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Abstract

The application of the boundary element method (BEM) to the stress analysis of polymers is reviewed. Since polymers are most often
modelled as viscoelastic materials, formulations specifically developed for other such materials are also discussed. Essentially, only linear
viscoelasticity has been considered for which the correspondence principle applies. Two main BEM approaches are encountered in the
literature. The first solves the problem in either Laplace or Fourier transformed domain and relies on numerical inversion for the
determination for the time-dependent response. The second solves directly in the time domain using appropriate fundamental solutions each
depending on the viscoelastic model used. The developed algorithms have been validated through their application to a range of benchmark
problems. Scope for enhancing the potential of the method is identified by increasing the generality of material modelling and expanding its

application to complex, industry-oriented problems.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Polymers have been modelled as viscoelastic materials
for which a multiplicity of constitutive theories exists. Due
to the complexity of such models, which include time as an
independent variable, the available exact analytical sol-
utions have been obtained for only a few simplified
problems. Rigorous predictions of polymer behaviour
usually rely on numerical approaches such as the finite
difference method, the finite element method (FEM) and the
boundary element method (BEM). BEM has the advantage
of requiring only boundary data as input and, ideally, no
division of the domain under consideration into elements.
Its potential as an analytical tool in viscoelasticity has been
demonstrated in the context of certain linear models for both
quasi-static and dynamic problems.

The most commonly used constitutive equations have the
form of convolution integrals leading to integro-differential
field equations. The usual approach, originally adopted by
Rizzo and Shippy [1], has been to formulate a BEM solution
for the Laplace transforms of all variables, which satisfy an
associated elastic problem, then obtain the solution in the
time domain by numerical inversion. Incremental solutions
in the time domain were first formulated by Shinokawa et al.
[2]. Both techniques have been developed further through
the creative work of many investigators.

The purpose of this paper is to give a comprehensive
account of BEM analyses of polymers and then point to the
direction for possible future developments. Viscoelastic
models used in existing BEM formulations are described
and the general principles of viscoelasticity presented. The
transform and time domain solutions for both quasi-static
and dynamic problems are explained. Finally, a brief
account of applications is given focusing on those involving
polymer materials.

2. Viscoelastic models

The linear viscoelastic model adopted in most BEM
formulations is, in accordance with Boltzmann’s principle,
of hereditary integral type

! dey(T
oy = f_ Gijult = T)—g’T—)dr (1)

where oy, €; are the stress and small strain tensors,
respectively, and G, () the relaxation moduli in the general
case of an anisotropic medium. If the applied strain history
begins at t = 0 with a non-zero initial value, relation (1) is

written

4 dey(7)
0y = Gy(Dey(0) + (0 Gt — T)fsl;—-dT (2
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Integrating the second term of the right-hand side in Eq. (2)
by parts yields the alternative form:

Ye
aij = Gju(Qey() + (0 *-’(%"—

gyt — ndr 3)
The Stieltjes convolution of two functions ¢ and ¢ is
defined as 3]

! OY(7)
drdu=urdd=d0u0 + [ gu—0"" %0 @
Using this notation, Eq. (2) or Eq. (3) can be more concisely
written as
0y = Gy *dey = gy * dGyy (5
In the case of an isotropic medium characterised by the
moduli A(¢) and u(?), corresponding to the Lamé constants
A and w in elasticity, relation (5) becomes

oy = A1) * dey (N6 + 2u(1) * dey (1) 6)
Defining the deviatoric stress and strain tensors by

— — 1 — — 4
§jj = Oy gakkﬁ,j, € = & gskkﬁij (7)

an alternative form of the elasticity equations can be
obtained

sij = 2[.L€,-j, O = 3K8kk (8)
with the elastic bulk modulus K related to the Lamé
constants A and pu by

2u

K=/\+—§— (©)]

The viscoelastic relations corresponding to Eq. (8)

s = 200 * dey(®), o = 3K(1) * dey (1) (10)
have been frequently used instead of Eq. (6), particularly in
modelling cohesive soils and soft rocks whose viscoelastic
behaviour is markedly different under a purely deviatoric
stress state from that due to hydrostatic pressure. In Eq. (10),
the time-dependent relaxation moduli w(r) and K(r)
characterise shear and dilatation behaviour, respectively.
An alternative form of the linear viscoelastic constitutive
equations for isotropic media is 3]

e; = J) () * dsy(0), ey = Jo(8) * doy (1) (11)

where J; and J, are known, respectively, as the shear and
dilatation creep moduli.

