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Generalized variational principles with 11 - arguments, 9 - arguments, 5 - arguments, 3 -
arguments and the variational principles of action of potential / complementary energy
are developed to solve initial-value, final-value and two time boundary-value problems
in nonlinear elastodynamic systems. The displacement gradient is decomposed into a
symmetric part [;; and a rotation part W;; = —e;;we which are variables in functionals.

The theoretical approach is illustrated by examining one-dimensional elastostatic and
elastodynamic problems. In the former, it is shown that by solving for the displacement
gradient u, ; as a function of the stress tensor oy; from the constraint equations of the
variational principle of complementary energy, the functional of the variational principle
of complementary energy can be expressed in a form involving the single argument o;;
only.

An application of the variational principles is illustrated in an elastodynamic final-value
problem. Complementing these examples is a discussion indicating how other generalized
variational principles may be deduced and how numerical schemes of study may be
enhanced through a matrix decomposition of the displacement gradient «; ;.

Notations

Using tensor notation and summation convention (see, for example, Ogden 1984), e.
g. &; and e (i = 1,2,3 = j) to represent Kronecker delta and permutation symbol,
respectively, we shall investigate the motion from time ¢; to time #, of an elastic body
occupying a closed-bounded domain € in a three dimensional Euclid space defined by
lagrangian coordinates z;. In order to do so effectively, the following notation definitions
are usedand we assume that all the field variables are functions of z; and ¢ and they
satisfy definitions of continuity and differentiation with respect to z; and ¢ as stated by
Gurtin {1964a,b).

fi Body force vector,

Pi Momentum vector,

i Displacement gradient,

t Time,

Uy Displacement vector,

s Displacement prescribed on surface 5,
v; Velocity vector,

T Lagrangian coordinate,
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By Green strain tensor,

0 Functionals defined in Section 5,

S Surface of domain €2, § = S, U S7, Sy N Sr = void,
Sy Surface with prescribed displacement ;,

S Surface with prescribed traction T,

T
£

Traction prescribed on the surface Sp,
Unit normal vector at time terminals in the time interval [¢,,],

f(tl) = '_13 £(t2) =1,

v Unit normal vector to surface §, pointing out of the domain 2,
Oij Second Kirchhoff stress tensor,

Tij Piola stress tensor,

Q Internal domain of Q.

1. Introduction

The theory of elastostatics, through the development of general theorems and vari-
ational principles, has been extensively studied (see, for example, Love 1944, Green &
Zerna 1954, Hu 1954 & 1981, Oden & Reddy 1976, Oden 1979, Chien 1979, 1980 & 1985,
Gou 1980, Washizu 1982, Xing 1996). In its dynamics counterpart, i. e. elastodynamic
theory, studies of variational principles have concentrated on modifications or extensions
of Hamilton’s principle in one form or another. Truesdell & Toupin (1960), Chen (1964),
Yu (1964), Dean & Plass (1965), Barr (1966) adopted the displacement field as argument
to define the configuration of an elastodynamic system and constrained variations of the
displacement to vanish at the time instants ¢, and ¢,. In this way, variational princi-
ples were developed to describe linear and non-linear elastodynamic systems and their
forms relate closely to potential energy. Toupin (1952) and Crandall (1957) developed
complementary principles to describe dynamic systems using momentum or velocity as
the variable satisfying the dynamic equilibrium equations in association with conditions
requiring their variation vanishing at the time instants ¢, and t,. Oden and Reddy (1976)
developed variational principles subject to the constraint that both the displacement and
momentum vanish at the time instants ¢, and ¢,; these variational principles also include
constitutive principles (see, for example, Xing 1987a).

The requirement that the variations of both displacement and momentum vanish at the
two time instants #; and ¢ is unnecessary and too restrictive a condition as demonstrated
by Xing (1984, 1991a), Xing and Price (1992), Xing and Zheng (1992a). These linear elas-
todynamic studies discuss the two time boundary-value problem having four kinds of time
terminal conditions. Variational principles for conservative and holonomical dynamical
systems and linear elastodynamic systems are developed and it is shown that Hamilton’s
principle and Toupin’s principle are special cases of the developed generalized varia-
tional principles. For initial - value problems of linear elastodynamics, Gurtin (1964a,b)
developed some variational principles which include the initial conditions through a time
convolution integral but are not Hamilton’s forms. On the basis of a four dimensional
space with time and boundary conditions prescribed at the time instants £, and ¢,, Xing
(1987b, 1989, 1990), Xing and Price (1996) developed variational principles for linear
elastodynamic and conservative and holonomic systems to define and solve initial-value
and final-value problems in addition to the two time boundary-value problem. In these
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variational approaches, the initial or final conditions are included in the stationary con-
ditions of the derived functionals, allowing solution of the problems posed by Rudinger
{1964) and Tiersten (1968).

This paper extends the previous discussions to nonlinear elastodynamic problems with
the development of general theorems and generalized variational principles for three
kinds of dynamical problems. That is Problem A: an initial-value problem; Problem B:
a final-value problem and Problem C: a two time boundary-value problem. Generalized
variational principles with 1l.arguments (7, oy;, &;, b, i, G, Dij, wi, Eij, v, ),
9-arguments (7i;, 0;, &ijy biy Pi, @5, Dij, @iy w), 5-arguments (o, pi, Eij, v, ), 3-
arguments (o;;, p;, #;) and the variational principles of action of potential / complemen-
tary energy are given. It is shown that results derived by Chien, Lu & Wang (1989), Xing
(1991b), Xing & Zheng (1992b), Zheng & Xing (1990), Zheng & Zhao (1992) are special
cases of the generalized principles developed herein.

By way of example through a one dimensional problem, a discussion is included on
the existence of a variational principle of complementary energy in one argument o;
to describe a nonlinear clastostatic problem analogous to the case found in linear elas-
ticity theory. The approach proposed solves for the displacement gradient w; ; from the
constraint equations applicable to the variational principle of complementary energy.

2. Governing equations

With the adoption of the notations, the equations describing the bekaviour of nonlinear
elastodynamic systems can be expressed in the following forms.
(i) Momentum equations of equilibrium:

Tig + fi = Pis (2:,1) € QX (11, 85), (2.1)
Tii = (6ir + @ )owj,  (@i,1) € X (13,12). (2.2)

The Piola stress tensor 7;; is not a symmetric tensor but can be decomposed into a
symmetric part x;; and an antisymmetric part 4;; as follows:

Ti; = Xij + Yijs (5, 1) € 2 X (t1,12), (2.3)
1

Xij = 5(7'.73' + Tj,;), ($,‘, t) € f) x (tl,tz), (24)
1

Vi = (i =Ty (2,1) € QX (t1,1). (2.5)

The antisymmetric component 3y; consists of three independent elements and can be
represented by its corresponding vector b; as follows

1
Yij = "geijkbka (2i,2) € @ X (t1,a), (2.6)
by = —ek,-_,-t,b,-_,- = —€rijTij, ($;,t) € QX (tl,tg). (27)
(ii) Strain-displacement relations and velocity-displacement relations:
1
E;; = E(Q:'j + g + Gides), (@i, 1) € X x (ty,12), (2.8)
Gij = Uijs (2i,1) € X (41, 1a); (2.9)

