Dynamic modelling and open-loop control of a twin rotor multi-input multi-output system
Dynamic modelling and open-loop control of a twin rotor multi-input multi-output system
A dynamic model for a one-degree-of-freedom (DOF) twin rotor multi-input multi-output (MIMO) system (TRMS) in hover is obtained using a black-box system identification technique. The behaviour of the TRMS in certain aspects resembles that of a helicopter; hence, it is an interesting identification and control problem. This paper investigates modelling and open-loop control of the longitudinal axis alone, while the lateral axis movement is physically constrained. It is argued that some aspects of the modelling approach presented are suitable for a class of new generation or innovative air vehicles with complex dynamics. The extracted model is employed for designing and implementing a feedforward/open-loop control. Open-loop control is often the preliminary step for development of more complex feedback control laws. Open-loop control strategies using shaped command inputs are accordingly investigated for resonance suppression in the TRMS. Digital low-pass and band-stop filter shaped inputs are used on the TRMS testbed, based on the identified vibrational modes. A comparative performance study is carried out and the corresponding results presented. The low-pass filter is shown to result in better vibration reduction.
helicopter, system identification, twin rotor MIMO system, open-loop control, vibration suppression
477-496
Ahmad, S.M.
676dbe06-3934-463c-8ba4-e44a98bf0d43
Chipperfield, A.J.
524269cd-5f30-4356-92d4-891c14c09340
Tokhi, M.O.
e5d7c236-781f-4aa6-9fab-c3db3154149b
2002
Ahmad, S.M.
676dbe06-3934-463c-8ba4-e44a98bf0d43
Chipperfield, A.J.
524269cd-5f30-4356-92d4-891c14c09340
Tokhi, M.O.
e5d7c236-781f-4aa6-9fab-c3db3154149b
Ahmad, S.M., Chipperfield, A.J. and Tokhi, M.O.
(2002)
Dynamic modelling and open-loop control of a twin rotor multi-input multi-output system.
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 216 (6), .
Abstract
A dynamic model for a one-degree-of-freedom (DOF) twin rotor multi-input multi-output (MIMO) system (TRMS) in hover is obtained using a black-box system identification technique. The behaviour of the TRMS in certain aspects resembles that of a helicopter; hence, it is an interesting identification and control problem. This paper investigates modelling and open-loop control of the longitudinal axis alone, while the lateral axis movement is physically constrained. It is argued that some aspects of the modelling approach presented are suitable for a class of new generation or innovative air vehicles with complex dynamics. The extracted model is employed for designing and implementing a feedforward/open-loop control. Open-loop control is often the preliminary step for development of more complex feedback control laws. Open-loop control strategies using shaped command inputs are accordingly investigated for resonance suppression in the TRMS. Digital low-pass and band-stop filter shaped inputs are used on the TRMS testbed, based on the identified vibrational modes. A comparative performance study is carried out and the corresponding results presented. The low-pass filter is shown to result in better vibration reduction.
Text
ahma_02a.pdf
- Accepted Manuscript
More information
Published date: 2002
Keywords:
helicopter, system identification, twin rotor MIMO system, open-loop control, vibration suppression
Identifiers
Local EPrints ID: 22252
URI: http://eprints.soton.ac.uk/id/eprint/22252
ISSN: 0959-6518
PURE UUID: 715ac2b2-013e-4343-9a8d-a1f81b9bb306
Catalogue record
Date deposited: 22 Mar 2006
Last modified: 16 Mar 2024 03:31
Export record
Contributors
Author:
S.M. Ahmad
Author:
M.O. Tokhi
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics