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ABSTRACT

This paper is concerned with an experimental evaluation
of coevolutionary optimization techniques, which are
integrated with surrogate models of the fitness function.
The motivation for this study arises from the fact that since
coevolutionary search is based on the divide-and-conquer
paradigm, it may be possible to circumvent the curse of
dimensionality inherent in surrogate modeling techniques
such as radial basis networks. We investigate the
applicability of the algorithms presented in this paper to
solve computationally expensive optimization problems on
a limited computational budget via studies on a benchmark
test function and - a real world
cantilevered space structure design problem. We show that
by employing approximate models for the fitness, it
becomes possible to converge to good solutions even for
functions with a high degree of epistasis.

1. INTRODUCTION

In recent years, coevolutionary computation has been
applied with a great degree of success to function
optimization, neural network training, and concept
learning [1,2]. Coevolutionary computation can be
interpreted as an instance of the divide-and-conquer
paradigm. For example, in the context of optimization, the
variables in the original problem are decomposed into a
number of subsets. Subsequently, species which

independently handle each subset of variables are evolved -

simultaneously to locate the optima of the original
problem; see Figure 1 for an illustration of how
coevolutionary computation can be applied to function
optimization. An important advantage of coevolutionary
optimization techniques is their ability to converge faster
to the optima as compared to standard evolutionary
algorithms, particularly for problems with low epistasis.

In this paper, our focus is on optimization of
computationally expensive functions. In recent years,
many researchers have examined strategies for integrating
surrogate models with evolutionary search techniques to

two-dimensional -

tackle the computational cost issue associated with this
class of problems [3-6]. Surrogate models are essentially
metamodels of the original objective function, which are
constructed using techniques in the machine learning
literature such as neural networks and radial basis
networks [7]. Even though promising results have been
obtained for some problems, the curse of dimensionality
poses a major obstacle to the successful application of
surrogate modeling techniques to multimodal functions
with large number of variables.

In this paper, we address the issue of how surrogate
models can be integrated with coevolutionary optimization
algorithms. The motivation for this study arises from the
observation that since coevolutionary algorithms
decompose the original optimization problem into
subproblems with smaller number of variables, it may
become possible to circumvent the curse of dimensionality
in the surrogate model construction phase. However, while
this divide-and-conquer approach enables us to tackle the
curse of dimensionality, epistatic interactions between the
variables can lead to a significant degradation of the
convergence rate. The experimental studies by Potter [8]
suggest that the convergence of coevolutionary techniques
can be significantly slower than standard evolutionary
algorithms for problems with high degrees of epistasis.

Currently, little work is available in the literature on the
convergence of coevolutionary optimization when
approximate fitness models are employed during the
search. Even though, some studies were presented in Nair
and Keane [9] for a space structure design problem using
domain-specific approximation models, it is not clear
whether the observations made there carry over to cases
when more general surrogate modeling frameworks are
employed. Here, we first examine the convergence
behavior of surrogate-assisted coevolutionary optimization
via detailed experimental studies on a benchmark function
with random degrees of epistasis. Our results indicate that
the noise in the fitness evaluations due to the use of
surrogate models can cancel out the detrimental effects of
epistasis on the convergence of coevolutionary
optimization. Further, we proceed to show that the



proposed general surrogate modeling framework arrives at
better space structure designs over the time budget
allocated for optimization when compared to conventional
evolutionary searches.

BEGIN
Initialize: *
Generate a population of individuals for s species.
While (computational budget not exhausted)
Forspeciesi=1tos
Choose representatives from all the other species. The
elite member of each species is often used.
For each individual j in population
_® Form collaboration between individual j with the
representatives from other species.
® Evaluate the new individual by applying it to the
target problem and reward it with the resulting
fitness value.
e Implement Elitism.
End For
Apply standard EA operators to create a new
population for species i.
End For
End While
END

include linear splines, cubic splines, multiquadrics, thin-
plate splines, and Gaussian functions [7]. m is the number
of centers or the number of radial basis functions
employed. The centers of the radial basis functions are
chosen via the k-means clustering algorithm.
Subsequently, the exact values of f(x) are evaluated at

these centers to generate training data for constructing a
RBF approximation. Models are constructed on the fly at
each ecosystem generation independently for each species.
Note that by dividing the original problem variables
among multiple species, we have reduced the number of
inputs in the surrogate models since each species handles
only a subset of the original variables. This procedure thus
tackles the curse of dimensionality, which often limits the
success of surrogate modeling on multimodal problems
with many variables. The steps involved in the proposed
surrogate-assisted coevolutionary optimization algorithm
are outlined in Figure 2.

