197

Non-linear modelling of a one-degree-of-freedom
twin-rotor multi-input multi-output system using
radial basis function networks
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Abstract:

Modelling of innovative aircraft such as unmanned air vehicles (UAVs), X-wing, tilt body

and delta-wing aircraft is not easy. It is argued in this paper that non-linear system identification is
suitable for modelling air vehicles of complex configuration. This approach is demonstrated through a
laboratory test rig. Extensive time and frequency-domain model-validation tests are employed in
order to instil confidence in the estimated model. The estimated model has a good predictive
capability and can be utilized for non-linear flight simulation studies. Some aspects of the modelling
approach presented may be relevant to flight mechanics modelling of new generations of air vehicle.
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1 INTRODUCTION

Recent advances in aircraft technology have led to the
development of many new concepts in aircraft design,
which are strikingly different from their predecessors.
The differences are in both aircraft configuration and
control paradigms. This trend can be attributed to the
increasing emphasis on the need for aircraft to be agile
(i.e. a high angle of attack), low-observable (stealth),
multi-purpose, etc., for varied civilian and military
operations. These new generation air vehicles have
presented a variety of unprecedented challenges and
opportunities to aerodynamicists and control engineers.
The expectations of the new generation air vehicles to be
highly agile and multi-functional demands that they
perform over a large flight envelope. Enhanced agility in
control terms implies a large excursion from the trim
condition. In such a situation the linearized models can no
longer describe the aircraft dynamics well enough. Hence,
there is a need for high-fidelity non-linear dynamic
models. Such models are essential for the design of
control systems, validation and piloted simulation.

This paper presents a suitable modelling technique for
such air vehicles. In this work, a non-linear system
identification technique based on the radial basis
function (RBF) is utilized for modelling an experimental
test rig representing a complex twin rotor multi-input
multi-ouput system (TRMS). The TRMS depicted in
Fig. 1 is a laboratory set-up designed for control
experiments by Feedback Instruments Limited [1]. The
behaviour of the TRMS in certain aspects resembles
that of a helicopter. From the control point of view it
exemplifies a high-order non-linear system with signifi-
cant cross-coupling.

While the Newtonian mechanics or the Lagrange
equations of motion can be used to find the non-linear

Yaw

differential equations in a generic form, the unknown
parameters must still be identified. Such model-based
identification is commonly employed with practical
systems. There are numerous examples that demonstrate
the applicability, feasibility and versatility of the model-
based concepts. For instance, neural networks have been
employed for estimating the aerodynamic coefficients of
unmanned air vehicles (UAVs) [2]. More recently, Kim
and Calise [3] have used RBF networks to capture
variations in aircraft Mach number. Here the neural
network (NN) is used to perform the dual roles of (a)
identifying the input—output model parameters (off-line
learning) using the mathematical model of an aircraft
and (b) an adaptive network that compensates for
imperfect inversion and in-flight changes in the actual
aircraft dynamics. An innovative time-domain non-
linear mapping-based identification method has been
presented by Lyshevski [4] for identification of unsteady
flight dynamics. Lately, B-splines have been investigated
in modelling and identification of non-linear aerody-
namic functions of aircraft [5]. In all these cases the
model structure is known. However, in the present study,
no model order was assumed a priori, which implies that
no physical insight is available or used. However, the
selected model structure belongs to well-established
methods (see Section 3). Such an approach yields
input-output models with neither a priori defined model
order nor specific parameter settings reflecting any
physical aspects, i.e. black-box modelling. The approach
is thus useful in modelling a class of air vehicles whose
dynamics are not well understood or difficult to model
from first principles using laws of physics. An initial
account of this work was presented at NAECON 2000
[6].

In this study RBF networks are used to demonstrate
these concepts by successfully modelling the dynamical
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Fig. 1 The twin rotor multi-input multi-output system
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behaviour of a 1 degree-of-freedom (DOF) TRMS. Such
a high-fidelity non-linear model is often required for the
non-linear flight simulation studies. Since there is no
reliance on the mathematical model, the estimated RBF
model has to be thoroughly verified using rigorous time
and frequency domain tests. If the model structure and
the estimated parameters are correct then the residuals
(the difference between the model and system output)
should be unpredictable from all linear and non-linear
combinations of past inputs and outputs. This is ensured
by carrying out higher-order cross-correlation tests,
proposed by Billings and Voon [7].

