .  These are typically very expen- 
sive, therefore an accurate and efficient model is desirable to 
allow a Pc's optical properties to be computed prior to 
fabrication. 

Success in the fabrication of such materials with band 
gaps in optical frequencies has been limited mainly to those 
in which the periodicity is restricted to two-dimensions. The 
in-plane propagation modes of such materials can he 
investigated effectively using two-dimensional Lagrangian 
finite elements [4], which yields a considerable reduction in 
complexity with respect to the three-dimensional curl- 
conforming treatment that would otherwise be necessary. 

2 2D Scalar spectral problem 

In the context of non-magnetic media, Maxwell's equations 
can be re-expressed as: 

V . H = O  ( 2 )  
When the PC structure is invariant in one-dimension 
Maxwell's equations can be split into two scalar spectral 
problems dealing with the transverse electric polarisation 
(TE mode) and the transverse magnetic polarisation (TM 
mode) respectively: 

where ~ ( x )  is the material permittivity at spatial position x, 
w is the frequency. c the speed of light and $ is the scalar 
field intensity. 

3 Modelling periodic structures 

An example of mesh representation of a PC is shown in 
Fig. 2. Domain discretisation into finite elements is 
performed using public domain meshing software (Easy- 
mesh by Niceneco [SI and Geompack by Joe [6]) to produce 
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Fig. 2 
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<I The unit cell used for computation 
h Thc mcsh is periodic with one repeat shown in all directions 
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a pcriodic unit cell where the mesh is wrapped such that 
opposite boundary nodes meet. 

The periodic structiirc of the PC allows the application of 
the Floquet-Bloch theory in which a crystal of infinite extent 
can be modelled using a unit cell with periodic boundary 
conditions [7]. The eigenmodes then take the form: 

$ : e".x;u(x) ( 5 )  
where k is the Bloch-quasimomentum vector and u(x) is the 
value of the eigenfunctions at spatial position x. The 
resulting change in the gradient operator: 

V + V + i k  ( 6 )  

(7) 

A ( k ) $  = ;.B$ ( 8 )  

gives rise to an eigensystem of the form: 

( S  + k ,  P + k2T)$ = LT$, 
Or, 

where S and T are the familiar Dirichlet and metric 
matrices: 

S = Va,,,.Vg,dQ (9) 

T = r,,,a,,dQ (10) 

P 1s a vector of matrices assembled from elemental matrices 
that are defined in terms of the basis functions, a, as: 

= 1 z;Vnj ~ miVnidQ (111 

The elemental matrices are assembled to fonn the general- 
ised eigenvalue problem which is solved as a function of k .  
For each k,  the solver computes a set of i eigenvalues. These 
eigenvalues can be plotted as a function of k to give a 
dispersion relation or band diagram. The union of band 
functions for all k represents the density of states for the 
modes of the original problem. This is essentially a 
histogram of the mode frequencies. It gives a clear visual 
indication of any band gaps as the density drops to zero for 
those frequency ranges. An important feature of the 
Floquet-Bloch theory is that different k values do not 
necessarily produce different modes. The vector k and the 
vector k + G, where G is a reciprocal lattice vector produce 
the same mode. Hence, to avoid solution redundancy one 
need only consider those values of k that are unique under 
translational symmetry. This set is said to lie within the first 
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NBrillouin zone [81. Further mirror and rotational symmetries 
may allow this set to be reduced even further to produce an 
irreducible Brillouin zone. The construction of this zone is 
illustrated in Fig. 3. X. K and r are commonly used to 
mark the vertices of the irreducible zone. 

irreducible Biiilouin "'I / zonepath 

a b 

In practice. the spectmm is approximated by selecting a 
discrete set of k vectors sampled from the irreducible 
Brillouin zone. This set of vectors is generated by sampling 
a number of points from the path describing the reduced 
Brillouin zone, e.g. the M, r , .X triangle shown in Fig. 3 for 
a triangular lattice. For more irregular structures in which a 
reduced Brillouin zone cannot be easily constructed. the set 
of vectors is chosen using a Sobol sequence [9]. A Sobol 
sequence, shown in Fig. 4, is a quasi-random selection of 
points that are distributed evenly across the Brillouin zone 
and are sorted such that each successive k vector solved is 
close to the previous one. Both approaches allow optimisa- 
tions to be made to the solver as discussed in the following 
section. 

b 

Fig. 4 A Sobol sequence 
o A quasi-random distribution of points 
h The linking of adjacent points highlighting their dose proximity 

4 Subspace iteration 

The analysis of PC structures is aimed at detecting the 
presence of band gaps. These are generally found between 
the lowest modes of propagation, therefore, it is only 
ncccssary to compute a sinall number of the lowest 
eigenstates. The subspace iterative (SI) method [IO] suits 
this application well as it calculates a subset (either the most 
or least dominant) of the total number of eigenvalues. The 
method is based on a combination of the power method 
[ I  I], where several vectors are iterated upon simultaneously, 
and the properties of the Rayleigh quotient [ 121. Conversion 
to the standard eigenvalue fonnat is not required, so full 
advantage can be taken of the sparsity and symmetry of the 
matrices. 

