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Abstract: Photonic Crystals (PCs) are materials with a periodically modulated dielectric constant,
through which certain frequencies of electromagnetic radiation cannot propagate. The modes
admitted by PCs can be investigated effectively using the finite element method with the assistance
of the Floquet-Bloch theorem, by considering a unit cell of the material and imposing periodic
boundary conditions. Along with the Dirichlet and metric matrices, a third type of elemental
matrix emerges. The types of results that are of interest to photonic crystal manufacturers are
introduced and presented; in this context, the benefits of using the subspace iteration method to
solve the eigensystems are discussed. The performance of the algorithm is investigated with respect

to mesh granularity and interpolation order.

1 Introduction

Photonic band gap (PBG) materials are periodic dielectric
crystals that exhibit a PBG analogous to the electronic band
gap present in semiconductors. Photons in the frequency
range of the band gap are completely excluded so that
atoms within such materials are unable to spontaneously
absorb and re-emit light in this region [1].

PCs offer enormous potential in the development of
highly efficient narrow band (tuneable) lasers, integrated
optical computing and high-speed optical communication
networks, particularly in the production of purely optical
circuits for dense wavelength division multiplexing [2}. An
example of a bridge waveguide structure is shown in Fig. .

Fig. 1 Bridge waveguide structure (pitch=300nm) courtesy of
Martin Charlton, Southamptor microelectronics research group

The electric permittivity of a PBG material varies
periodically on a scale comparable to the wavelength of
the forbidden photons [3]: hence, the manufacturing of PCs
that operate in the visible region of the electromagnetic
spectrum requires fabrication techniques with a resolution
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of approximately 10 %m. These are typically very expen-
sive, therefore an accurate and efficient model is desirable to
allow a PC’s optical properties to be computed prior to
fabrication.

Success in the fabrication of such materials with band
gaps in optical frequencies has been limited mainly to those
in which the periodicity is restricted to two-dimensions. The
in-plane propagation modes of such materials can be
investigated effectively using two-dimensional Lagrangian
finite elements [4], which yields a considerable reduction in
complexily with respect to the three-dimensional curl-
conforming treatment that would otherwise be necessary.

2 2D Scalar spectral problem

In the context of non-magnetic media, Maxwell's equations
can be re-expressed as:

Vxe(Lx)erl:(%)EH ()

VoH=0 2)

When the PC structure is invariant in one-dimension
Maxwell’s equations can be split into two scalar spectral
problems dealing with the transverse electric polarisation
(TE mode) and the transverse magnetic polarisation (TM
mode) respectively:

TEmode : —V - ﬁw = (%)zw (3)
TM mode :ﬁv%p = (%) 21;9 (4)

where £(x) is the material permittivity at spatial position x,
w is the frequency, ¢ the speed of light and 4 is the scalar
field intensity.

3  Modelling periodic structures

An example of mesh representation of a PC is shown in
Fig. 2. Domain discretisation into finite elements is
performed using public domain meshing software (Easy-
mesh by Niceneco [5] and Geompack by Joe [6)) to produce
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Fig. 2 Unstructured mesh representation of a triangular lattice of

rods
a The unit ¢ell used for computation
b The mesh is periodic with one repeat shown in all directions

a periodic unit cell where the mesh is wrapped such that
opposite boundary nodes meet.

The periodic structure of the PC allows the application of
the Floquet-Bloch theory in which a crystal of infinite extent
can be modelled using a unit cell with periodic boundary
conditions [7]. The eigenmodes then take the form:

¥ =" u(x) (3)
where & is the Bloch-quasimomentum vector and u(x) is the
value of the eigenfunctions at spatial position x. The
resulting change in the gradient operator:

V—=V+ik {6}
gives rise to an eigensystem of the form:
(S+k-P+ TV =Ty, (N
Or,
Ak} = /By (8)

where § and T are the familiar Dirichlet and metric
matrices:

S= ] Yoty Vot d 2 (93
Q

T - / 2 (10)
Jo
P is a vector of matrices assembled from elemental matrices
that are defined in terms of the basis functions, «; as:

g

P —/ot,»Vocj—ozjVa,dQ (]l)

