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ABSTRACT

We investigate the use of SVD based two factor model-
s for numerical data classification. Motivations for such a
study include the widespread success of such models (e.g,

LSI) in textual information retrieval, emerging connections .

with well established statistical techniques and the increas-
ing occurrence of mixed mode (text—and—numeric) data. A
direct extension as well as an efficient modification of the
LSI model applied to numerical data problems are present-
ed and the associated problems and likely remedies dis-
cussed. The techniques under investigation are shown to
perform competitively with respect to popular existing nu-
merical classification techniques on a range of synthetic and
real world benchmark data. In particular, we show that
the modified LSI proposed in this work avoids confronting
the optimal subspace selection problem yet generalizes well
and remains computationally efficient for large data.

1. INTRODUCTION

Over the last 10 years, the latent semantic indexing tech-
nique (LSI) has been effectively used for information re-
trieval in the text domain in a variety of tasks, see for exam-
ple [1, 2, 3]. LSI presumes the existence of a latent structure
in the textual data and treats the unreliability in observed
term-document association as a statistical problem to un-
cover this structure. Specifically it uses a truncated singu-
lar value decomposition (SVD) to project terms, documents
and queries into the same multidimensional real valued de-
rived feature space. Each query is represented as a pseudo-
document formed from a weighted combination of terms.
Since SVD is essentially a proximity based model, a subse-
quent use of a dot product based similarity metric retrieves
documents related to the query.

The empirically observed success of LSI has often been
attributed to its capability of filtering out noise and genera-
tion of a clean set of orthogonal basis vectors which help it
project terms, documents and queries consistently into the
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same space. In recent years, the connections of LSI with
other well known techniques have also brought forth theo-
retical evidence in its favor. We mention some of the more
notable connections below.

The technique of LSI is closely related to that of Multi
Dimensional Scaling (MDS) [4], a technique which seeks to
construct a reduced order configuration for projecting input
data while preserving a prespecified similarity measure in
the least square sense. In fact, the document representation
found using LST is an optimal special case of MDS[5], when
the inner product is used as the similarity measure.

The equivalence relationship between factor analysis
techniques and multiple regression models first explored by
Malinvaud et. al. {6] has also provided valuable insights
into the effectiveness of the latent semantic model. Specif-
ically, it has been shown that LSI reduces the magnitude
of the specification error! which arises because of absence
of certain keywords in the query. A conventional keyword
search algorithm would assign zero(0) weights to such ab-
sent keywords. This might result in improper handling of
important missing variables. LSI solves this problem by
assigning weights given words in a query so that they can
serve as proxies for synonyms and closely related terms not
present in the query[7].

The success of LSI in information retrieval and its inter-
esting relationships with existing data modeling techniques
naturally leads one to contemplate on its application to nu-
meric or non text based(mixed) domains. This paper in-
vestigates the use of latent semantic indexing as a tool for
numerical data classification based on such a motivation. In
particular, we investigate two techniques aimed at uncov-
ering the latent association between numeric data attributes
and the corresponding class labels. Typically, the resulting
predictive models are similarity based models operating in a
transformed feature space. A further common feature of the
techniques discussed in this paper is their ability to handle
mixed (continuous and/or nominal) attribute data.

The rest of the paper is organized as follows: section 2

ISpecification error refers to the estimation errors arising out of the
improper inclusion or exclusion of key explanatory variables from a model.



discusses a straightforward application of conventional L-
SI/SVD (as used in the text domain) to numeric data while
section 3 presents a more efficient reformulation of the
same. Related computational issues are discussed in section
4 while experimental investigations are presented in section
5. The paper concludes with a summary of the current re-
search and pointers to future directions of work in section

6.

2. CONVENTIONAL LSI FOR NUMERIC DATA

As mentioned earlier, LSI in the text domain captures the
uncertainty in association between terms and documents.
This is achieved by computing and factorizing a term doc-
ument co—occurrence frequency matrix. A straightforward
extension to the numerical domain would therefore involve
constructing an attribute instance co—occurrence frequency
matrix. Since the attributes may themselves be continuous
in nature, a discretization technique needs to be employed.