Generalised standard linear solid (SLS) models are
commonly used rheological models {4]. One SLS type
consists of a Hookean spring and N Kelvin models, all
connected in series, another type is made up of a spring and
N Maxwell models, all connected in parallel. The
constitutive equations governing the viscoelastic behaviour

of such models are of the differential operator type

N N

d 2 _ d 1
anD s = by g.D"e;,
n=0 n=0

a2

N N
S P o =S giDey

n=0 n=0

where D" is an operator representing the nth time derivative
and pd, g8, pB, ¢ are material constants with the superscripts
d and h indicating association with the deviatoric and
hydrostatic parts of stress and strain, respectively. These
constants can be related to the moduli and viscosities of the
spring and individual Kelvin or Maxwell elements [4]
making up an SLS model.

The solutions of Eq. (12) under either creep or relaxation
conditions yield explicit formulae for the respective moduli.
For instance, the creep modulus derivable from a Kelvin
generalised model comprising N + 1 elastic springs with
compliance J, (n=0,1,2,...,N) and N dashpots with
viscosities 1, (n = 1,2,...,N) is given by

N
=1+ 520 —exp{—;’-\1 (13)

n=1

where 7, = J, 7, are the retardation times.

The use of fractional-order time derivatives has been
suggested as providing greater flexibility in fitting measured
data [5,6]. Defining the fractional operator DY (0 = y < 1)
by the Riemann-Liouville integral

D1 = 1 d [ fa=1

< d
A=y dt o o

constitutive equations corresponding to Eq. (6)

N M M
S pD%0y; =8;> A,DP ey +23 w,DVe; (14)
n=0 n=0 n=0

or to Eq. (10)

N M
by pf,D“”sij =Y quB"ely,
n=0 n=0
(15)

N M
S Doy =S ghD¥ sy

n=0 n=0

can be used where «,, B, v, and §,, are additional material
constants. A special one-dimensional case of fractional
operator constitutive equation

(1+p; Do = (qo + q,DP)e (16)

was used to characterise a particular polymer and then
applied to the axial transient BEM analysis of a viscoelastic
column [5]. The parameters of the differential operator
models of either integer or fractional type should satisfy
certain restrictions so that non-negative internal work and
rate of energy dissipation is predicted [7]. Such restrictions
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have been derived by Bagley and Torvic [7] in the case of
the five-parameter uniaxial model given by Eq. (16). It is
interesting to note, however, that the values of the
parameters «; and B, obtained by Xie et al. [5] for a
particular polymer by least square curve fitting did not
satisfy the condition o; = 3, predicted by Bagley and
Torvic.

3. Field equations

Introducing the small strain—displacement relations into
the constitutive Eq. (2) and substituting the latter into the
stress equations of motion yields a system of integro-
differential equations

zjk[(t)uk [j(o) + r Gl[k[(t - T) kll( )

—=——=d7+ pb;, = pii; (17)
where u; and by (k= 1,2,3) are the components of the
displacement and body force, respectively, and p is the
material density. A dot above a symbol indicates differen-
tiation with respect to time. In the case of isotropic
materials, Eq. (17) becomes

M®+M®MA®+MW¢m+[MU—ﬂ

1,/1(7) auiJj(T) dr

+ e — ) T d+f -9

+ pb; = pii; (18)

An alternative form of the field equations for isotropic
materials, particularly suitable for harmonic vibration
analysis, is [6]

f ED(t— ) — /”(T) AT~ ejepm
X f ,u,(t ’"1’( )d + pb; = pil; (19)
where Ep = A+ 2u is the relaxation function for plane

dilatation and g is the permutation symbol.
The general dynamic boundary value problem is
complemented by the initial conditions

u,(O) = Ujp, MI(O) = I;iio (20)
and the boundary conditions
wt) =i Honl,  ozOn =p)onl, 21

where n is the outward unit normal vector to the boundary
I'=T,+1, and i), p;() are prescribed values of
displacement and traction, respectively. For exterior
problems, that is, problems with boundaries extending to
infinity, the radiation condition must also be satisfied. This
physically means that waves cannot be reflected back from
infinity.