- The elemental matrices are assembled to form the general-
ised eigenvalue problem which is solved as a function of &.
For each k, the solver computes a set of / eigenvalues. These
eigenvalues can be plotted as a function of & to give a
dispersion relation or band diagram. The union of band
functions for all k represents the density of states for the
modes of the original problem. This is essentially a
histogram of the mode frequencies. It gives a clear visual
indication of any band gaps as the density drops to zero for
those frequency ranges. An important feature of the
Floquet-Bloch theory is that different & values do not
neegssarily produce different modes. The vector & and the
vector k + G, where G'is a reciprocal lattice vector produce
the same mode. Hence, to avoid solution redundancy one
need only consider those values of & that are unique under
translational symmetry. This set is said to lie within the first
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Brillouin zone [8]. Further mirror and rotational symmetries
may allow this set to be reduced even further to produce an
irreducible Brillouin zone. The construction of this zone is
illustrated in Fig. 3. X, K and I" are commonly used to
mark the vertices of the irreducible zone.

irreducible Brillouin

/ zone path

first Brillouin zone: "\

.
Fig. 3 Briflouin zone construction in reciprocal lattice space; b,
and b, represent the reciprocal lattice vectors.

In practice, the spectrum is approximated by selecting a
discrete set of k vectors sampled from the irreducible
Brillouin zone. This set of vectors is generated by sampling
a number of points from the path describing the reduced
Brillouin zone, e.g. the M, I', X triangle shown in Fig. 3 for
a triangular lattice. For more irregular structures in which a
reduced Brillouin zone cannot be easily constructed, the set
of vectors is chosen using a Sobol sequence [9]. A Sobol
sequence, shown in Fig. 4, is a quasi-random selection of
points that are distributed evenly across the Brillouin zone
and are sorted such that each successive k vector solved is
close to the previous one. Both approaches allow optimisa-
tions to be made to the solver as discussed in the following
section,

Fig. 4 A Sobol sequence
a A quasi-random distribution of points
b The linking of adjacent points highlighting their close proximity

4  Subspace iteration

The analysis of PC structures is aimed at detecting the
presence of band gaps. These are generally found between
the lowest modes of propagation, therefore, it is only
necessary to compute a small number of the lowest
eigenstates. The subspace iterative (SI) method [10] suits
this application well as it calculates a subset (either the most
or least dominant) of the total number of eigenvalues. The
method is based on a combination of the power method
[11], where several vectors are iterated upon simultaneously,
and the properties of the Rayleigh quotient [12]. Conversion
to the standard eigenvalue format is not required, so full
advantage can be taken of the sparsity and symmetry of the
matrices.

Using 51 techniques to solve the eigensystem allows
several problem specific optimisations to be made. Eigen-
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systems corresponding to similar k-vectors differ only
slightly, hence using the previous solution as a starting
point for the subsequent subspace search significantly
reduces the number of iterations required to converge.

The positioning of non-zero matrices is governed solely
by the mesh node numbering and is invariant for all k;
vectors. Preconditioning of the 4 matrix (7) and (8) is
therefore performed only once using a symmetric approx-
imate minimum degree algorithm {I3] to reduce the
bandwidth and subsequently improve the performance of
the SI solver for all 7 eigensystems.

In addition, the SI method requires specification of the
accuracy to which the eigenvalues must converge. Hence a
wide range of PC structures may be investigated at a low
accuracy, those that show promise can then be investigated
10 a greater convergence tolerance.

5 Results

The photonic spectra of many different PC structures have
been examined both experimentally, using fabricated
devices and lasers [14], and theoretically, using a variety
of numerical methods including plane wave expansion
techniques and fimite difference time domain (FDTD})
methods [15].

A commonly modelled and fabricated PC structure is the
triangular lattice [16], a photo of a PBG device based on this
structure is shown in Fig. 1. Circular rods are arranged in a
background material such that their centres are positioned
at the lattice points, as illustrated in Fig. 2. Such a structure
was modelled in which circular rods of refractive index one
ie. air rods werc embedded in a material of dielctric
constant 114 1ie gallium arsenide (GaAs). The filling
fraction (ratio of rod area to cell area) was 80%.