Uy = Uy, (LE;,t) € x (tl,tg). (210)
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In general, the displacement gradient g;; is also not a symmetric tensor. This again can
be decomposed into a symmetric part D;; and an antisymmetric part W;; with associated
vector wy, as follows:

4i; = Dij + Wy, (z5,1) € QX (41, 12), (2.11)
1
D;; = 5(“;.5 + uj,4), (25,8) € 2 x (11, 12), (2.12)
1
W = E(“i,j — i) =~ (zi,8) € @ X (t1,12), (2.13)
1 1
W = _iek:‘st'j = —Eekijui,ja (2:,1) € £ % (11, 12). (2.14)
(iii) Stress-strain relations and momentum-velocity relations:
dA
Oij = m, (ﬂlg,t) € I x (tl,tg), (215)
Eij = 8-8 ) (.'E,‘,t) € ﬂ X (tl,tg); (2.16)
30,-_,-
T
= gv s (Zit) € 2 x (t1,12), (2.17)
v = %, (26,8) € R % (11, ), (2.18)
(iv) Boundary conditions:
TV = T‘I‘, (a:,-,t) € ST X [tl,tg], (2.19)
Uy = '&;, (.’B,’,t) € Su X {tl,tg]. (229)
(v) Conditions at the time terminals:
Pi=Pip, (zi) e xi, =0, (2.21)
U; = ‘&.,‘u, (I,‘,t) € Q X fu = Qu. (222)

Here {, and f, represent the set of time terminals at which the displacement 4;, and

the momentum p;, are prescribed (i.e. not allowed variation), respectively. Obviously, for

each kind of dynamical problem, we have the following conditions at the time terminals.
Problem A. The initial-value problem

te =1, = {t:}, (2.23)

where the conditions at the initial time £; are prescribed, and a description of the sub-
sequent motion is required.
Problems B. The final-value problem

t, =1, = {ta}, (2.24)

where the conditions at the final time ¢, are prescribed, but the initial conditions and
the motion before time ?; are unknown and their solutions are sought.

For convenience, we shall take {,, to represent the time instant set at which the dis-
placement and momentum are prescribed whereas 7, denotes the time instant set at
which both displacement and momentum are unknown and therefore subject to varia-
tions. The sets ¢,, and ¢, are such that ¢, Uf, = {f,,¢,} and #,,N#, = void. Furthermore,
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we define @, = x £, and £, = Q@ x .. For example, in Problem A, we have
ta={ti}, 1 ={t2}, (2.25)

Q=0 x {t:}, D=0 x {t.}. (2.26)
Thus, in Problems A and B, the conditions at time terminals expressed in equations
(2.21) and (2.22) can be replaced by the following more convenient forms:

Uy = gy, (.’E,‘,t) € Q X fm = Qm, (227)
= Q.

b= ﬁl’p, (x:'?t) € Q x {m (228)

Problem C. The two time boundary-value problem
t U, = {t,, 12}, (2.29)
i, N, = void, (2.30)

which represents the following four cases of time terminal conditions.

(1) £, = {t:,12}, fp = void: The displacement fields at time ¢, and ¢, are prescribed,
which correspond to the case of Hamilton’s principle (see, for example, Green & Zerna
1954) .

(2) tu = void, t, = {t,,t2}: The momentum fields at time #, and t, are prescribed,
which correspond to the studies of Toupin (1952) and Crandall (1957).

(3) i, = {t.}, T, = {t2}: The displacement field at time ¢, and the momentum field at
time t3 are prescribed.

(4) tu = {t2}, t, = {t;}: The momentum field at time ; and the displacement field at
time ¢, are prescribed.

3. Definitions

In order to construct a mathematical framework in which to develop variational prin-
ciples, it is desirable to introduce the following definitions.

3.1. Action
If the variable f(f) is dependent on time ¢, the integral

I= ]t T frydn, (> 1), (3.1)

defines the action of the variable f(f) in the time interval [t;,?;]. For example, if f(2)
represents a force, then the integral I will be the impulse of this force. We do not constrain
this definition to this case only, for if, f(t) denotes a potential energy, then the integral
I will define the action of the potential energy. The term action has its foundation in
lagrangian mechanics (see, for example, Whittaker 1917). In the problems discussed
herein, it is assumed that the integral described in equation (3.1) always exists.

3.2. Momentum at time 1,

Let us consider an elastic body in its static undeformation reference configuration and,
for the present, let p;(z;, ;) represent an impulsive body force applied to the elastic body
at time t,, t; <1, < ?;. Thus the body force at time te(t,,1,) is given by

.fi(wjat) = ﬁi(mjatT)A(t - tr)’ (3'2)
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where A(t - t,) is the Dirac delta function. The substitution of this body force into the
dynamic equation (2.1) and the integration of these equations over the range from ¢,_
to ¢, defines the momentum at ¢, as

pi(e;,t.) = Pi(2;,t,), (3.3)

in the limit as #,_ — ¢.,. This implies that the body force given in equation (3.2)
corresponds to the momentum p;(x;,t,) and

filz;,t) = pi(z;, 8 ) At - t,). (3.4)

Furthermore, prescribing the momentum p;(z;,?,) at the instant ¢, implies that the
corresponding impulsive body force p;(x;,¢,) as given in equation (3.2) acts on the elastic
body.

3.3. Functions of potential energy and complementary energy

Let us assume that the elastic body under investigation is a hyperelastic body and all
forces applied to it are potential forces. Therefore, there exists functions of potential
energy and functions of complementary energy. These are determined by summing (i.e.
integrating) all the changes of state or configurations between the reference and present
configuration. They are defined as follows.

(i) Functions of strain energy density and complementary relation:

Eij Tij
A(Eg'j) :/ O';jdE(j, B(O’,‘J‘) 2/ E,-jda',-j; (35)
0 0
(ii) Functions of kinetic energy density and complementary relation:

T(v;) = jov‘p,-dv.-, R(p;) = fupi v;dp;; (3.6)

(iii) Potential of body force and complementary relation:

Uy fi
G) = [ =fdu,  G(f)= [ —uds; (3.7)
0 0
(iv) Potential of traction on the surface of the body and complementary relation:
' T
Q)= [ ~Tidw, Q7= [ -war; (38)
0 o

Also, using the same reasoning as Courant and Hilbert (1962), we assume that there
exists the following transformation relations between the potential functions and their
complements:

A(E,J) -+ B(O‘,'j) = G’;J'E,'j, (l‘,‘, t) € ) % (tl,iz), (39)

T(vi) + R(p:) = piviy,  (zi,8) € @ X (t1,13), (3.10)
Glus) + G (fi) = —fivs,  (2i,1) € Q X (1,13), (3.11)
Q(ui) + Q" (1) = —Tiwy,  (mi,1) € Q@ x (£,12). (3.12)