Boundary integral equations are usually derived from
reciprocity relations. The validity of such a relation has been

proved for viscoelastic materials [3]. Given two viscoelastic
states (u;,p;,b;) and (uf,p,b;), satisfying the boundary
value problem described above, then

( pi*dufdr+[ pb; = du; d
r 0

[ uwdprar+ [ pu xapr a0 22)
r 0

where (2 is the domain of the viscoelastic continuum. The
alternative form

f pi*ufdr—l—( pb; = u; dO
r (2]

=( ui*p;‘dr-i—r pu; * b} dQ) (23)
I 0

involving Riemann instead of Stieltjes convolutions can
also be shown to be valid.

4. Correspondence principle

The Laplace transform of a function f{r) is defined by
fo) = [ S~ dt 24
0

The transform of constitutive Eq. (2) is

O_.ij = SGijkls—kl (25)
By transforming also the equations of motion, the strain—
displacement relations, as well as the initial and boundary
conditions, a complete correspondence is established
between the elastic and viscoelastic problem whereby the
field variables are replaced by their Laplace transforms and
the elastic constants Gy are replaced by the functions
ij‘-k,(s) == SGW. When the material is isotropic, transform-
ing Eq. (6) gives

In the case of constitutive equation (14)

M B.
)lL = s):(s) = _?‘._’Il\_l:_o_i\ig__ (27)
S o Pas™
and
S’M g
My = s/j,(s) = —_—nﬁ__g‘/ﬁz_— (28)
n=0PnS

Thus a linear viscoelastic problem can be solved in the
transformed domain for any range of values of the transform
variable s by the same methods as those applicable to
the corresponding elasticity problem. In the end, it is, of
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course, necessary to obtain the solution in real time through
inversion of the transform so obtained. This, so called,
correspondence principle has been applied directly to
generate BEM solutions of the transformed physical
problem but also to obtain the fundamental solutions for
particular viscoelastic models, which are then used in time
domain BEM formulations.

Taking the Laplace transform of both sides of Eq. (10)
and introducing the Young’s modulus E; and Poisson’s
ratio v in the transformed domain, the relations

E = E
L K= L
[+ 1= 2,

250 =

are valid according to the correspondence principle. Thus,
time-dependent uniaxial tension or compression modulus
E(t) and Poisson’s ratio 1(¢) can be obtained by finding the
Laplace inverse transforms of the relations

95k . 3Kk-2a
R =5V = ——=
E+3k Tt 26K+ )
In harmonic and transient dynamic analyses, the use of

Fourier transforms has been found more appropriate.
Applying the transformation

E =sE= (29)

fw) = [” F(He dr

to Eq. (10) leads to relation of the form

§; = 2up(io)g;, O = 3Kp(iw)éy, (30)
where the complex, frequency-dependent complex moduli
ur and K relate the Fourier transforms of stresses and
displacements in exact correspondence with the elasticity
relation (8). The viscoelastic moduli are given in terms of
the Fourier transforms of the corresponding time-dependent
properties. In the particular case of the differential operator
model (15), they are given by relations similar to Egs. (27)
and (28), that is, as ratios of complex polynomials.

For a harmonic analysis, the governing equations are
derived from Eq. (18) and written in terms of the
transformed displacements [8]

Op + )ity + ity + pb; + o’ pit; = 0 (31)
or alternatively using Eq. (19)
Clrllji — SjeunCarity; + pb; + o pit; = 0 (32)
where ¢, c;F, are the complex velocities of dilatational and
equivoluminal waves given by

EF
de=2,  G=£ (33)
p p

The Fourier transformation is also applied to the boundary
condition (21) so that a complete correspondence is
established between a harmonic elastic and viscoelastic
problem.

5. BEM formulations
5.1. Laplace transform domain

If the correspondence principle is applied to the quasi-
static problem, the relevant boundary integral equation in
the Laplace transformed domain is written

it = | o0 = apionar + [ pu a0 6a)

where k; = 0.56; in the case of a smooth boundary, ufj, p,’;
is the elastic fundamental solution for displacements and
tractions in which, however, the elastic constants have been
replaced by the corresponding functions in the transformed
space according to Egs. (25) or (26). If a particular solution
to the transformed problem is known, the domain integral in
Eq. (34) can be replaced by boundary integrals depending
on that solution [9].

5.2. Fourier transform domain

In the case of harmonic vibrations, the boundary integral
equation has the same form as that of the corresponding
elastic problem in the frequency domain [8,10]

it (@) = (F [p(@li(w) — i(w)p(w))T
4ol @b, 40 (35)

with the fundamental solution of the elastic harmonic
problem in which the elastic wave speeds have been
substituted by the viscoelastic ones. Eq. (35) provides the
BEM solution to a harmonic excitation at a particular . The
time-dependent response to a transient excitation can be
found by solving Eq. (35) for a sufficient number of w.