The paper first describes the TRMS system in Section
2 and the non-linear modelling approach adopted in
Section 3. This is followed by a discussion of RBF
networks in Section 4. System experimentation, the type
of excitation signal and data pre-processing needed to
identify the non-linear model are outlined in Section 5.
Implementation and results are presented in Section 6.
Finally, the main findings of this study are summarized
in Section 7.

2 THE TRMS SYSTEM

The TRMS considered in this work is described in Fig.
1. This consists of a beam pivoted on its base in such a
way that it can rotate freely in both its horizontal and
vertical planes. There are rotors (the main and tail
rotors), driven by d.c. motors, at both ends of the beam.
A counterbalance arm with a weight at its end is fixed to
the beam at the pivot. The state of the beam is described
by four process variables: yaw and pitch angles
measured by position sensors fitted at the pivot, and
two corresponding angular velocities. Two additional
state variables are the angular velocities of the rotors,
measured by tachogenerators coupled with the driving
d.c. motors.

In a typical helicopter, the aerodynamic force is
controlled by changing the angle of attack of the blades.
Thelaboratory set-up is constructed such that the angle of
attack of the blades is fixed. The aerodynamic force is
controlled by varying the speed of the motors. Therefore,
the control inputs are supply voltages of the d.c. motors.
A change in the voltage value results in a change of the
rotationalspeed of the propeller, which resultsin a change
of the corresponding angle (in radians) of the beam. F1
and F2 in Fig. 1 represent the thrust generated by the
rotors in the vertical and horizontal planes respectively.

3 NON-LINEAR MODELLING

There are a number of different types of non-linear
models that are potentially suited to this problem. Some
examples are the output-affine model, the polynomial
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model and the rational model In this investigation, a
non-linear autoregressive model with exogenous inputs
(NARX) [8], which provides a concise representation for
a wide class of non-linear systems, is employed. The
model is of the form:

¥(0) = (Y= Doyt = m) (e = 1), . u(t = ny))
1

+e(r) (1)
where y(t) is the output, u(z) is the input and e(?)
accounts for uncertainties, possible noise, unmodelled
dynamics, etc., n,,n, are the maximum lags in the
output and the input respectively, {e(#)} is assumed to
be a zero mean white noise sequence and f () is some
vector-valued non-linear function of y(r) and u(z)
respectively. The NARX model is also referred to in
the literature by various other names, such as one-step-
ahead predictor or series—parallel model. Because the
system noise e() is generally unobserved, it can only be
replaced by the prediction error or residual g(¢), and
equation (1) can be rewritten as

(1) =f(y(t 1),y —ny),u(t—1),...,u(t— nu)>
+&(1) 2)

where the residual is defined as
e(t) =y(t) — (1) 3)

with y(¢) representing the model predicted output.

Two considerations are of practical importance for
the application of the NARX approach. Firstly, the
non-linear functional form f(') should be capable of
describing the non-linear input—output space. Secondly,
an efficient identification procedure for selecting a
parsimonious model structure is required. The present
study employs an RBF network to model the input-
output relationship. This is depicted in Fig. 2. The non-
linearity within the RBF can be selected from a small set
of typical non-linear functions, such as the thin-plate—
spline function, the Gaussian function, the multiqua-
dratic and the inverse multiquadratic functions. A
generally held opinion is that the choice of the non-
linearity is not crucial for performance [9]. The non-
linear functional form f (') in the RBF expansion used
in this study is the Gaussian function. Orthogonal least
squares (OLS) [9] provides an elegant method for
determination of model parameters. If the OLS is
employed with the polynomial NARX model, it selects
a parsimonious model structure as well as estimates the
selected model parameters. However, if the NARX-
RBF model structure is adopted then the OLS routine
yields optimal model parameters, i.e. weights and
centres.
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e(t)

Fig. 2 NARX model identification with RBF networks

4 RADIAL BASIS FUNCTION

An RBF network can be regarded as a special two-layer
network which is linear in the parameters provided that
all the RBF centres are prefixed. Given fixed centres, i.e.
no adjustable parameters, the first layer or the hidden
layer performs a fixed non-linear transformation, which
maps the input space on to a new space. The output
layer then implements a linear combiner on this new
space and the only adjustable parameters are the weights
of this linear combiner. These parameters can therefore
be determined using the linear least squares method,
which is an important advantage of this approach.