Using SI techniques to solve the eigensystem allows 
several problem specific optiinisations to be made. Eigen- 
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systems corresponding to similar k-vectors differ only 
slightly, hence using the previous solution as a starting 
point for the subsequent subspace search si&icantly 
reduces the number of iterations required to converge. 

The positioning of non-zero matrices is governed solely 
by the mesh node numbering and is invariant for all k; 
vectors. Preconditioning of the A matrix (7) and (8) is 
therefore performed only once using a symmetric approx- 
imate minimum degree algorithm [I31 to reduce the 
bandwidth and subsequently improve the performance of 
the SI solver for all i eigensystcms. 

In addition, the SI method requires specification of the 
accuracy to which the eigenvalues must converge. Hence a 
wide range of PC structures may be investigated at a low 
accuracy, those that show promise can then he investigated 
to a greater convergence tolerance. 

5 Results 

The photonic spectra of many different PC structures have 
been examined both experimentally_ using fabricated 
devices and lasers [14], and theoretically, using a variety 
of numerical methods including plane wave expansion 
techniques and finite difference time domain (FDTD) 
methods [15]. 

A commonly modelled and fabricated PC structure is the 
triangular lattice [16], a photo of a PBG device based on this 
structure is shown in Fig. 1. Circular rods are arranged in a 
background material such that their centres are positioned 
at the lattice points, as illustrated in Fig. 2. Such a structure 
was modelled in which circular rods of refractive index one 
i.e. air rods were embedded in a matcrial of dielectric 
constant 11.4 i.e. gallium arsenide (GaAs). The filling 
fraction (ratio of rod area to cell area) was 80%. 

The finite element method (FEM) analysis of the PC is 
presented in Fig. 5. A complete PBG (both TE and TM 
modes) can he observed between a nomalised frequency. 
ou/2nc, of 0.44 and 0.48 where a is the lattice constant. 
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A FDTD analysis of the Same structures [I71 shows 
excellent agrecment with this result and the presence of a 
complete band gap for the triangular lattice with this filling 
fraction composed of air rods in GaAs has been verified 
expcrinienially. 
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Further verification of the efficacy of the FEM can be 
found by plotting the eigenvalues as one traverses the 
irreducible Brillouin zone. This gives the band diagram 
shown in Fig. 6a. This can be directly compared with the 
equivalent plane wave analysis presented in Fig. 66 [3] .  It is 
clear that the two Figures show excellent agreement. 
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Naturally. the crystal geometry affects its optical proper- 
ties; thus by varying the rod radius ( r )  whilst keeping the 
pitch (a) constant it is possible to determine where the band 
gaps exist in the form of a 'gap map' as shown in Fig. 7. 
Comparison with the equivalent data presented in [I71 
generated using a plane wave expansion technique again 
shows excellent agreement. 

6 Algorithm performance 

The relationship between the accuracy of the solution, the 
mesh size and the intepolation order was investigated using 
several meshes of varying granularity. These meshes 
modelled a PC consisting of a triangular lattice of air rods 
in a substrate material with a dielectric constant of ten and a 
filling fraction of 50%. The FEM code computed the lowest 
ten cigenvalues at 7 6 k  steps for these meshes using first-to 
sixth-order interpolation. The computation time and the 
resulting eigenvalues were recorded. The relative error was 
computed via comparison to a pseudo-exact solution 
(10 ,000 element mesh with fourth-order interpolation). 

Plotting computation time against relative error allows 
the most efficient combination of mesh granularity and 
interpolation order to be found. These data can be seen 
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in Fig. 8. The clear trend is for the data points to extend 
from the bottom left-hand corner to the top right-hand 
comer. T h s  corresponds to coarse meshes producing quick 
but relatively high error solutions through to fine meshes 
producing low error solutions more slowly. The ideal 
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situation is to compute a solution with low relative error in 
a short time, i.e. results tending towards the bottom right- 
hand corner of the Figure. Second-and third-ordcr inter- 
polation give the best performance in this respect with 
orders 4 to 6 becoming worse. First-order interpolation, 
widely used to date for PC. modelling due to its relatively 
simple implementation. is significantly worse than all the 

other interpolation orders. The most accurate first-order 
Ca~culation took 40 times as long to complete as the second- 
and third-order calculations yielding similar accuracies. 

7 Conclusions 

Two-dimensional FEM analysis of two-dimensional PCs 
offers satisfactory agreement with experimental results 
whilst providing substantial savings in terms of memory 
and computational costs with respect to fully three- 
dimensional vector FEM implementations. This allows a 
wide range of crystal structures to be simulated efficiently 
thus avoiding the necessity of expensive silicon fabrication 
during the crystal design phasc. 

The subspace iterative method is very computationally 
efficient as only a small number of the least dominant 
eigenvalues need be computed to determine a photonic 
hand gap. This factor coupled with optimisations including 
preconditioning, exploitation of similarity of adjacent 
solutions and judicious refinement of the convergence 
tolerance further increases its efficiency. 

Investigation into the performance of the FEM reveals 
that significant gains in solution quality are made for a 
given computational cost if second- or third-order inter- 
polation functions are used instead of first order. These are 
typically speed improvements of at least one order of 
magnitude. 
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