5.3. Time domain—quasi-static problems

The boundary integral equation can be obtained by
either taking the inverse Laplace transform of that equation
for the corresponding elastic problem [2] or directly from
the reciprocal theorem of linear viscoelasticity, Eq. (22)
[11,12]. Both approaches lead to

K1) = [F(u;- #dp; — p; *du)dl+p [(z bi*du;dQ  (36)

where the time-dependent fundamental solution uj;(x—
&) satisfies Eq. (17) or (18) in an infinite domain
with the acceleration term removed and the body force
given by

pb; = 8;8(x — HH(r) (37)

where &; is the Kronecker delta, 8(x— &) the delta
function and H(z) the Heaviside step function. Applying
the correspondence principle, u;-(x — &,1) is obtained as the
inverse Laplace transform of the corresponding elastic
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fundamental solution in the transformed space divided by
the Laplace parameter s. Such an operation has been
carried out in several special cases. Shinokawa et al. [2]
obtained the inverse in the case of an SLS shear relaxation
model combined with elastic volumetric behaviour. An
elaborate scheme, generating the time domain fundamen-
tal solution in a more general case, was developed by Lee
et al. [13]. Carini and De Donato [4] obtained expressions
of the fundamental solutions due to unit force, displace-
ment and strain discontinuities for the general viscoelastic
model of differential operator type, Eq. (12). The general
procedure for deriving the time-dependent fundamental
solution and results in some special cases are given in
Appendix A.

Integrating by parts, the boundary integral in Eq. (36) can
be transformed to

[ (o duy = u % dpjdl (38)

which does not involve time derivatives of the unknown
boundary displacements and tractions. Thus no smoothness
restrictions need to be imposed on the respective shape
functions while the time derivatives of the kernels can be
evaluated exactly [13].

Uniform temperature variations can be accounted for by
replacing real time ¢ in Eq. (36) by a reduced time { given by
[14-16]

4 dr
0 ar[T(1)]

where ar is a shift parameter depending on the temperature
history. The thermo-viscoelastic BE equation should
account for thermal expansion by including the appropriate
boundary traction term.

5.4. Time domain—indirect BEM

This approach has been demonstrated in the context of a
geomechanics problem involving a cavity subjected to
known tractions p,;(¢) [17]. A number of fictitious loads ffr)
are assumed applied at source points distributed just outside
the domain, opposite to an equal number of boundary
elements. These fictitious forces produce, in the infinite
domain, the stresses
oy =S ) (39)

r
where (T};-k(t) is the stress fundamental solution. For the
stress field given by Eq. (39) to be an approximate solution,

the tractions due to £ on the entire boundary I’

P =mdy =m0 =S f0p 40)
r r

should be as close as possible to the actual tractions p, (7).
This can be achieved by minimising the mean square value

of the error
fr ©; = pp@; — ppdl’ 1)

The contour integral (41) can be written as a summation of
integrals over individual elements the derivatives of which
with respect to each £ should vanish. This leads to a
consistent and symmetric system of equations for the
determination of the fictitious loads. Alternative indirect
BEM formulations for solving elastic problems can be
found in the literature.

5.5. Time domain—dynamic problems

In this case, a BEM formulation can be based on a
boundary integral equation, identical in form with that of the
corresponding elastodynamic problem [18]. If the Poisson’s
ratio is time-dependent, then the coefficients x; are also
functions of time and the right-hand side of the integral
equation becomes the convolution integral

K;i(2) * ui(x, ) 42)

Using the Maxwell model, the fundamental solution in the
time domain was obtained by inverse Laplace transform
[14,19]. This is a closed form solution of considerable
complexity. In view of the limitations of the Maxwell
model, it would be preferable to retain the versatility of the
general constitutive equations, including those with frac-
tional differential operators. The inversion, however, of the
fundamental solution would then require numerical
integration.

A procedure has been developed based on the corre-
sponding BEM formulation of the elastodynamic problem
[19,20]. A modelling scheme is adopted in the time domain
and convolutions are explicitly integrated over time steps.
The resulting expressions, as functions of the current
solution time, can be transformed to Laplace domain. The
transition to viscoelastic solution takes place at that stage
when the elastic material properties are replaced by the
corresponding viscoelastic ones expressed in terms of the
transformed space variable s. Then, the inversion of these
expressions yields the kernels for the viscoelastic boundary
integral formulation. It is clear that the final form of the
kernels depends on the choice of the material model.
Explicit expressions have been obtained for the special case
of the Maxwell model [20].