Figure 1: Coevolutionary Optimization.

2. SURROGATE-ASSISTED COEVOLUTIONARY
OPTIMIZATION

First, we outline an approach for integrating surrogate

models with coevolutionary optimization algorithms. For

simplicity of presentation, consider the optimization

problem with simple bound constraints given by:
Minimize: f(x)

subject to: X, Sx<x,

where xe R"is the vector of design variables, and X .

and X, are the lower and upper bounds, respectively.

We are concerned here with problems where evaluation
of f(x) is computationally expensive and it is desired to
converge close to the global optima on a limited
computational budget. To reduce the computational cost,
we seek to. interleave a surrogate model for f(x) along
with the exact function in the coevolutionary search
procedure. In particular, we consider the case when a
surrogate model of the objective function is constructed
using radial basis functions (RBF). Here, the RBF
approximation for the original objective can be written as

Equationl: y = Z a.Kx, x,) (D
i=1

where K(x, x, )is a positive semi-definite kernel, a;

denotes the vector of weights, and {x, v, i=1,2,...m/} is the
training dataset. Typical choices for the kernel X{....)

BEGIN
Initialize:
Generate a population of individuals for s species.
Set fitness function:= Surrogate for all species.
While (computational budget not exhausted)
For speciesi= 110 s
Choose representatives from all the other species. The
elite member of each species is used.
If fitness function; == Surrogate

® Decompose the design subspace into m cluster
centers using the k-means algorithm.

e Form collaboration between cluster centers with the
representatives from other species and evaluate
them using the exact analysis model.

s Build Surrogate; based on the m exact points.

For each individual j in population
* Form collaboration between individual j with the

representatives from other species.
* Evaluate new individual j using Surrogate;.

End For

Else
For each individual j in population i
® Form collaboration between individual j with the
representatives from other species.
® Evaluate new individual j using the exact model.
End For
End If
If (Surrogate Stalls)
fitness function; ;= Exact Model
Else
fitness function; := Surrogate
End If .

Implement Elitism.

Apply standard EA operators to create a new

population for species .

End For
End While
END
Figure 2: Surrogate Assisted Coevolutionary Optimization




In the first step, we initialize a population of designs for
s species either randomly or using design of experiments
techniques such as Latin hypercube sampling. The search
space of each species is then decomposed into clusters
using the k-means algorithm and augmented with the
values of representatives from the other species before
fitness evaluations based on thé exact analysis model is
conducted. Here, the elite member of each species is
chosen as the representative for the other species. We then
use a linear spline RBF to construct the surrogate model
since this approximation technique is capable of providing
surrogate models with good generalization capability at a
low computational cost. Subsequently, the surrogate of
each species constructed using their cluster center
members as training data are used to evaluate the
individuals. The exact fitness of the elite individual from
each species is evaluated to check whether any
improvement in the actual fitness is achieved. This enables
us to switch to the original exact objective function when
the coevolutionary search on the surrogate stalls. Standard
EA operators then proceed to create a new population with
elitism to prevent loss of the fittest design in each species.
This process of coevolutionary optimization is continued
until a specified termination criterion is met.

Our algorithm has two user specified parameters — (1)
number of species (s) and (2) number of cluster centers
(m). Note that the accuracy of the surrogate model can be
improved by increasing m. In the limiting case, when m
equals the population size for a species, the fitness of all
the individuals is evaluated exactly. Similarly when s is
unity the process becomes simple evolutionary algorithm.

3. EXPERIMENTAL STUDIES USING
BENCHMARK FUNCTION

In this section, we present experimental studies obtained
by implementing the coevolutionary genetic algorithm
(CGA) and the proposed Surrogate  Assisted
Coevolutionary Optimization (SCGA) within a real-coded
genetic algorithm (GA) for evolutionary search. In the
standard GA we have employed population size and
truncation threshold of 50 and 0.8, respectively. Extended
linear recombination and non-uniform mutation are used in
the reproduction [10].

3.1. Rastrigin Test Function
The Rastrigin test function adopted for study is defined as:
n
o s _» s 2
Minimize: FRwﬁgm = (10 )+ Z (xl. —10cos (2 X, ))
i=t
for-5.12<=x,<=5.12, i=1,...,n

A twenty dimensional (n=20) version of the function is
used here. The function is highly multimodal, having many

local minima surrounding the global minimum at zero. It is
a separable function. A function of n variables is
separable when there are no variables interdependencies
or linkages between the variables. In the GA literature, this
implies no epistasis interactions. This separability can be
varied, however, by a simple rotation of the coordinate
system [11]. Note that such rotation does not change the
function’s structure but only the epistatsis interactions.