It is necessary to point out that the potentials of body force and traction as well as their
complementary relations are dependent not only on the elastic body under consideration
but also bodies which exert forces on the elastic body. For example, for dead loads, i. e.
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their amplitude and direction are not changed as the elastic body moves, f; = f;, and
G(w)=-fu, G (f)=0, (3.13)
Q(u) = ~Tyu:, Q"(T)=0. (3.14)

3.4. Action of the potential of momentum at t, and its complementary relation

Using equations (3.2), (3.3), (3.4) and (3.7) with the definition given in equation (3.1),
we can define the action of the potential of momentum p;(z;,t,) at the time t, and the
action of its complementary function in the following manner:

g-(u;) = /:2 ]:“ —pi(;, )AL — t, Ydudt = ]UM —pi(zj, 4. )du:(t,),  (3.15)

and
t2 P Pi
grpi) = /t /0 —uidp;(z;, 4 )AL — 8, )dt = /0 —u;(t, Ydpi(z;, t, ). (3.16)

Physically, g.(u:) and g;(p;) are dependent on the relation between the amplitude
pi(t;) of the impulsive force and the displacement wu;(,) of the elastic body. For the
hyperelastic body under consideration, we assume this relation exists. Geometrically,
this may be illustrated schematically as shown in figure 1 (,, in stead of ¢, ), where
—gm (), — g5 (p;) denote the areas within the closed continuous lines.

With the adoption of the notation for the subscripts m and n in equation (2.25), the
action of potential of momentum $;, at time tef,, and the action of its complementary
function can be expressed as

() = /0 Y p(Odus(t) = —npouslt),  teiy, (3.17)

o (pi) = /Upi i (Ddpi(t) =~ api(t),  tely. (3.18)

Here, for example, —g,,(u;) represents an area bemeath the curve L. The momentum
Pip is known but u;(t) remains unknown and is acceptable to variations. The area of
the rectangle pi,u;(2) is weighted by the parameter 7 such that equation (3.17) holds.
Alternatively, if 4, is known and p;(t) unknown, then their combination is weighted by
n* such that equation (3.18) is valid. As deduced from figure 1, the two parameters must
satisfy the condition

n+n =1 (3.19)
This allows the relation
Im () + g0 (9:) = —&iuBip, (3.20)

to be valid for the conditions in equations (2.27) and (2.28) of Problem A and Problem
B as shown in figure 1.

The parameters p and 5" describe the relationship between p;(t) and u,(t). For example,
if 7 = n* = 1/2, this relationship is linear and the line L in figure 1 is a straight line
through the origin. If = 1 and 5" = 0, the relationship represents a constant momentum
and the line I in figure 1 is parallel to the axis u;(t,), whereas the relationship 5 = 0
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I Pi(t) ”
L O (pl)

i
!
I
'"gm(u:') L :
1
I

0 wi(t) 0 i

Figure 1. Geometrical representations of gm(wi) and gh(pi) at tely.

and 7" = 1 represents a constant displacement and the line L in figure 1 is a straight line
parallel to p;(t.).

3.5. Admissible function spaces

Suppose F'5 is a function space consisting of all smoothing functions F(z,,t}, (z;,1) e 0 x
(t1,12) required to formulate the present problem. We define the following admissible
function spaces.

(i) Admissible displacement field space ADF":

ADF = {u; : u;cF S, satis fy (2.8),(2.9),(2.10),(2.20),(2.22)}. (3.21)
(ii) Admissible stress-momentum field space ASF:
ASF = {(ri,p:) : (135, p:)eF S, satisfy (2.1),(2.2),(2.19),(2.21)}. (3.22)

4. General theorems

4.1. Principle of admissible work action

The principle of admissible work action is stated as follows: For an arbitrary ad-
missible displacement field u;c ADF and an arbitrary admissible stress-momentum field
(15,07 )€AFS, there exists the following integral relation

iy i3 . N
/ /(r,.;u;j-p;v;)dgdt=/ {/ T,-u;ds+/ T,.‘ia,-ds+/fiu;7d9}dt
1, J02 ! t, Sr S Y]
- [ (@i - i) las, (4.1)

where the prescribed values of pf and u! at times t, and t, are determined by the time
terminal conditions in equations (2.21) and (2.22).

It is not difficult to prove that this relation is valid using Green’s theorem and the
constraint conditions stated for ADF and ASF in equations (3.21) and (3.22).

4.2. Principle of virtual displacement

In equation (4.1), the replacement of the actual stress-momentum field (7;;, p;) for the
admissible quantities (77, p}); the sum of the actual displacement field u; and the virtual
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displacement field du;cADF represented by u; + éu; for the admissible variable u? in
addition to the constraint conditions for ADF and ASF, allows the principle of virtual
displacement to be expressed as

tz 12 ~ ~
/ / (rybus ; — pibu,)dQdt = / { / Tibueds + f FbudQydt
ty 0 i1 S 14

- jﬂ [(pibe)e, — (pibius) a2, (1.2)

where §u; at times ¢, and #, belong to the set 7, in equation (2.22) and is zero.
4.8, Principle of virtual stress-momentum

On reversing the approach to the one described in section 4.2, we find that the principle
of virtual stress-momentum can be derived from equation (4.1). That is, the substitution
of the actual displacement field u; for the admissible variable u}; (7;; + 675, pi + 8p; ) repre-
senting the actual stress-momentum fields (7;;, p;) and the virtual stress-momentum fields
(67i;,6p;) for the admissible quantity (7};,p}) as well as using the constrain conditions
for ADF and ASF gives

7] ta
/ ](U,‘JCST,;J' - ’U,‘é‘ps)dﬂdt = / / ﬂ,’tﬁT,’jdeSdt
iy 4 1y 8.
- [[wtp)e, — (weplin,  (13)
where §p; at times #; and £, belongs to the set #, in equation (2.21) and is zero.

4.4. Theorem of action of strain-kinetic energy

On substituting the actual displacement field u; for the admissible displacement field
u; and the actual stress-momentum fields (7;;,p;) for the admissible quantities (7}, p})
in equation (4.1), as well as using the relation

1
/ T.,'ju,',jdﬂ = /[O'Ifj.E,'J’ + wuk,,-uk,_,-aij]dﬂ, (44)
0 Q 2

we find that the theorem of action of strain-kinetic energy can be expressed as follows:
ig 1
/ L[A(E,J) + B(O’,;j) - T(‘U,;) - R(p,) + Euk,,;uk)ja,-j]dﬂdt
i

ta n n
- ] { f Fruds + f risviads + f FusdQ)dt — / [(pit)e, — (psts)s, 4R, (4.5)
f1 ST Su 4] 11

where p; and u; at times ¢; and #; are determined from equations (2.21) and (2.22).
Although this theorem corresponds to the theorem of strain emergy in static elasticity,
it does not represent the relation of energy conservation in elastodynamics but now the
action of strain- kinetic energy..