5.6. Mixed formulation—dynamic problems

A particular mixed scheme [18] was based on the
boundary integral equation

ceu) = aiep—pyruar+pl briae @)
r 0

which can be obtained from the reciprocity relation (23) if
the fundamental solution uz-(x~§,t), p};(x—f,t), due to
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the body force
pb; = 8;8(x — £)6(1) (44)

is used as the second viscoelastic state. If time # is divided
into N equal intervals Az so that = NA¢, the convolution
integrals in Eq. (43) may be performed by the convolution
quadrature method proposed by Lubich [21,22]. This
quadrature formula allows the numerical approximation of
these convolution integrals by the finite sums

S 0, (4, A RAD, > w0, (P Aty (kAY) (45)
k=0 k=0

for n=1,2,...,N with the integration weights w, calculated
using the approximations

(Zl)\\ -n
I1(ul ,At)~ i Y /7
’ L, A

and

7(<1) \ -n
At

P (pU,At)~ — ‘>‘ -*/
1 0

where y(z) is a well-defined polynomial in the complex
variable z according to the quadrature method and

z _ReiIZTr/L
=

R being the radius of a circle in the domain of analyticity of
ﬁ;;(z) or p};(z). The characteristic advantage of the
quadrature rule (45) is that only the Laplace transformed
functions #; and pj; are used. Thus a time stepping
procedure directly in the time domain can be formulated,
although only the Laplace transforms of the fundamental
solutions are used, that is, a viscoelastic boundary element
formulation in the time domain is achieved without
requiring the knowledge of the time-dependent fundamental
solutions.

6. BEM modelling

Initial numerical implementations of BEM formulations
in the transformed domain were based on constant boundary
elements [1,23,24] leading to simple integration schemes
and algebraic equations for the discrete values of the field
variables. Higher-order one-dimensional [8,12] and two-
dimensional {18] elements were introduced in later, more
advanced formulations.

Time domain formulations based on integral equations
(36) or (43) require boundary modelling in both space and
time dimensions. If the boundary surface I'is discretised in
E isoparametric elements I',, where F polynomial shape
functions Nf (x) are defined, the following representation

can be adopted

F F
wxn =S Neul®  pxn=>Npl®n 46
f=1 f=1

where ujf (¢) and pff (1) are the time-dependent nodal values
of displacement and traction, respectively. Using constant
time interpolation {12}, displacements and tractions can be
represented by simple expressions leading to analytical
evaluation of time integrals over each time step. Higher
order quadrature rules for convolution integration have also
been successfully applied [15].

Inserting the boundary model (46) in Eq. (43) with body
forces neglected results in

=SS W W%, &) % p (ONL )T,

e=] f=1 I

-1 piegnsufonioar.] )

Applying the quadrature formula (45) to the integral Eq.
(47) results in the following boundary element time-
stepping formulation for n =0, 1,...,N

Y cu(x)u (& kAD) = S S (o

e=1 f=1 k=0
w1 (P & At (kAr)) (48)

w0, (@5, & AP (kAT

with the spatial integration incorporated into the weights w,
which are now given by

0T, & Aty = — S" ff il V(Z’) YD\t yar

. 1 L—-1 .
w,—(Py, & AL) = I by [ fr p,-/ X, ,"T\Aﬁ(x)dr]
=0 e

Thus an algebraic system of equations for the discrete nodal
values pff (kAt) and uff (kAt) is formed with coefficients
depending on the Laplace transforms of the fundamental
solutions uj;(x, £ 1) and pj(x, & 7).

7. Numerical inversion of Laplace transforms

Laplace transforms of boundary or domain variables can
be numerically converted back into time-dependent func-
tions. Schapery’s inversion method [25] was the earliest one
to be used [1,23]. It is based on the argument that
displacements or stresses may be approximated by a
function in the form

M=2
f&y=A+Bt+ > a. e (49)

r=]
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Transforming both sides of Eq. (48) gives

al"
1+b,/s

B B M=2
S =A+—+ D) (50)

r=1
The BEM solution is obtained for M discrete values of the
transform variable s,, p=1,2,...,M. Eq. (50) is then
applied for each s, choosing b, to be the first M — 2 values
of 5,,. Thus a consistent system of equations is generated for
the unknowns A, B and a, leading to evaluation of the
inverse transform of the solution at any time through the use
of Eq. (49). An alternative collocation procedure was
proposed by Kusama and Mitsui [24] who represented the
transient part of the response function f{t) as a sum of
orthogonal functions.
Bellman’s inversion technique [26] introduces the new
variable x = ¢’ in Eq. (24) which then becomes