A schematic of the RBF network with n inputs and a
scalar output is shown in Fig. 3. Such a network can be
represented as

5(0) = wo+ Y wif, (Ix(0) - cil) 4)
i=1
where y(¢) is the network predicted output, x(¢) is the

X ()

% (1) L 90

Linear Combinator

x, (1)

Nonlincar Transformation

() -e

Fig. 3 Radial basis function network
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input vector containing all regressors of equation (1), i.e.

T
x(1) = [(Y(t - 1.,y —n)ul— 1),...,u(t—nu)]
(5)

where w; are the weights or parameters, wy is the bias or
the d.c. level term at the output, ¢; are known as RBF
centres and n, represents the number of centres or the
hidden neurons. Once the functional form f () and the
centres ¢; are fixed, and the set of input x(¢) and the
corresponding desired output vector [y(z) in this study]
are provided, the weights w; can be determined using the
linear least squares method. Clearly, $(¢) is the non-
linear model predicted output determined by the past
values of the system output vector y(¢), and the input
vector u(t) with maximum lags n, and n, respectively.
The Gaussian form for the RBF, f;(x), is

f;(xl(t),xz(t), o ,x,,(t))

= exp {_ [ei () = enl” + [x2(r) _;ji]Z b Benlt) — Cm']z}

(6)

where ¢; = (cy;, €2, ..., Cni) 18 @ vector that defines the
centre of the RBF f; in neuron i and ,Biz is the ‘shape’ of
the function or the spread constant. Input patterns x
activate the nodes according to their distance ||x — ¢;|
from the node centres ¢;. Thus, each hidden neuron
responds only to inputs that are in a region (the receptive
field) around its centres c¢;. Other functions can also be
used as the activation functions of radial basis nodes,
without significantly affecting the performance of the
RBF network. The scalar output $(¢) is the sum of a
linear combination of the RBF outputs, f;(x), with the
weights w; of the connections from the hidden to the
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output nodes:

n

5(1) = 3w (31 (1), :2(0), . 3a(1) (7)

i=1

or

nr

3(0) = > wifi(x(1) (®)

i=1

This discussion can be best understood by assuming
the RBF network in equation (4) to be a special case of
the linear regression model:

M
y(1) = S pil0)6 + (1) (9)
i=1

where y(t) is the desired output and p; are known
regressors, which are non-linear functions of lagged
outputs and inputs, i.e.

pi(t) =Pi<x(f)) (10)

with x(¢) as defined in equation (5). A constant term (wy
in Fig. 3) can be included in equation (9) by setting the
corresponding term p;(¢) = 1. The residual &(r) is
assumed to be uncorrelated with the regressors p;(z). It
is clear that a given centre ¢; with a given non-linear
function f(+) corresponds to p;(t) in equation (9).

Equation (9) for t =1, ..., N can be written in matrix
form as
y=PO+E (11)

and the parameter vector @ satisfying this equation is
given by the well-known least squares (LS) method,
provided the centres are fixed.

4.1 RBF-NN learning algorithms

The task of a learning algorithm, or an optimization
routine, in an RBF network is to select the centres and to
find a set of weights that makes the network perform the
desired mapping. In essence, the objective is to minimize
the variance or the sum squared of the residual:

b = iv:gz(r) (12)

A number of algorithms are frequently utilized for this
purpose [10], for instance:

(a) random centre selection and a least squares algo-
rithm,

(b) clustering and a least squares algorithm,

(c) non-linear optimization of all the parameters, i.e.
centres, output weights and other free parameters,

(d) the orthogonal least squares (OLS) algorithm.
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Among these the OLS algorithm is widely used. The
OLS method proposed by Chen et al. [9] yields both the
number of centres c;, i.e. significant regressors, as well as
the corresponding parameter vector €. The underlying
idea of the algorithm is to transfer the regression
equation into an equivalent orthogonal form. Then the
RBF centres can be selected and the weights optimized
in a simple procedure according to a criterion referred to
as the ‘error-reduction ratio’ (ERR), due to the
orthogonality property. Details of the OLS algorithm
can be found in Chen et al. [9].