5. Variational principles for initial/final-value problems (Problems A and B)

5.1. Variational principle of action of potential energy
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1t was found that amongst all the admissible displacement fields u; satisfying the strain-
displacement relations in equations (2.8) and (2.9), the velocity-displacement relations
in equation (2.10) and the displacement boundary condition in equation (2.20) as well
as the corresponding momentum p;, the actual displacement field satisfying the govern-
ing equations in equations (2.1) associated with (2.2), (2.19) and the initial/final-value
conditions in equations {2.27) and (2.28) make the functional

ﬁg[ﬂ;,p;] == El + ﬁ, (51)

= { J1AE) - T+ Guldn+ | Quds)as

F= [ [+ wen(u - a2 - [ Ega(u)de, (52)
Sm {in

stationary, if the conditions expressed in equations (2.15), (2.17), (3.15) and (3.19) are
satisfied.

By taking the variation of the functional H, and using equations (2.15), (2.17), (3.15)
and (3.19) together with the constraints given in equations (2.8), (2.9}, (2.10) and (2.20),

we can prove that the functional H, is stationary. This is achieved by using Green'’s
theorem and we obtain the following variational result

tz o N .
§H, = f {/ ((8ik + vip)ow;bu; ; — pibu;, — fiu;]dQ ~ Tibuids}dt + 6H, (5.3)
15} o

Sr

5fI = [ [nfﬁ,-péu,- + n*fﬁp;(u; — ’l:’,,'u) + n*fp,-ﬁu,-]d,ﬂ + /(; Ep.éu,dﬂ (5.4)
I n

A rearrangement of the terms gives
- tﬂ' - -
5.32 = / {-/‘;[—((&k + ’U-.',,L-)Ukj),j + Pit — f.]éu,dﬂ + .[s' [(5.‘;; + u.-lk)a;,_,-vj - T,]6u,d3}dt
31 T
+ jr; [—n&(pi — Pip)btt; + 0 E(; — Gy, )6p;]dQ2. (5.5)

Now because of the independence of the variations §u; in Q X (;,13) and Sp X [t;,8,] as
well as the variations ép; and éu; at £, equations (2.1) with (2.2), (2.19), (2.27) and
(2.28) result when §H, = 0, and vice versa.

5.2. Variational principle of action of complementary potential energy

In this case, it was found that amongst all the admissible stress-momentum fields o;;
and p; with corresponding body force f; as well as the displacement u;eF'S satisfying the
dynamic equations (2.1), (2.2) and the traction boundary condition (2.19), the actual
stress-momentum fields satisfying the strain-displacement relations (2.8) with (2.9), the
velocity-displacement relation (2.10), the displacement boundary condition {2.20) and
the initial/final-value conditions in equations (2.27) and (2.28) make the functional

f[:i[o'ijgph u;] = I, + ﬁ, (5.6)

I, = /t:z{/n[B(%') - R(pi) + %C’.-,-u,,l,-uk,,- + G (f)ld0
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-] i (Sir + wi i )orvids +f Q*(T)ds}dt + 11,
Su St

= f [7"€tups + n€ui(pi = Pip)}d2 - f g (p:)dQ (5.7)
Qm Q,

stationary, if the conditions expressed in equations (2.16), (2.18), (3.16), and (3.19) are
satisfied.

This statement can be shown valid by taking the variation of this functional and using
equations (2.16), (2.18), (3.16) and (3.19). By this means, we obtain the variational result

. ta 1 N
5113 = / {j [E.-jﬁa,-j - U§6pi + cr,-juk,jéuk); + 560’,‘;‘11)5,.'7.&,;,15 - u,éf,]dQ
131 o

- f 58[(8ik + w g )oi; |y ds — f w;§Tids)dt + 6T, (5.8)
5 Sr

61l = fn 7" Eltiubpi + nE6us(pi — Bip) + néw:8p;}dQ +/ﬁ Eusbp;dSl. (5.9)

The substitution of the variational forms of the constraint equations (2.1), (2.2) and
(2.19), i.e.

61’.‘1";' + §f, = (5}),',;, (57','1; = 60’,’j + 6‘&.&],‘0’.‘1', 6T,‘jl‘/j = 6T,', (510)

into the previous equations and using Green’s theorem together with a rearrangement of
terms gives

N ta 1
0ll3 = j {./ﬂ{(Eu - E(ui,j + u; + ug s )00 — (v — ui . )6p;]dQ
151

+j;. (i — 4;)0m;0;ds}dt + /f;m[n.f(p,- — Pip )by ~ 7 E(u; — 4, )6p]dQ. (5.11)

Now because of the independence of the variations §o;; and 8p; in Q X (¢;,1;) and the
variation é7;;1; on S, X [t;,1,] as well as the variations §p; and §u; at the Q,,, equations
(2.8) with (2.9), (2.20), (2.27) and (2.28) result when 6II; = 0, and vice versa.

5.3. Generalized variational principle of action of potential and complementary energy
with 5-arqguments o;, pi, i, £;; and v

In equation (5.2), the functional H; is dependent on the variables u; and p;. This fune-
tional may be modified to a generalized form dependent on the five variables o;;, p;, u;, E;;
and v;. This is achieved by relaxing the constraints described in equations (2.8) associated
with (2.9), (2.10) and (2.20) through the lagrangian multiplier method (for example, see,
Courant & Hilbert 1962). By this means, we obtain the following functional of the gener-
alized variational principle of action of potential energy with 5-arguments oy;, p;, u;, Eyj
and v;:

‘H5Q’[aihpi} Uy, Eijpvi] = ESg + ff, (512)
~ ta
Hsg = [ {_/Q{A(Eii) ~T(v;) + G(ug) + pi(v; — wi ) — 045 (Ey;

1
—E(u;,j + Uy i + uk,;uk,j))]dﬂ + [5 Q(u,)ds _./5 (u,- —_ ﬂ,‘)(é;k + ’U.,"k)ﬂ'kjb'de}dt,

u
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where H is given in equation (5.2).

By replacing B(oi;) by A(E;;) and R(p;) by T(v;) through equations (3.9) and (3.10)
respectively, and using the lagrangian multiplier method to relax the constraints ex-
pressed in equations (2.1) with (2.2) and (2.19), it follows from the functional II; in
equation (5.6) that we can obtain another functional with 5-arguments o, pi, u;, E;; and
v;. That is, the generalized variational principle of action of complementary energy

ﬁSg[Uij,P;, ug, EBijyv] = fIEg +11, (5.13)

II;, = f: 2{/‘][0«:‘1‘7:':' — A(Ey) - pvi + T(v) + w([(8ix + wig)owily + fi ~ pie)

.1
+ G*(f,) + 50;juk,;uk,j]dﬂ — j '&.’(6,']: + u.—)k)akjvjds

+ /ST Q*(Ti)ds - /ST[(éik + ik )ORV; = T.’]u,'ds}d_t,

where 11 is given by equation (5.7).