1
fs) = fof(—ln 0x " dx (51)

Integral (51) is approximated by the Gauss—Legendre
quadrature formula

N
Ry = wi” f(~Inx) (52)
i=1
where x; are the roots of the Legendre polynomials of order
N and w; the corresponding weights. By setting s equal to N
distinct values 1,2,...,N, a consistent linear system of
equations

N

> walf(—Inx) =ik + 1) (53)
i=1

is obtained which can be inverted to yield f{z) at N distinct
times ; = —In x;. This method was used in the viscoelastic
plate analysis by Ding et al. [27] who proposed a refinement
allowing for the evaluation of f(t) at any time. Other
numerical inversion methods mentioned in BEM literature
are Piessens’s [28], applied to the three-dimensional quasi-
static problem [9] and Durbin’s [29] which was used in a
formulation of the three-dimensional dynamic problem [5].

8. Applications
8.1. Benchmark problems

Most benchmark problems involved a cylindrical cavity
in a viscoelastic medium subjected to a uniform pressure
p(t) = poH(¢) where H(t) is the Heaviside step function.
Since these problems have exact analytical solutions,
several authors have used them for validating their
formulations. A hole in an infinite viscoelastic space,
modelled as SLS, has been analysed in both the Laplace
transformed [23,24] and time domain [2,12]. A particular
case of a cylindrical hole in a finite space is the thick-walled

cylinder, which has also been analysed by several authors
for validation purposes. Time domain solutions were based
on the SLS model [12,15] but also on a more general n-
parameter Maxwell model [13].

Rizzo and Shippy [1] considered the case of a cylinder
constrained over its outer boundary by a thin elastic ring.
They adopted SLS in shear as the material model and a
BEM formulation in the Laplace transform domain with the
solution inverted by Schapery’s method. Plots of time
variations of radial and hoop stress at various radial
distances from the centre were found in good agreement
with the exact analytical solution. The time domain solution
of this problem has also been treated with a similar degree of
accuracy [12].

Three-dimensional analyses of rectangular blocks were
performed in the Laplace transformed domain under both
quasi-static [9] and transient [5,18] conditions with time
domain responses obtained by numerical inversion. In the
former case, a cubical and a prismatic block were subjected
to gravity body force and the material was assumed to
behave according to Maxwell viscoelastic model. In the
latter case, a block with square cross-section and a length to
width ratio equal to 3 was fixed at one end and subjected to
an axial step load at the free end. Its relaxation properties
were deduced from a fractional operator constitutive model.
The values of the parameters were estimated by curve fitting
and then found to represent fairly accurately the exper-
imentally determined complex moduli [5]. The predicted
responses were in good agreement with an analytical
solution. A similar application involved a cylindrical
clastomer isolator analysed in the frequency domain
assuming a modified, fractional-order, Kelvin model [14].

8.2. Plates

The applicability of BEM to viscoelastic plate analyses
would be practically useful since polymers are quite often
used as thin-walled elements. Such a formulation was
developed for the dynamic problem in the Laplace trans-
form domain {27]. The governing equation was derived as

D VY% + phs*w = g (54)

where w is the plate deflection, £ the plate thickness, g the
applied dynamic pressure and Dy the plate rigidity in the
transformed domain given by

_ SENR?
1231 - 82
The knowledge of the fundamental solution for the
differential operator in the left-hand side of Eq. (54) leads
to the derivation of the standard pair of boundary integral
equations for a thin plate in the Laplace domain. Ding et al.
[27] derived two approximate forms of such a fundamental
solution and used an improved version of Bellman’s
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inversion technique to obtain the time history of the plate
response to sinusoidal lateral pressure.