5 EXPERIMENTATION

The objective of the identification experiments is to
estimate a suitable model of the 1] DOF TRMS in hover
without any prior system knowledge pertaining to the
exact mathematical model order. The extracted model is
to be utilized for low-frequency vibration control and
design of a suitable feedback control law for disturbance
rejection and reference tracking. Hence, accurate
identification of the rigid-body dynamics is imperative.
This would also facilitate understanding of the domi-
nant modes of the TRMS. Since no mathematical model
is available, a level of confidence has to be established in
the identified model through rigorous frequency and
time-domain analyses and cross-validation tests.

It is intuitively assumed that the body resonance
modes of the TRMS lie in a low-frequency range of 0-
1 Hz, while the main rotor dynamics are at significantly
higher frequencies. The rig configuration is such that it
permits open-loop system identification, unlike a heli-
copter, which is open-loop unstable in hover mode.
Trim configuration was in a steady state horizontal
position of the beam of the TRMS. The system is
interfaced through a PC and it is possible to send and
record signals through a Matlab/Simulink environment.
The duration of the test signal generally should be
slightly higher than the system settling time [11]. A
duration of 60s was deemed fit for this study, which is
higher than the settling time of the TRMS, which is
about 15-20s.

5.1 Excitation signal

In non-linear system identification, the type of input
signal to be used plays a crucial role and has a direct
bearing on the fidelity of the resulting identified model.
The excitation signal should have two important
characteristics [12]:

1. It should be able to excite all the dynamic modes of
interest; i.e. the spectral content of the input signal
should be rich in frequency corresponding to system
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bandwidth. Such a signal is referred to as persistently
exciting.

2. It should be rich in amplitude level, i.e. have different
levels of input amplitudes over the whole range of
operation.

These two requirements can generally be fulfilled by
selecting an input such as a sine wave, Gaussian signal,
independent uniformly distributed process or ternary
pseudo-random sequence [7].

In order to excite the system modes of interest, i.e. up
to 1Hz, two different signals, (a) an independent
uniformly distributed signal (noise) and (b) a pseudo-
random binary sequence (PRBS) of 2 and 5Hz band
limit respectively, are employed in this study. Figure 4
shows these two signals along with their amplitude
distribution.

5.2 Data pre-processing

Processing of the raw input-output data obtained from
the experiments is recommended for system identifica-
tion. Pre-processing could involve removal of outliers,
stray data points and normalization. In the case of
identifying a system model using NN, it is advantageous
to apply pre-processing transformations to the input
data before presenting it to the network. Reducing the
difference of magnitude of input variables used to train
the network leads to faster convergence. One of the
common methods of pre-processing is linear rescaling of
the input variables. The normalized data are obtained
by carrying out the following data manipulation:

== (13)

where ¥; is the mean and ¢? is the variance of each
variable of the training set, defined as

1 &
=g 2x (14)
n=1
1 & 2
2 n =
7; :m;(xi — %) (15)
wheren =1, ..., N represents the number of data points

or the data length. The rescaled variables defined by 7
have zero mean and unit standard deviation. The target
values are also subjected to similar linear rescaling.

6 IMPLEMENTATION AND RESULTS

In this section the results of modelling the TRM S with
neural networks are described. Modelling with the NN
was carried out with the TRMS pitch response to a
uniformly distributed noise signal, as described in the
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previous section. The rationale of using the noise signal
is that the two-level PRBS signal may not be good
enough to capture non-linearities, if present, in the
system. For the sake of comparison the two-level PRBS
input shown in Fig. 4b is also utilized for modelling the
1 DOF TRMS. Results obtained with the main rotor
input and the pitch output are described below.

Selection of the model structure, estimation of
parameters and verification are the fundamental issues
in the system identification exercise. Since the RBF is
chosen as the model structure, the remaining two issues
of estimation and verification are addressed in this
section.