The functionals H 5¢ and ﬂ5g have the same 5-arguments o;, p;, u;, E;; and v; as well as
the same variational stationary conditions. These stationary conditions are the governing
equations for the initial/final -value problems in elastodynamics expressed in equations
(2.1) with (2.2), (2.8) with (2.9), (2.10), (2.15), (2.17), (2.19), (2.20), (2.27) and (2.28).
It thus follows that the two functionals satisfy the following transformation relation

ﬁsg[oijapi, g, iy, vi] + ﬁ5g[aij1pis ui, By, 03] = 0. (5.14)

5.4. Generalized variational principle of action of potential and complementary
potential energy with 3-arguments oy;,p; and u;

The replacement of A(E;;) by B(o;;) and T(v;) by R(p;) in the functional H;, expressed
in equation (5.14) using equations (3.9) and (3.10), allows the following functional with
3-arguments o;;, p; and u; to be derived. That is

Hagloiy, pi, ) = Hag + H, (5.15)

- 2 1
Hsy = ]t {/Q[R(Ps') = Blay) + Glud) + 504wy + v + i su )
— Pithy, ]dQ +/S Q(u;)ds - /; (i — @ )(8ix + s e )orjvyds}dt,
where H is given in equation (5.2).

By the reverse process, the functional ﬁsg in equation (5.15) can be transformed into
the functional I3, with 3-arguments o;;,p; and ;. That is,

Isolois, piy w) = sy + 11, (5.16)

I3, = _[12{/rl[B(Uij) — R(pi) + G* (i) + wil[(8ax + w6 )ows]; + fi — i) + %Uijuk,iuk.j]dg

- /_; ’ﬂ.;(é,’k + ui,k)aijde - [ [(63'&-, + 'U-.‘,k)aijj bt T,-]u,—ds -|-/ Q*(T;)dS}dt,
u ST ST
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where T is expressed in equation (5.7).

The functionals Hj, and fIag have the same 3-arguments o;;, p; and u; as well as the
same variational stationary conditions. These conditions consist of the governing equa-
tions describing initial/final-value problems in elastodynamics expressed by equations
(2.1) with (2.2), (2.19), (2.20), (2.27), (2.28) in addition to,

0B 1 OR

o3 = 5(‘“.;‘ + uj; + ugiue g ), 3_1‘3. = Uy (5.17)
Thus, the two functionals satisfy the following transformation relation
Hagloss, pis i} + Maglos, piy wi} = 0, (5.18)

5.5. Generalized varietional principle of action of potential and complementary energy
with 11-arguments 75, 0i;, Xij, &, Pi, Gj, Dij, wi, Eij, v; and w;

In deriving the functional Hs,, equations (2.9), (2.11), (2.12), (2.13) and (2.14) are
assumed automatically valid. If we replace u, ; by ¢;; through equation (2.9) and (6 +
i x)0k; bY Xi; — $breri; through equation (2.3) with (2.6) as well as releasing the relations
expressed in equations (2.11) with (2.13), (2.12) and (2.14) by using the lagrangian
multiplier method from the functional # s¢ i equation (5.12), the generalized variational
principle of action of potential energy with 11-arguments 7, oy;, Xij, biy Pis @5, Dijs wiy
E;;, v; and w; is defined by the functional

ﬁlly[Ts'j: isr Xij» bis Py ijy Dijywiy Bijyviy ] = Hyyp + H, (5.19)

. t2 1
Hyyy = ] {L[A(Eij) — T(v:) + Glus) + Pz‘(”i - us’,t) - bk(wk + Eeks'jui,j)
11
1
—0(Eij — 5(‘1:‘;‘ + g + Giqr;)) — Tii(q; — Dij + eijrwi) — Xi; (Di;

—5 (s + 00 = [ (= 8)(x — Jheensyds + [ QUuds}t

where H is given in equation (5.2).

By replacing (6;x + wiz)or; by xi; — %bkek,-j through equation (2.3) with (2.6) and
releasing the relations in equations {2.2), (2.4) and (2.7) by use of the lagrangian mul-
tiplier method from the functional in equation (5.13), allows the generalized variational
principle of action of complementary energy with 11-arguments 7;, o5, xi5, bi, pi, Gij»
Dy, wi, By, v; and u; to be defined as,

ﬁng[ﬂ’j, Tijs Xijs by, pi, 9ij, Ds‘j,wi, Es'j-; Ui,y u,~] = I1113 + f[, (5-20)
- iz e s 1 "
My, = fz {_/ﬂ["s'jEij — A(E;;) — pivi + T(w) + G™(£i) + wil(xi5 — Ebkekij),j + fi — pisl
1 1
+ oot + (135 — (6 + qi)onj )y + (X35 —~ *2'(7';',' + 755)) Dij + (b + €xij7i; e )dQ

. 1 1 . R
—j iy (xi5 — o bkeni;Jusds — / [(xs5 — Ebkek-‘:')%' — Ti]uds + _[ Q*(T3)ds}dt,
5 Sr Sr
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where 11 is expressed in equation (5.7).

The functionals I;’ug and flng have the same 11-arguments 7;;, oy, Xi;, bi, Pi, @5, Dij,
wi, Fij, v; and u; as well as the same variational stationary conditions. These stationary
conditions are the governing equations for initial /final -value problems in elastodynamics
as expressed in equations (2.1) with (2.3) and (2.6}, (2.2), (2.4), (2.7), (2.8), (2.11) with
(2.13), (2.10), (2.12), (2.14), (2.15), (2.17), (2.19), (2.20), (2.27) and (2.28). Therefore,
these two functionals satisfy the following transformation relation

ffll_q + f[lly = 0. (521)

5.6. Generalized variational principle of action of potential and complementary energy
with 9-arguments 75, 0i;, Xij, biy Pis qiz, Dij, wi, and w;

By replacing A(E,;) with B(o;;) and T(v;) with R(p;) in the functional H,;, ex-
pressed in equation (5.19) through equations (3.9) and (3.10), we can derive the func-
tional describing the generalized variational principle of action of potential energy with
9-arguments 7y;, 05, Xij, bi, Piy @5, Dij, wy and u; as follows

ﬂgg[Tij: Tiss Xijs bis is Gis» Dijowinwi] = Hog + H, (5.22)

- t2 1
Hy, = f; {/Q[R(p,:) — Bloy;) + G(w;) — piws,e — bi(we + o Eig i)
1 1
+§Jij(qij + @i + Qeigr; ) — Tii (@5 — Dij + eijrwr) — Xij(Dij — 5(“:',3‘ + u;:))]dQ
. 1
m/S (u,- — U;)(X,jj -~ Ebkekl’j)ujds +./_-g Q(u,)ds}dt,

where H is given in equation (5.2).
By applying the reverse process for the functional II,;, in equation (5.20), we can also

obtain the functional of the generalized variational principle of action of complementary
energy with 9-arguments 7;;, o5, Xij, &, Pi, 45, Dij, wi, and ;. That is,

Moy [Ti5, Tizy Xiss bis iy @iy Digy w4, us] = ﬁ99 +1I, (5.23)

_ t 1 . 1 ;

oy = /t {/D[B(a,-,-) -~ R(pi) + 706t + G7(fi) + w00 — Sbeenis) s + fi —pis]
1

+ (7 — (8ix + @ix)ows)as; + (Xij — E(Tij + 75 )) D + (b + egij iy )i JdS

) 1 1 . »
—/ u,-(x,:j —— §bk€k,'j)yjd3 —/ [(Xij - Ebkekl'j)vj - T,-]u,-ds +f Q (T,)d&}dt,
5 Sr Sp

1Y

where 1T is expressed in equation (5.7).