8.3. Fracture

An early attempt to introduce BEM analysis to polymer
fracture concerned the prediction of stress and displacement
fields in the neighbourhood of a crack filled with failed, so-
called craze material [23]. The craze was represented by a
slit of length 2a in a plate of finite width subjected to a step
far field tension. Accounting for symmetry relative to two
orthogonal axes, the problem was modelled as shown in
Fig. 1. The effect of the craze on the linear viscoelastic
material was modelled as a time-dependent stiffness k.(x;, )
and the boundary conditions along the crack surface (0 =
X; = a) were

pi =0, P = —kouy

A non-linear finite element analysis, validated by exper-
imental data, provided the initial stiffness k.(x;, 0). Its time-
dependence was assumed to be the same as that of the
relaxation modulus of the analysed polymer. The BEM
solution was based on a SLS Kelvin creep model and
performed in the Laplace transformed domain.

More recently [30], a BEM formulation closer to classical
fracture mechanics concepts concerned the evatuation of the
energy release rate with respect to crack growth. The
viscoelastic problem shown in Fig. 1 was again considered
for which the path-independent J-integral is equal to the
energy release rate and can be derived analytically for simple
viscoelastic models. An appropriate expression for the
potential energy was identified and converted to a boundary
integral. The energy release rate was then calculated as a
numerical approximation of the derivative of the potential
energy relative to the crack length. The time history of the
energy release rate obtained from a time domain BEM

X

A poH(?)

144444444444

Crack tip

——r= . =P X
i<-a >t

Fig. 1. Analysed quarter of centre-cracked plate under tension.

formulation was shown to be in close agreement with the
analytically predicted J-integral.

8.4. Composites

The composite material was considered consisting of two
perfectly bonded regions, a viscoelastic one representing the
polymer matrix and an elastic one representing the fibre or
particle reinforcement [15]. The discretised algebraic
problems were formulated for each zone and then coupled
through the displacement compatibility and traction equili-
brium conditions over the interfaces. The scheme was
extended to account for uniform temperature fluctuations by
introducing the effects of thermal expansion and tempera-
ture dependent viscoelastic properties. It was then validated
through an example involving a composite sphere with inner
elastic and outer viscoelastic layer under uniform tempera-
ture change [15].

8.5. Rolling contact

The simulation of rolling contact between two
viscoelastic solids is a geometrically non-linear problem
combining a BEM formulation with an iterative scheme
modelling the contact conditions. Solutions of the two-
dimensional problem can be found in the literature based
on time domain fundamental solutions obtained through
the application of correspondence principle. These sol-
utions lead to steady-state fundamental solutions, which
have been used in BEM formulations of steady-state
rolling contact. One such two-cylinder application [31]
used the half-space Green’s function as the fundamental
solution with the SLS model characterising the viscoelas-
tic material behaviour in tension or compression. Cou-
lomb’s dry friction was incorporated in the contact
algorithm. The contact between a viscoelastic body and
an elastic one covered by a thin viscoelastic boundary film
has been analysed using the Kelvin fundamental solution
for the two-dimensional domain [32]. Numerical results
included the stress distribution at the contact surfaces and
within the viscoelastic bodies as well as rolling resistance.
A practical application of this problem is the numerical
simulation of self-lubricating polymer transfer film in
gears or bearing systems.

9. Conclusions

Two main approaches have been adopted for linear
viscoelasticity. The first has the advantage of being directly
applicable to any generally acceptable constitutive model
but requires numerical inversion of the Laplace or Fourier
transform. This not only increases the amount of compu-
tations but its accuracy and efficiency also depends on the
choice of the range and distribution of the transform
variables. The second method requires the derivation of
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the relevant fundamental solution for each constitutive
model as well as discretization in the time domain. A
recently proposed mixed method solving the problem
directly in the time domain but using the Laplace transform
of the fundamental solution has only been tried on dynamic
problems. Its applicability to quasi-static problems should
be tested and its performance compared with that of the
other methods.

The validity and effectiveness of both approaches has
been demonstrated through the solution of simple examples.
Most problems solved by BEM were essentially validation
exercises. The majority of other existing practical BEM
solutions were obtained in the field geomechanics. There is
therefore considerable scope for extending the use of BEM
to industrial applications of polymers.

One particular field where BEM applications have been
so far limited is fracture mechanics. Interest in polymer
fracture has prompted considerable theoretical and numeri-
cal work, which can be the basis of various BEM
formulations. Further research can focus on refined
approaches to identify stress intensity factors, strain energy
release rates and even the crack propagation velocity in
highly stressed polymers. Other developments may concern
the introduction of fundamental solutions specific to cracked
geometries or the consideration of cracks along interfaces of
bi-material continua.