The finite element method (FEM) analysis of the PC is
presented in Fig. 5. A complete PBG (both TE and TM
modes) can be observed between a normalised frequency,
waf2ne, of 044 and 0.48 where a is the lattice constant.
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Fig.5 Density of states diagraw for a triangular lattice of air rods
in a substrate with dielectric constant of 11.4, filling fraction = 8§0%.
The TE and TM modes are represented by the dashed and solid fines
respectively. A complete hand gap is observed between the hormal-
ised frequencies, wal2re=0.44 and 0.48.

A FDTD analysis of the same structures [17] shows
excellent agreement with this result and the presence of a
complete band gap for the triangular lattice with this filling
fraction composed of air rods in GaAs has been verified
experimentally.
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Further verification of the ¢fficacy of the FEM can be
found by plotting the eigenvalues as one traverses the
irreducible Brillouin zone. This gives the band diagram
shown in Fig. 6a. This can be directly compared with the
equivalent plane wave analysis presented in Fig. 66 [3]. It is
clear that the two Figures show excellent agreement.
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Fig. 6 Band diagrams for a triangular lattice of air rods in GaAs,
filling fraction = 80%. The solid and broken curves corvespond to the
TM and TE modes respectively

a FEM analysis

b Plane wave analysis

Naturally, the crystal geometry affects its optical proper-
ties; thus by varying the rod radius () whilst keeping the
pitch () constant it is possible to determine where the band
gaps exist in the form of a *gap map’ as shown in Fig. 7.
Comparison with the equivalent data presented in [17]
generated using a plane wave expansion technique again
shows excellent agreement.

6 Algorithm performance

The relationship between the accuracy of the solution, the
mesh size and the interpolation order was investigated using
several meshes of varying granularity. These meshes
modelled a PC consisting of a triangular lattice of air rods
in a substrate material with a dielectric constant of ten and a
filling fraction of 50%. The FEM code computed the lowest
ten cigenvalues at 76 & steps for these meshes using first-to
sixth-order interpolation. The computation time and the
resulting eigenvalues were recorded. The relative error was
computed via comparison to a pseudo-exact solution
(10,000 element mesh with fourth-order interpolation).
Plotting computation time against relative error allows
the most efficient combination of mesh granularity and
interpolation order to be found. These data can be seen
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Fig. 7 Gup mup for a wiangular lattice plotting the band gap
frequency ranges for both the TE (dashed) and TM (solid) modes
against the rod radius. The data is computed for air rods in Gads. A
complete band gap appears for a rod radius to lattice constant ratio

of 0.42.

in Fig. 8. The clear trend is for the data points to extend
from the bottom left-hand corner to the top right-hand
corner. This corresponds to coarse meshes producing quick
but relatively high error solutions through to fine meshes
producing low error solutions more slowly. The ideal
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Fig.8 Solution accuracy as a function of computarion time.
Meshes of varying granularity were used, and the calculations were
performed using a range of interpolation orders.

situation is to compute a solution with low relative error in
a short time, i.e. results tending towards the bottom right-
hand corner of the Figure. Second-and third-order inter-
polation give the best performance in this respect with
orders 4 to 6 becoming worse. First-order interpolation,
widely used to date for PC_modelling due to its relatively
simple implementation, is significantly worse than all the
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other interpolation orders. The most accurate first-order
calculation took 40 times as long to complete as the second-
and third-order calculations yielding similar accuracies.

7 Conclusions

Two-dimensional FEM analysis of two-dinensional PCs
offers satisfactory agreement with experimental results
whilst providing substantial savings in terms of memory
and computational costs with respect to fully three-
dimensional vector FEM implementations. This allows a
wide range of crystal structures to be simulated efficiently
thus avoiding the necessity of expensive silicon fabrication
during the crystal design phase.

The subspace iterative method is very computationally
efficient as only a small number of the least dominant
eigenvalues need be computed to determine a photonic
band gap. This factor coupled with optimisations including
preconditioning, exploitation of similarity of adjacent
solutions and judicious refinement of the convergence
tolerance further increases its efficiency.

Investigation into the performance of the FEM reveals
that significant gains in solution quality are made for a
given computational cost if second- or third-order inter-
polation functions are used instead of first order. These are
typically speed improvements of at least one order of
magnitude.
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