6.1 Mode determination

In order to detect the dominant system modes, spectral
plots of the TRMS output and model output are
analysed. The solid line curve in Fig. 5 shows the power
spectral density (PSD) plot of the actual pitch response
of the TRMS to the independent uniformly distributed
input signal of 2Hz bandwidth. As noted, this shows
closely spaced modes between 0 and 1 Hz as expected,
with a main resonant mode at 0.34 Hz, which can be
attributed to the main body dynamics. A model order of
2, 4 or 6 corresponding to prominent normal modes at
0.25, 0.34 and 0.46Hz is thus anticipated.

The next step is to capture or model the plant
dynamics using an RBF network. The Matlab neural
network toolbox [13] is utilized to carry out the
parameter estimation, which uses an OLS learning
algorithm. An iterative procedure can be devised to
identify the NARX model using the RBF expansion by
linking the OLS routine and the model validity tests.
The non-linear function in the RBF expansion is the
Gaussian function. The main steps in the identification
can be summarized as follows:

1. Choose n, and n,. Initially the set of candidates
centres are all

T
x(0) = [0 = 1oyl = my) e = 1), oule = )

2. Select the Gaussian spread constant f§; and define the
error goal.

3. An iterative loop is then entered to update the model
based on the ‘error-reduction ratio’ (ERR) criteria
9]

4. Different time- and frequency-domain validity tests
are performed to assess the model. If the model is
good enough the procedure is terminated. Otherwise
go to step (1).

The OLS learning method selects a suitable set of
centres ¢; (regressors) from a large set of candidates as
well as estimates of the linear parameters w;, or the
weights. The iterative procedure described above is used
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Fig. 4 Excitation signals: (a) noise, (b) PRBS

to identify the RBF model. The RBF model was trained
with 300 data points and different combinations of
input—output lags were tried. Using a generate-and-test
method, an eighth-order NARX model was found to
give a better representation of the system dynamics in
the frequency domain (see Fig. 5) than the sixth-order
model as envisaged. Experience has shown that among
all the tunable parameters, a judicious choice of n, and
n, is central in identifying a reasonable model. This
model reached a sum-squared error level of 0.002 after
13 training passes. The identified model included a
constant term and 13 centres or neurons. The PSD
obtained from the RBF model and the experimental
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data are superimposed in Fig. 5. It is observed that the
dominant modes of the model and the plant coincide
quite well, implying good model predicting capability of
the important system dynamics. Thus, it is assumed that
the identified model is fairly accurate and suitable for
system analyses.

6.2 Correlation tests

In the previous section the frequency domain test was
employed to detect the system modes. In order to ensure
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further confidence in the identified model, time-domain
correlation tests are employed next.

A more convincing method of model validation is to
use correlation tests. If the model of a system is
adequate then the residuals or prediction errors &(t)
should be unpredictable from (uncorrelated with) all
linear and non-linear combinations of past inputs and
outputs. This can be tested by means of the following
correlation functions [7]:

be(t) = Ele(t — 1)e(r)] = ()
¢us(t) = Efu(t —1)e(r)] = 0 Ve
b)) = E[ (20 = 2) = 2(0))e(0)] = 0 vr
bo(0) = E[ (= 1) —22() ) #(1)] =0 Ve
Dofeu) (1) = E {8(1)8(—1 —tt)u(t— 1 — ‘c)] =0 120

(16)

where ¢,,(7) indicates the cross-correlation function
between u(r) and &(t), eu(r) = &(t + 1)u(z + 1), and (x)
is an impulse function.

The first two linear correlation tests in equation (16)
alone are not sufficient to validate non-linear models.
Hence, higher-order correlation tests are included in this
study. All five tests defined by equation (16) should be
satisfied if the u(+ ) and y( ) values are used as network
input nodes. In practice, normalized correlations are
computed. In general, if the correlation functions in
equation (16) are within the 95 per cent confidence
intervals, —1__-1.96/\/f\/_, where N is the total number of
data points, the model is regarded as satisfactory.

