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1. INTRODUCTION

Beams represent fundamental structural components in many engineering applications,
and shape functions are essential for the finite element discretization of such structures.
Przemeniecki [1] derived explicit expressions for the shape functions of two-dimensional
Timoshenko and three-dimensional Euler-Bernoulli (EB) beam elements. Note that for
the three-dimensional EB element presented in reference [1], a change of sign is required in
those entries of the third column of the shape function matrix which correspond to the
twist terms. Since that pioneering work, there does not appear to have been any attempt to
extend these results to a three-dimensional Timoshenko beam element, and it is the
purpose of this note to fill this gap in the literature. :

" 2. FINITE ELEMENT DISCRETIZATION

Consider a typiéal two-node three-dimensional beam element of length /, where each
node has six degrees of freedom. The nodal displacement vector {e} defined with respect to
the element axes is denoted by

{e}a=[m v wi 04 6, 6. w v, wy O B2 9:2]T, (1

where (u;, uy) are the nodal axial displacements in the x-direction, and (v1, v2) and
(w1, wy) are the translational displacements in the y- and z-directions, respectively,
(0x1, Ox2) are the torsional displacements about the x-axis, and (6,1, 0,,) and (6., 6:)
are the rotational displacements in the (xz)- and (xy)-planes, respectively.

According to the standard finite element procedure, the elastic deformation of an
arbitrary point of the beam element can be expressed as

{d) = [(H]{e}, @)
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where {d} represents the elastic deformation vector of the beam element and [A] is the-
matrix of shape functions used to model its deformations. Note that the shape functions
are spatially dependent while the nodal displacement vector is time dependent.
Equation (2) is quite general and is valid for any form of shape functions [.#7] used to
model the beam elements. The shape functions used for translational and rotational
bending deformation are the conventional cubic Hermitian polynomials that incorporate,
in addition to the continuity and completeness conditions, shear deformation parameters
that account for the effects of shear. The shape functions for torsional and axial
deformation are linear, and are included for completeness. '

3. THE DISPLACEMENT FIELD

Timoshenko beam theory (TBT) is applied when the cross-sectional dimensions of the
beam are not small compared to its length and/or when higher bending modes are
required. The kinematic relations for a three-dimensional beam undergoing axial,
torsional and bending deformations in the (xy)- and (xz)-plane can be expressed as

ov ow
o= o))
V = —z8,+v, (3)
W = y0x+w,

where the translations (v, w) consist of contributions (vs, ws) and (vs, wy) due to bending
and transverse shear, that is

V=05 + U5, W=wp+ w,. (4,5)
The relationships between total slope, bending rotation and transverse shear are
O Ovp Ous
ox = ox Tax 0t o ©)
Ow  Owy  Owy
a—g;+5;~“9y+}’m (7

where y,, and y,. are shear strains in the (xy)- and (xz)-planes, respectively.
The two rotations (6,, 0.) are related to the bending deformations (vs, w,) by the
expressions
avb Bwb
9-: == 9 = ——,
z 6367 y ax . (879)

Note that axial warping displacement during torsion is ignored.

4. DERIVATION OF SHAPE FUNCTIONS

Shape function matrices for axial and torsional deformation, [47,] and [Ag,], can be
found in any elementary text, and are given by

[WalO] =[N0, (] = [(1-9) &, (10)

where ¢ =x// is the dimensionless axial co-ordinate. Shape functions for bending
deformation in the (xy)-plane are derived as follows: the translational deformation v(x) at
an arbitrary location x is expressed as

v(x) = ap + aix + a;x* + azx°> (il)
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or in matrix form as

v(x) = [xl{a;}, (12)
where
M=01 x 2@ 2] (13)
and ‘
{a}=[a a @ a]" (14)

The shear strain is assumed to be independent of the element axial co-ordinate X, in
accordance with reference [2], i.e., constant along the finite element

Vxy = CONSt. = 7. (15)
The bending moment M. and the shearing force 0, are related by
dMm. .
——-0,=0 1
dx Q) ( 6)
and the moment—curvature relationship is
86 '
M.=—-El.~-= 17
=B, (17

where I, is the second moment of area about the z-axis; the shear force is related to the
transverse shear strain by

Oy =rxy G Ay, (18)

In the above, ;cy‘ is the shear correction factor that accounts for the non-uniform

distribution of the shear stress over the cross-section A, E is the modulus of elasticity, and

G is the shear modulus. The slope due to bending can be obtained by using equations 6),
(13) and (15), that is

0. = aj + 2ayx + 3a3x* — Y (19)

Taking the derivative of 6, with respect to x and substituting it into equation (17) yields

M. = —EI..(2a; + 6a3x). (20)

Taking the derivative of M. with respect to x and substituting into equation (16) along
with equations (15) and (18) yields

—6El.a3 — k,GAy, = 0, (21)
from which
EI. .
o= ~6(=g ) = =64 a, (22)
where
El.
A = s
= (23)