3.2. Empirical Results

The average convergence trends of the standard GA, CGA
and proposed SCGA when applied to the 20-variable
Rastrigin function without any rotation are summarized in
Figures 3-5.
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Figure 3: Convergence trends of GA and CGA with
various species sizes of 2, 5 and 10 when applied on the
Un-Rotated 20-Variable Rastrigin function.
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Figure 4. Convergence trends of GA, CGA with species
sizes s=10 and SCGA with s=10 and m=5 when applied on
the Un-Rotated 20-Variable Rastrigin function.



350

300 b

Fitness Value

100+

L i I} il i
[} 1000 2000 3000 4000 5000 5000 7000 8000 3008 10080
Exact Function Evaluation Count

0 1

Figure 5: Convergence trends of GA and SCGA with s=10
and various cluster center size m=2,5 or 10 when applied
on the Un-Rotated 20-Variable Rastrigin function.

All results presented were averaged over 20 runs. As
shown in Figure 3, the search performance of the CGA is
superior to the standard GA on this un-rotated function.
The increase in number of species of the CGA is observed
to result in better results. This however has the effect of
slowing down the CGA’s initial period of adaptation. The
performance of the proposed SCGA algorithm may be
established by comparison with the use of the exact
analysis model in both the standard GA and CGA search.
In figure 4, the results of the GA, CGA for s=10 and
SCGA for s=10 and m=5 when applied on the un-rotated
Rastrigin are compared. We see that the SCGA has
brought about significant improvements in performance
over both the standard GA and CGA. Note that here some
Rastrigin surrogate calls are used alongside each exact
function call.

We also studied the effect of varying the number of
cluster centers, m (used to construct the surrogate model),
and the species size, s, on the convergence behavior of
SCGA. In common with the convergence behavior of
CGA, increasing the number of species improves the
SCGA convergence. A number of observations on varying
m can be made from the results obtained in Figure 5. At
first, it appears that the convergence rate of SCGA
improves slightly with increasing m. This is because
increasing m improves the accuracy of the surrogate
model. However, it appears that further increase of m (to
-10) slows down the SCGA’s rate of convergence. In the
limiting case, when m equals the population size for a
species, both the CGA and SCGA would convergence
similarly, thus losing the purpose of using surrogates.
Nevertheless, it appears that employing small m seems
appropriate considering that the dimensionality of each
surrogate is generally low due to problem decomposition

in SCGA. Moreover the gain in convergence rate obtained
by increasing m does not appear to be very significant.

Subsequently, to determine how well the proposed
SCGA can cope with problem of high epistasis, we alter
the separability of the Rastrigin function using the
coordinate system rotation discussed in section 3.1. Here,
we use the random rotation algorithm proposed by
Salomon [11] to create random epistasis interactions in the
test function. The average convergence trends of the GA,
CGA and SCGA when applied on the rotated 20-variable
Rastrigin function are obtained in Figures 6-8. In Figure 6,
we see that the CGA actually performs much worse than
the standard GA on the rotated Rastrigin. The significant
performance degradation is essentially what was expected
and as described by Potter [8]. Compared to the CGA, the
standard GA 1is less susceptible to the effect of the induced
epistasis because the latter is able to perform changes on
greater number of variables simultaneously.
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Figure 6: Convergence trends of GA, CGA with species
sizes s=10 and SCGA with s=10 and m=2 when applied on
the Rotated 20-Variable Rastrigin function.

On the other hand, the effect of surrogates or fitness
uncertainties on the convergence of CGAs is an area that-
has not yet been fully investigated. Although preliminary
studies by Potter indicate that CGAs are more sensitive to
noise as compared to the standard GA, it is interesting to
note the SCGA actually performs much better than both
the GA and CGA on the rotated Rastrigin function. This
surprising result appears to indicate that the errors in the
fitness evaluations apparently circumvent the convergence
difficulties encountered when coevolutionary optimization
techniques are applied to functions with high epistasis.
The effects of the cluster center size, m and species size, s,
on the convergence behavior of SCGA on the rotated
function are shown in Figures 7 and 8.
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Figure 7: Convergence trends of GA and SCGA for s=2,5
or 10 and m=2 when applied on the Rotated 20-Variable
Rastrigin function.
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Figure 8: Convergence trends of GA and SCGA with s=5
and m=2,5 or 10 when applied on the Rotated 20-Variable
Rastrigin function.