There is also scope for generalising material modelling.
Temperature variations have a strong influence on
viscoelastic properties; they should be therefore routinely
accounted for in any BEM formulation. Anisotropy may
also be present and methods for generating fundamental
solutions in both transformed and time domains have been
suggested in the literature [33] although such techniques
should be re-examined because of the unrealistic behaviour
of the adopted material models. Finally, an important
development would be to account for material non-
linearity, which has been observed to be strong in the
case of long-term viscoelastic responses and high stress
concentrations.

Appendix A

The Laplace transform of the viscoelastic time-depen-
dent fundamental solution of the quasi-static problem can be
written in the general form

ity(s) = A(s)fy(x — &) + B()g(x — § (AD

The functions f;; and g; are obtained from the corresponding
elasticity solutions. For two-dimensional problems, they are
given by

f _ 8,] Inr (AZ)
v 8m

¥y r,j
8§ = o (A3)

8w

where r = Ix — &. The functions A(s) and B(s) correspond
to constant coefficients in the elastic solutions usually
expressed in terms of the shear modulus and Poisson’s ratio.
If isotropic viscoelastic behaviour is characterised by the
shear and bulk relaxation moduli, the effective Young’s
modulus and Poisson’s ratio in the Laplace transformed
domain are given by Eq. (29). Typical expressions for A(s)
and B(s) are given below.
(i) Plane strain

203K +71)

A= "7 A4
s2@(3K + 417) (A9
_ 28K+ 4
73K + 41)
(ii) Plane stress
_ 15K + 81
A= A6
252 1(3K + f@) (A6)
_ 9K
B= 252 13K + 1) (A7)

As mentioned in Section 5.3, Carini and De Donato {4]
performed the required inversions of Laplace transforms in
both two and three dimensions for n-parameter standard
linear solid models of Kelvin or Maxwell type. Their
general expressions can be specialised to simple cases but
this process was found to be cumbersome and hampered by
errors in some key formulae. In such cases, it may be faster
and safer to invert Eqs. (A4)—(A7). A common viscoelastic
model in the BEM literature combines elastic dilatation K =
Ky with the simplest, three-parameter SLS for shear
relaxation

wd =20 +poe™), A= 2 (Kelvin model)
M2 n
or

p) = (o + e ™, A= %‘ (Maxwell model)

with wy = ug + u;, where pg and w; are the elastic shear
moduli and 7 the viscosity of the models. In this case, A and
B were found to have the common form

s+ AN+ @
S(S + )\1)(5 -+ )\2)

so that their inverse transforms are given by

ag+a e M 4a, e

where

cai cA— AP — @)
TR YT T A
o= CA= ) — )

WV W)



134 S. Syngellakis / Engineering Analysis with Boundary Elements 27 (2003) 125-135

In the case of plain strain, the fundamental solution is given
by

u (1) = (bg; — by e-/\lt)(fzj +8)+ (b — by e—/\zt)(fij = 8&y)

(A8)
where for the Kelvin model
A= Hy _ 3Kopo + 4oy
1= —A Mh=—T
M2 GBKy+4pp)pn
_ 2, _ 6u,;
by=—", byp=gp———,
Mo py 3Kopn +4 oy
bl po 24u5
YT T (BKy+4ug)(BKops +4paomy)
and the Maxwell model
3Ky +4
A= ,“_0)\’ A= Kot au
M2 3Ko+4pa
2 6
T
0= e’ T 3K, 4,
by = 2u by = 24u,
MoMa (BKo +4ug)3Kp + 4 )

For plane stress

ug(t)= (b1 — by e )(5f;+385) + (boy — bre N — g;)

(A9)
with
3K,
A= Lad A A= SKopa 1 Hort
2 (3Ko+ po) o
by =12 p,= _m
2popt’ 203K + popy)’
1 35
bl =, b2 =
2p 2(3Ko+ po)BKoma + popm)

for the Kelvin model, and

3K,
A=ty )\2=M
Mo 3Ko+ 2
1 3
by ==, bp=——o—,
2y T 23K+ o)
b, My 3p

= s b =
2opy” 7 20Ko+ o) 3Ky + o)

for the Maxwell model.

As mentioned in Section 5.5, a time domain fundamental
solution for the dynamic problem in three dimensions has
been presented for the Maxwell model, that is, a spring and
dashpot in series. The material was assumed to behave in
both shear and bulk deformation according to this model but
with a common decay time constant, it is therefore
characterised by only three parameters. The fundamental
solution has been obtained by applying the correspondence
principle to the corresponding elastodynamic solution and is
given in full by Gaul et al. [19].
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