The functionals Hg, and 1:[95, have the same 9-arguments 7;;, o35, Xij, b, Pis G355 Dy,
w; and u; as well as the same variational stationary conditions. These stationary con-
ditions include the governing equations for the initial/final-value problems in elasto-
dynamics as expressed in equations (2.1) with (2.3) and (2.6), (2.2), (2.4), (2.7), (2.11)
with (2.13),(2.12),(2.14), (2.19), (2.20), (2.27), (2.28), (5.17). Also, these two functionals
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satisfy the following transformation relation

Hoy + 1M, = 0. (5.24)

6. Variational principles for two time boundary-value problems(Problem C)
6.1. Variational principle of action of potential energy

From the principle of virtual displacement expressed in equation (4.2) and using equa-
tions (2.15) and (2.17}, we can easily obtain the functional of the variational principle of
action of potential energy for the two time boundary-value problems as follows.

Hl[u,-] - .E[] + HP’ Hp = L {ﬁ,-pu,-dﬂ. (61)

The constraint conditions applied to this functional are given in equations (2.8) with
(2.9), (2.10), (2.20) and (2.22) and its stationary conditions are expressed in equations
(2.1) with (2.2), (2.19) and (2.21). The functional in equation (6.1) is suitable for the
four kinds of time terminal conditions as described in equations {2.29) and (2.30). For
example, if the time terminal conditions are defined by the case f, = {t;,13}, {, = void, so

that the set QP = void, the last integral over QP in equation (6.1) vanishes and Hamilton’s
principle results as a special case of the functional expressed here.

6.2. Variational principle of action of complementary potential energy

From the principle of virtual stress-momentum expressed in equation (4.3) and using
equations (2.16) and (2.18), we can obtain the functional of the variational principle of
action of complementary energy for the two time boundary-value problems in the form

Moy, pi) = M, + M, TN, = f € pid®. (6.2)
D

The constraint conditions applied to this functional are given in equations (2.1) with
(2.2), (2.19), and (2.21) and its stationary conditions are expressed in equations (2.8)
with (2.9), (2.10), (2.20) and (2.22). Also, the functional in equation (6.2) is suitable
for the four kinds of time terminal conditions described in equations (2.29) and {2.30).
For example, if the time terminal conditions are fp = {t1,t3}, I, = void so that the set
), = wvoid, the last integral over {, in equation (6.2) vanishes and Toupin’s principle
results as a special case of this functional representation.

6.3. Generalized variational principle of action of potential and complementary energy
with 5-arguments oy;, pi, u;, Ey; and v;

The functional H, in equation {6.1) is dependent on the variable u;. This functional
may be modified to a generalized form dependent on the five variables Tijy Piy Uiy By
and v; by relaxing the constraints described in equations (2.8) with (2.9), (2.10), (2.20)
and (2.22) through the lagrangian multiplier method. This functional of the generalized
variational principle of action of potential energy with 5-arguments is expressed in the
form

Hsgloi, pi,wi, By v = Jqsg +H,+H, H,= / E(ui — gy )pidS2. (6.3)
1429
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By the replacement of B(a,;) by A(E;;) and R(p;) by T(v;) through equations (3.9) and
(3.10), respectively, and using the lagrangian multiplier method to relax the constraints
expressed in equations (2.1) with (2.2), (2.19) and (2.21), it follows that the functional
I3 in equation (6.2) can be modified into a functional with 5-arguments o;;, p;, w;, Ei;
and v; in the form

Msgloi;, i, iy By, ] = ﬁSg + I, +10, I, = ../n E(pi — Pip)uid 2. (6.4)

The functionals Hs, and IIs, have the same 5-arguments o;;, p;, ui, Ey; and v; as well
as the same variational stationary conditions. These stationary conditions consist of the
governing equations describing two time boundary-value problems in elastodynamics as
expressed in equations (2.1) with (2.2), (2.8) with (2.9), (2.10), (2.15), (2.17), (2.19),
(2.20), (2.21) and (2.22). Thus, the functionals Hs, and Ils, satisfy the transformation
relation

HSg[o-ijapi) Ui, Eija Ui] + H5g[gi.f7pi> Uiy Eij’ ’U,‘] = 0. (65)

6.4. Generalized variational principle of action of potential and complementary
potential energy with 3-arguments o;;,p; and u;

By replacing A(F;;) with B(o;;) and T'(v;) with R(p;) in the functional Hs, expressed
in equation (6.3) through equations (3.9) and (3.10), the following functional with 3-
arguments oy;, p; and u; can be derived:

Hygloys, pisws] = Hay + Hy + H.. (6.6)

By the reverse process the functional II;, in equation (6.4) can be modified to create
the functional II5, with 3-arguments o;;, p; and u;. That is,

s, o4, pi, ws] = f[3g + 11, + 11, (6.7)

The functionals H3, and I3, have the same 3-arguments oy, p; and u; as well as the
same variational stationary conditions. These stationary conditions are the governing
equations describing two time boundary-value problems in elastodynamics as expressed
in equations (2.1) with (2.2), (2.19), (2.20), (2.21), (2.22), (5.17). Therefore, these two
functionals satisfy the transformation relation

H3§'[aij!pl', ui] + Hag[aijapi: ’U;,'] =0 (68)

6.5. Generalized variational principle of action of potential and complementary energy
with 11-arguments 7;;, 0ij, Xi;, bs, Pi, @ij, Dij, wi, Eyj, v and u;

By using of the same methods as adopted to derive the functionals H 114 1D equation

(5.22) and the functional II;; ¢ in equation (5.23), we can obtain two functionals dependent
on the 1l-arguments 7;;, 0ij, Xij, biy Piy %, Dijy wi, Bij, v and w; from the functional
Hsg in equation (6.3) and the functional II;, in equation (6.4). These are

Hy1g[Tis, 045y Xaga bi Pis @0 Digy wiy Eujy vy wi} = Hypg + H,+ H,, (6.9)
Wy1g[7i5, 0ijs Xajs Ois Pis Gijs Dijswiy Eijy iy ) = Ty, + T, + T0,. (6.10)

The functionals H,,, and II;;, have the same 11-arguments Tijs Tijs Xijs Uiy Pis @ij, Dij,
wi, Eyj, v; and u; as well as the same variational stationary conditions. These stationary
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conditions contain the governing equations describing two time boundary -value problems
in nonlinear elastodynamics as expressed in equations (2.1) with (2.3) and (2.6), (2.2),
(2.4), (2.7), (2.8), (2.9) with (2.13), (2.10), (2.12), (2.14), (2.15), (2.17), (2.19), (2.20),
(2.21) and (2.22). These two functionals satisfy the transformation relation

Hllg + Hll_q =0. (611)