Unlike on the un-rotated Rastrigin, the performance of the
SCGA on the rotated function degrades when species size
is increased to 10, see Figure 7. In addition, the
convergence behaviours for using different cluster center
sizes in the SCGA (see Figure 8) appears to indicate that
higher degrees of errors in the surrogate enable the SCGA
to better circumvent the convergence difficulties
associated with this high epistasis function.

4. TWO-DIMENSIONAL CANTILEVERED
SPACE STRUCTURE DESIGN

In this section, the proposed Surrogate Assisted
Coevolutionary Optimization algorithm is applied to the

design of flexible space structures with non-periodic
geometries to achieve passive vibration. The space
structure considered in this paper is a two-dimensional
cantilevered structure shown in Figure 9, subjected to
transverse excitation at joint F near the fixed end. The
objective of the design problem considered here is to
suppress the vibration response at joint R over the
frequency region of 100-200Hz. This isolates any
instrumentation package mounted at joint R on the space
structure from external vibrations arising in the main body

of the satellite.
E

Figure 9: Two-Dimensional Space Structure.

The objective function is defined as the integral of the
frequency responses at joint R. The performance measure
of a candidate design is defined as:

1 poo
J =-20log,, {70— .(00 [uR (w)+v, (w)+ L6, (w)]dw} ()

where up , vg, and &, are the axial, transverse, and
rotational components of the displacement response at
joint R, respectively. I, is the integral of the frequency
responses at R for the baseline periodic structure shown in
Figure 9. The first 100 modes are used to compute the
dynamic response of the structure in the region of 100-
200Hz, with the integral computed at a resolution of 2.7
Hz. The design is parameterized in terms of the
coordinates of the structural joints, which are allowed to
vary between £0.25 m from the baseline values, with the
coordinates of joint R being kept fixed. This leads to a
nonlinear multi-modal design problem of 40 geometric
design variables with high epistatic linkages among some
of the variables. Here, a finite element method is used to
compute the free-vibration natural frequencies and mode
shapes of the structure. The exact analysis method takes
about 100 seconds to compute each objective function. In
comparison, each RBF approximation takes less than a
fraction of a second. These numerical studies were
conducted on one processor of an SGI Power Challenge
machine. For greater details of the space structure
considered here in this paper, the readeér is referred to [9].
Figure 10 shows the average convergence trends of
the conventional GA, CGA and SCGA (for s=2 and m=15)
over four runs as a function of number of exact analysis.
Here, all the control parameters were set the same as in the
previous experiment, but with stopping criteria at 5000
exact analyses. Therefore, each run took almost six days of
computer time on a single processor. On this real world
design problem, the results clearly indicate that the



proposed SCGA arrives at a better design as compared to
both the conventional GA and CGA when a constraint is
imposed on the computational budget available for
optimization. The optimized space structure using SCGA
under limited computational budget is revealed in Figure
11.
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Figure 10: Convergence trends of GA, CGA and SCGA
with s=2 and m=15 when applied for the design of the
two-dimensional non-periodic cantilevered space structure
to achieve passive vibration suppression.

Figure 11: Optimized Structure Using SCGA.

5. CONCLUDING REMARKS

In this paper, we present an algorithm for integrating
surrogate models with coevolutionary search procedures.
Experimental studies are presented for the Rastrigin
benchmark test function with varying degree of epistasis.
In addition, the proposed algorithm is also applied to the
. optimal design of a flexible space structure to achieve
passive vibration suppression. The empirical results were
compared with those obtained using a conventional
Genetic  Algorithm and a coevolutionary Genetic
Algorithm. This suggest that the surrogate-assisted
coevolutionary  search  is capable of  solving
computationally expensive optimization problems with
varying degrees of epistasis more efficiently than both the
conventional GA and CGA under a limited computational
budget. Nevertheless, there is evidence from the
experiments conducted to warrant additional studies on
adapting the two control parameters, number of species (s)
and number of cluster centers (m) as well as reducing

further the detrimental effects of epistasis on the
performance of surrogate-assisted coevolutionary search.
One possible way of doing so may involve adaptive
linkage identification and decomposition [12]. Besides the
degree of epistasis, it would be important to also identify
the design problem and epistasis structure.
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