Substitute equation (23) into the expression for 6., to give

0: = a; 4+ 2ayx + (3x* + 64.)as. (24)
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To express the coefficients a; in terms of the bending deformations and slopes, the
following boundary conditions must be satisfied:

v(0) =vy and o(l) = vy,

0:(0) =6, and 6.(]) =0 (25)
and applying these to equations {11) and (24) gives
v(0). = a = v,
6.(0) = +64,a = 0.,
-(0) a) 2a3 . ; 2l (26)
v(l) = ag+al + al* + a3l = s, .
0.() = a+2;l+ (312 + 6/1:)03 = 0.
In matrix form, this can be written as '
vy 1 00 O ay
9:1 01 0 6/1: a
= 27
(%] | 12 13 a ( )
0., 0 1 2/ (3P +64.) @
or in more compact form )
{d} = [Al{a;}, (28)
from which
{a)} = [ {a}. (29)
Solving for {a;} gives"
apg = l)l‘, (30)
- 1 P, 1 D,
a = o. (—7‘15:01 + <1 + ?) 61 +7¢:Uz - ‘2‘*9:2), (31)
- 3u, 1 (A 30, 1 D,
az—d5:< 2 ‘7<2+—2‘)H:l+‘17——l‘<1_—2“)9:2>3 (32)
= 21)1 63| 21)2 9_»2
a3=@;<—l‘3~+l—2—l—3+“l§‘>, (33)
where
6= (34)
T+,
and
124.  12EL.
b, =—= = (35)

P 7 k,GAP
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is the shear deformation parameter that represents the ratio between bending and shear
stiffnesses. Substituting the values of g; into the expression of v(¢ = x/I) and simplifying,
one obtains

. | - &,
p(¢) = d-(1 =3¢ +28 + &:(1 ~ Q) + 19 (z -2+ O+ (- 52))0:1
- - &b. .
+8.(382 28 + B.8)v, + 1B, (—52 +& + (¢ 62))9:2- (36)
Hence, v(&) can be written in the form
‘ U(é) = '/Vvlvl + '/szuzl + JVvst + '/vauzb (37)
where '
Ny = D1 =38 428 + &.(1-¢)),
- 3 v ¢;' 3 .
*'/sz = l¢z<§‘262+63+7(§—§2)>,
N 3 (38)
'/Vv3 = ¢:(36 - 26 + ngv)»
- d.
‘/Vm = l@: (__52 + 63 +"2:'(_’6 + 52)) .
Similarly, substitute a; into the equation for 0.(¢) to get
65;’ 2 z P4 2
0:(8) = 7 (8o + D1 - 4¢ 438 + 0.(1 - )0
- (39)
' 6@: 2 ¥ 2 z
+ —l“(f = &Ny + Do(—28 + 38 + ,8)0.,.
Hence, 6.(¢) can be written in the form
(8= I S T + ) + Ny b, (40)
where
6P, §
‘/Vll:l = T‘"(—é + §2)’
Ny, = O(1—4E+38 +0.(1-¢)),
66 (41)
Ny = A=+ ),
Ny, = G.(=28+3E+8.0).

Shape functions for bending in the (xz)-plane are obtained in a similar manner; the
bending slope 6, is given by equation (7) while the shear deformation parameter is

_12E1,

7T k.GAP (42)
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= 1

D, =— 43
T (1+9)) (43)
The shape functions corresponding to bending in the (xz)-plane can then be
written as
N, B, (1 - 38 +28 + &,(1 - ¢)),
- (0]
N, —19,(§ =28+ & + (- &),
2 44
5 2s2 _ns3 (44)
N s 0,(38° -28 + 9,¢),
- o]
N = =18(-8+ 8+ (¢ + &)
and the correspondiné bending slope shape functions are
: 6P i
Ny = TP-E+E,
Ny, = =B (1 -4E+38 +8,(1 - 9¢)), -
—6&
Ny = U+,
Ny = —B,(-28+38 + &,0).

By virtue of equations (10), (38), (41), (44) and (45), the kinematic relations given by

equation (3) are now expressed as

U=(1=Qui ~68:(~ + &)nor — 68, (—& + &) wy

+1D,(1 =48 +38 + By(1 = )0, — 1D, (1 — 4¢ + 38 + (1 — &))yby

+ Cup = 60.(¢ — E)nwy — 68, (& — 1) w,
+ 1By (<28 + 38 + B,8)( 0y — 1D.(—2E + 38 + B.8)nb.,,
V=0.(1-3+28+d.(1— &)

3 2 (2 oy o, ,
= I{(1 = &)b + [®: (g —2 48+ S -

62)> 0:1

- - o
+ @.(3E% — 28 + D.E)vy — I(E6, + 1D, (—g’z +&+E(=+ 52))032,

W=a,(1 =38 +28 + 0,(1 - O)wr
= ]
+ (1= )b - 1‘15}»(6 ~28 48+ 2

<
- - @
+8,(38 =28 + &, &)y + I — 1B, (—62 R = G 52)) 0)2,

(46)
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where n =/l and { =z/l are dimensionless co-ordinates in the y- and z-directions
respectively. In matrix form, this can be written as

{d}30 =[U 4 W]T= Nxra{e}ian (47)

These results are summarized in the matrix of the shape functions, [#7], shown in
Appendix A. If the shear deformation parameters @, and @. are neglected, then
[47] reduces to the three-dimensional Euler-Bernoulli beam shape function derived in
reference [1], where a sign change is required in the fourth and tenth entries of the third
column of the shape function matrix, which correspond to the twist terms.
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