6.6. Generalized variational principle of action of potential and complementary energy
with g'amuments Tijs Oijs Xij, bi: Pi, 4ij, Dt’j; Wi, and U

The replacement of A(E;;) with B(oy;) and T(v;) with R(p;) in the functional H,y,
expressed in equation (6.9) through equations (3.9) and (3.10) allows the following func-
tional with 9-arguments 7, 05, Xij, b, Pis @5, Dij, wi and u; to be defined:

Hgg['rij: Tijy Xijs bivpt's Giss Dij?"'-“l': ’[L,'] = Egg + Hp + Hu- (612)

By the reverse process, it follows from the functional II;;, in equation (6.10) that
another functional with 9-arguments ;, i;, Xi;, bi, 2, ¢, Dij, wi, and u; can be derived.
This has the form

oy (7}, Oisy Xigs Bis Piy s Dijywiy w] = Mg, + T, + 10,,. (6.13)

The functionals Hg, and Iy, have the same 9-arguments 7y;, 055, Xij» bi, Pi» Gijs Dij, wi
and u; as well as the same variational stationary conditions. These stationary conditions
include the governing equations associated with two time boundary -value problems in
elastodynamics as expressed in equations (2.1) with (2.3) and (2.6), (2.2}, (24), (2.7),
(2.9) with (2.13),(2.12), (2.14), (2.19), (2.20), (2.21), (2.22), (5.17). Therefore, these two
functionals satisfy the following transformation relation

Hgy + Hgg = 0. (614)

7. A note about the principle of complementary energy in nonlinear elasticity

For problems of static nonlinear elasticity involving dead loads, the functional of action
of complementary potential energy expressed in equation (6.2) reduces to the following
functional of complementary energy

1 N
Hl[G',;J'} = -/Q[B(G',J) + §a;juk,,-uklj]dﬂ —/s 'ui(b-ik + u,-,k)O'ijjds. (71)
This functional is subject to the constraint conditions

[(6ik + uip)or;]; + }E- =0, z;eQ; (fix + wip)opv; = T, z;e57, (7.2)

and Euler equations
E;; = %(u,-'j + 5+ it ), €Sy u; =14y, 765 (7.3)
The functional in equation (7.1) reduces further to
oy = [ Blog)in - [ woyvyds, (7.4)

for the case of small displacement problems in linear elasticity, which in turn is the
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variational principle of complementary energy. In this simplified functional, there is only
one argument oy;, but in the functional in equation (7.1) for the finite displacement case,
the displacement gradient u; ; is also contained in the integral in addition to the stress
Ty

JMa,ny authors (see, for example, Guo 1980) have sought to determine whether finite
displacement problems in nonlinear elasticity can also be described by a variational
principle of complementary energy involving only one argument ¢;; analogous to the
description of small displacement problems in linear elasticity. The problem remains
mathematically unresolved. However, if is interesting to note that when the variational
constraint equations in equations (7.2) are rewritten in the forms:

-

Okl kg + Opi Uiy = —Oijj — f, :E,'EQ; Uik OV = T - G4, m;eST, (75)
they represent a system of first order differential equations involving the displacement
gradient u;; and stress a;;. Therefore, in principle the displacement gradient u; ; may
be solved in terms of the stress o;; and on substituting this result into equation (7.1},
the functional of complementary energy reduces to a form dependent only on the stress
variable o,;. This discussion clearly indicates that the functional for finite displacement
can also be expressed in terms of a single variable, i.e. the stress oy;.

As an illustration to this discussion, let us consider the simple example shown in figure
2. Here a straight rod of length L = 1 and of constant section area B = 1 is firmly held
fixed at one end (i.e. the left end). It is loaded by a concentrated force T at the other end
together with a distributed force f(ss) acting along the length of the rod, i.e. 0 < z < 1.
The stress-strain relation of material in the rod is assumed given by

f(=) B, L

§L+ . L T T T _,}_¢T

0 z

Figure 2. One-dimensional straight rod of length L = 1 and constant section area B =1 loaded by a
concentrated force T' and a distributed body force f(z).

B { o?  for extension

2 {or compression ’ (7.6)

where £ is the Green strain and ¢ is the second Kirchhoff stress. The governing equations
of the problem are

[(1+uc)ole = —f, z ¢ (0,1), (7.7)
E=u.+ %(u,,,)ﬁ, ¢ (0,1), (7.8)
w=0, z =0, (7.9)

Q+ugz)e="1T, =1, (7.10)
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together with equation (7.6). The function of density of complementary energy is

[y o*de = ic® for extension,

—_ ¥
Blo) = {fgg —o?do = —10%,  for compression. (7.11})

The corresponding functional of complementary energy from equation (7.1) can be writ-
ten as

Mo} = /01[3(0) + %a(u,z)z]da:, (7.12)

subject to the constraint conditions in equations (7.7) and (7.10). From these latter
equations we obtain the result

~ 1 ~
(1+u,)o="T +/ fle)de = T(2), ¢ (0,1), (7.13)
allowing three possible conditions to exist. Namely,
() T(z)>0
- _ I(z) 21 a
Uy = T - 1, B(U) = §0’ ; (7.14)
(i) T(z)< O
T(z) 1 3
= —— — 1 B = —— N 7.
U, p , (o) 30‘ ; (7.15)
(iti) T(z) = 0
u, = arbitrary, o =0. (7.16)
For convenience let us assume
2 >0, z<z<l L. 2
f(z) and T(z) : {: 0 015 o< o fxl fz)dz+T = 0. (7.17)

Substituting f(z) as expressed in equation (7.17), and the corresponding T(z), B(c) and
u . given respectively in equations (7.14), (7.15-16) into equation (7.12), we obtain the
functional of complementary energy principle. This is expressed in the form

11 | N
I;[o] = (§a3 t50+ 5 T)dz, (7.18)

and depends only on the one variable ¢. By examining the variation of this functional,
the solution for stress is derived from the equation

2
o? — T(=) 1
202 2

02=§(\/1+8T(x)2—1), e, 1) 0 =0, 20,2, (7.20)

and displacement

u(z) = /: \/1 + %(\/1 + 8T(y)? — L)dy, ze[z1,1];  u(z) =0, zel0,zq). (7.21)

=0, (7.19)

giving,
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8. Discussion and an example of application

8.1. Sum decomposition of displacement gradients u; ;

The displacement gradient ¢;; = u, ; is not generally symmetric (that is, Ui F Uji)
and in equations (2.11)-(2.14) this has been expressed as the sum of a symmetric tensor
D;; and a dual vector w; of an antisymmetric tensor Wi;. The generalized variational
principles corresponding to expressions of gradient are given in equations (5.22), (5,23),
(5.25), (5.26), (6.9), (6.12) .and (6.13). They allow the introduction of simplifications
into the mathematical model and hence create reductions in the subsequent numerical
analyses. For example, from equations (2.8), (2.11) and (2.13), the Green sirain tensor
FEy; can be expressed as

1
By = Dij + '2'(Dki — it )(Dij — €xjrtor ). (8.1)

In the case of deformation of very flexible bodies, such as plates and shells, the quantities
D;; may frequently be assumed to be infinitesimal of first order but the components w;
may be much larger (see, Novozhilov 1953). These assumptions allow the approximation

1
E.‘j = D,’j +- —2~(6;jw,w, + w,-wj). (82)

Furthermore, if both D;; and w; are inifinitesmals of first order and we neglect therefore
their products and squares in comparison with their first order power, equation (8.2)
reduces to

E,'j = D,’j. (83)

Notice that in this case if D;; = 0 (rigid motion}, equation (8.3) becomes
E; =0, (8.4)
and
du; = u; ;dr; = egjwnde; = w X de. (8.5)

Thus, we obtain an infinitesimal displacement without strain by a rigid rotation of the
line elements dz.