Figure 6 shows the correlation tests described by
equation (16). It is important to note that only the first
few lags are significant. The lags in the x axis of Fig. 6
are equivalent to the sampling period; i.e. each lag (1) is
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equivalent to 0.2s. The y axis of each plot in Fig. 6 is
given by the corresponding correlation function of
equation (16).

All the results of the correlation tests, as shown in Fig.
6, are within the 95 per cent confidence interval,
indicating a high level of approximation of the actual
data set. The model validity tests thus corroborate the
fact that the estimated model is adequate. Having
accomplished the first two tasks of structure determina-
tion and parameter estimation, the final important step
is model verification.

6.3 Verification

Verification in the time domain is a key final step. In this
process, the predictive quality of the identified model is
assessed with data that were not used for modelling. The
uniformly distributed noise signal was used for estima-
tion whereas multi-step (3211) and doublet input were
used for validation. These are shown as Figs 7 and 8. In
non-linear system identification using neural networks,
generally one-step ahead (OSA) prediction and model
predicted output (MPO) are employed for cross-
validating the estimated model. Here, the results of
MPO are presented, which is a more robust test and
often more difficult to achieve than the OSA prediction.
This is expressed as

$a(r) =f(u(t),u(t— Ds.oou(t —ny), Jalt=1),...,
Falt = ny)) (17)

In Figs 9 and 10 the simulated non-linear MPO and the
experimental outputs are compared for the 3211 and the
doublet excitation respectively. It is observed that the
model and the system response match closely. A slight
mismatch between the MPO and the actual system
response is expected in any modelling process as the
models are only a close ‘approximation’ of the real
system. However, overall the predictive capability of the
model is quite good, especially considering the very
sensitive nature of the TRMS to ambient disturbances.
This has been a major problem in consistently reprodu-
cing the same response to an input. An analogous
procedure was repeated with the PRBS signal and the
corresponding result is shown in Fig. 11.

Comparing the MPO due to noise and PRBS
inputs, it is clearly noted that the model obtained
with the noise signal has captured the dynamics better
than with the PRBS. This is primarily due to the
excitation of system dynamics across the input range,
unlike the PRBS where only two levels of amplitude
are present in the input, thereby making it unable to
excite the non-linear dynamics associated with the
other input amplitudes. Although PRBS is routinely
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Fig. 6 Correlation tests: (a) ¢,,(7), (b) ¢,,(7), (¢) P.2,(7), (d) 22 (7), (e) ®4(ea) (7). The dashed line shows the
95 per cent confidence interval
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Fig. 7 Input and output signals used for model cross-validation (3211)
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Fig. 8 Input and output signals used for model cross-validation (doublet)

used for linear system identification, it is therefore not
suitable for the non-linear case. The model validity
tests given in Sections 6.1 and 6.2 and the time-
domain test illustrated in Figs 9 and 10 confirm that
the RBF network obtained through the independent
uniformly distributed signal is an adequate model of
the TRMS.

7 CONCLUDING REMARKS

Radial basis function networks are shown to be suitable
for modelling complex engineering systems in cases

Proc Instn Mech Engrs Vol 216 Part G: J Aerospace Engineering

where the dynamics are not well understood or are not
simple to establish from first principles, such as the next
generation UAVs.

Careful selection of the excitation signal(s) is an
important part of a system identification process.
Without due consideration to this issue, the obtained
model would not be able to capture the system
dynamics, resulting in a poor model. Since no mathe-
matical model is available, extensive model validation is
imperative. This has been ensured by carrying out
higher-order cross-correlation tests and MPO analysis.
The extracted model has predicted the system behaviour
well. Such a high-fidelity non-linear model is often

G00302 © IMechE 2002
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Fig. 10 The system and the non-linear model responses to a
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Fig. 11 The system and the non-linear model responses (PRBS used for estimation)

required for gauging the performance of control design
and system analysis.

The technique discussed here thus provides a fast
interim solution to model next generation air vehicles
such as UAVs, X-wing, tilt body and delta-wing, whose
flight dynamics are not well understood or are not easy
to establish from first principles. If more rigorous
analytical models become available, they can then be
used to fine-tune the general solutions, if they prove to
be more accurate.
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