8.2. Other generalized variational principles deduced from the functionals presented

By means of the lagrangian multiplier method to relax some constraints or to introduce
additional constraints into the variational principles presented, other generalized varia-
tional principles may be obtained. For example, let us consider the generalized variational

principle I, in equation (5.19). If the constraints in equations (2.8) with (2.11) and
(2.13), (2.10), (2.20), (2.15) and (2.17) are included, a generalized variational principle
with 6-arguments

EGg[X:’j:bi:phDij:wiaui] = _/; 2{/0[14(19-'1:%') - T(v) + G(w)
— belws + %ekiju,-,,-) ~ Xi(Dij ~ %(u.-,,- + u;,:))]dQ +/; Q(u)}dt+ H, (8.6)

can be derived. The stationary conditions applying to this functional are equations (2.12),
(2.14), (2.1) with (2.3} and (2.6), (2.19 with (2.3) and (2.6), (2.27), (2.28). Further, if
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the relation in equation (2.12) is introduced into equation (8.6), we deduce a variational
principle with 4 arguments of the form

glbipisnwd = [ [AG (05 + 30,00 - T(0) + Gl
bk + %ek.-,-u,-,_.,-)]dn +fs Qus)}t + 1, (8.7)

which reduces to the functional H, corresponding to equation (5.1), if the constraint in
equation (2.14) is introduced.

Furthermore from the formulations, sub-region or piecewise variational principles can
be obtained if the time interval or the space domain or both are divided into elemental
portions (see, Xing & Zheng 1992a). Based on these piecewise variational principles, a
time element model or a four dimensional element model for the numerical analysis of
nonlinear elastodynamic problems can be formulated.

This discussion shows that the generalized variational principles presented have a wide
range of application and are adaptable for further development. They can be cast into
forms providing frameworks in which effective and efficient numerical schemes of study
can be devised.

8.3. An example of application

To illustrate the application of the variational principles developed in this paper, the
one-dimensional straight rod shown in figure 2 is again considered by way of example.
For simplicity, let us assume that the distributed force f(z) acting along the length of
the rod is zero. Both the elastic modulus and the density of the rod’s material equal 1. A
final-value problem requiring that the displacement 4, = = and the momentum p, = z
of the rod at the final time ¢, = t, is solved. The governing equations described in section
2 now take the following forms.

[(1+ vs)o]z =Dy (z,t) € (0,1) x (0, ), (8.8)
E=u,+ %uz o=, (aht) € (0,1) X (0,a), (8.9)
o=FE, p=v, {z,t) € (0,1) x (0, ), (8.10)
A+u)o=T, x=1,1te[0al (8.11)

u=0, z=0,{€[0,al] (8.12)

U=T=1Uy, P=Z = Pa, t=a, z€[0,1]. (8.13)

Here, u; represents the displacement at the right end of the rod and the subscripts 0
and « represent the variables at the initial time ¢, = 0 and at the final time ¢, = a,
respectively. The functional described in equation (5.1) takes the form

Hj[u,p] = j:{fol %(E2 - v¥)dz — T, }dt

+ [ Jluaba t paliva = t)da+ [ s(u)ic (8.14)
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The variation of this functional is represented as
~ o 1 ~
§H, = f { f (6EE — Svv)dz — su T )dt
] 1}

1 1 . . 1
+] 5[6110,(;0,, + Po) + 6paltia — i, )jdz — ] Sugpodz. (8.15)
0 0

Now through the functional given in equation (8.14) or (8.15), a semi-analytical method
(see, for example, Oden & Reddy 1976) can be developed to obtain an approximate so-
lution. We shall assume that an approximate solution of this problem satisfying the
constrain conditions of this functional, i.e. the strain-displacement relation the velocity-
displacement relation in equation (8.9) and the displacement boundary condition in equa-
tion (8.12), is represented by

= z¢(t). (8.16)

The associated variables corresponding to this assumed solution take the following forms:

E=g)+580),  p=v=2d0),
Uy = ¢(t): o = :I:QS(CE), Po = "BQS’(O‘)’ Uy = $¢(0)7 Po = .’.L‘QS’(U). (8'17)

On substituting these equations into the functional described in equation (8.15), inte-
grating = from 0 to 1 and through time integration by parts for the term of §¢'¢, it
follows that

iy = [ 660(1+ 56+ 560 + 39"~ Tlas
+589/(2)[#(0) — 1] - <60(a)[8(a) - 11. (8.18)
Furthermore, through the variation §H, = 0, we derive the result that
#3001+ 5o+ 560 =5, gla)=1, #le)=1. (8.19)

This equation is an ordinary differential equation derived from the partial differential
governing equations describing nonlinear elastodynamic problems through the variational
principles given in this paper. The solution of this equation for ¢(¢) provides an approx-
imate solution of the final-value problem. The initial conditions required to reach the
final-value conditions in equations (8.13) can be obtained from equations (8.17).

Il a space-time element method (see, Xing & Price 1996) is adopted, by means of
the functionals developed here a numerical matrix equation can be derived to obtain a
numerical solution of nonlinear elastodynamic problems.

9. Conclusion

Our idea and approaches in the previous papers (Xing & Price 1992, 1996; Xing &
Zheng 1992) have been successfully extended to the theory of nonlinear elastodynamics.
General theorems and generalized variational principles are developed to solve initial-
value, final-value and two time boundary-value dynamical problems in nonlinear elasto-
dynamics .

By adopting the methods discussed and relaxing or adding constraints, we show that
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modified or additional functionals are created. Piecewise generalized variational prin-
ciples to solve nonlinear elastodynamic problems can be generated from the presented
mathematical models by dividing the time interval or space or both into smaller elements.
The division of the displacement gradient into two parts, i.e. a symmetric part and a
rotation vector corresponding to the antisymmetric part provides a means of simplifying
the application of the mathematical model in nonlinear numerical analysis.

The examples presented show that the model developed is applicable to describe non-
linear elastostatic and elastodynamic problems. In the elastostatic problem, it is shown
how a functional of the principle of complementary energy with one argument, i.e. the
stress o;;, may be constructed. In a final-value elastodynamic problem, we illustrate
how a semi-analytical method can be used to reduce the partial differential governing
equations to an ordinary differential equation solvable using conventional methods.
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