2.1. Entropy-based discretization

In the present setup, a recursive minimum entropy partition-
ing (RMEP) technique [8] has been employed for discretiz-
ing the input space of the continuous attributes. RMEP
is a supervised heuristic discretization algorithm based on
information theory which uses the class information en-
tropy measure to determine bin boundaries for discretiza-
tion. Given a dataset S, a feature a and a partition boundary
T, the class information entropy of the partition induced by
T is defined as follows:

S S
BE(a,T;S) = 5 lEnt(Sl) L5 'Ent(s2) (1)
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where S; and Sy denote the two partition subsets (out of
S), | - | represents the cardinality operation on a set, and

Enit(S;) and Ent(S») denote the respective class entropies.
The binary discretization boundary T is chosen each time
to minimize the entropy function over all possible partition-
s. The method proceeds by recursively partitioning the sets
induced by 7' till a stopping criterion is satisfied. Recursive
partitioning within a set of instances S stops if [8]:

Gain(a, T; ) < 282 (]J:; i) A(a}g 9 o
where N is the number of unique instances in set S and,

Gain(a,T;S) = Ent(S)— E(a,T;5) 3)

Aa,T;5) = log,(3F —2) — [k.Ent(S) - (4

—k1Ent(Sy) — ko Ent(S,)]

where k1, ko denote the number of class labels in sets Sy
and Ss (out of S), respectively. The reader is referred to [§]
for a detailed exposition of the technique.

The attribute—instance frequency matrix is then con-
structed using the bin—widths generated by the above tech-
nique. A subsequent SVD factorization generates the pre-
dictive model encapsulating the latent structure in the da-
ta. Let n, denote the total number of bins generated af-
ter discretization of attributes and IV be the total number of
instances assigned to m classes. Then represent the (dis-
cretized) attribute—instance frequency matrix by X and its
truncated SVD representation by X ~ Uiy kaT, where
U, € Rk and V}, € RV** contain the k left and
right singular vectors (of X)), respectively. The columns
(singular vectors) in Uy and V}, themselves correspond to
the k largest singular values (of X) contained in 3 e =
djag(al,ag,. .. ,O’k),E Rka, o1 >02 > ...> 0.

Given a novel data instance, we compute its discretized
version z € R™ | and project it into the k£ dimensional re-
duced LSI subspace by computing # = 27U, 57", A sub-
sequent nearness score is computed using s = {&>_, V,I'}
and the class of the nearest neighbor document assigned to
the new instance. Note that we shall henceforth refer to this
scheme by the acronym LSI;4, where the subscript empha-
sizes its similarity with term document type LSI, commonly
used in the information retrieval literature.

2.2. Discussion

While the utility of LSI as filtering technique is well un-
derstood, a few important questions/concerns remain unre-
solved. The most pertinent of these is the issue of model
selection which in this case amounts to optimal subspace
selection i.e., the optimal number (say k) of singular vec-
tors(values) to be retained for best generalization on unseen
data. To the best of our knowledge, a priori estimation of
k from a direct inspection of the matrix X is still an open
question[9, 10]. We mention that in its absence, all the re-
sults for LST;4 reported in this paper (see Tables 1,2) are
the optimal model performance values obtained through ex-
haustive computation of the SVD and an aposteriori de-
termination of the size of the optimal subspace. Since the
computational complexity of SVD of X € R™ X~ amounts
to O(ne N 2+ N 3), where NN is the size of data, such an

“exhaustive computation may not be possible for large V.

However, once the SVD is available, optimal subspace
selection can be done using any of the numerous model se-
lection criteria available in the literature such as cross vali-
dation, minimum descriptive length (MDL) or Akaike’s in-
formation criterion (AIC) [11]. Under reasonable assump-
tions on the distribution of examples, it can be shown [10]
that the loglikelihood of the LSI model can be expressed
(approximately) as a sum of squares of its singular values.
Hence, one may as well track the loglikelihood of the model
to approximately determine the optimal size of the reduced
subspace. An interesting possibility is to compute a for-
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Figure 1: A synthetic 2D linearly separable toy problem.

ward stagewise incremental SVD update starting from an
exact SVD factorization for a modestly sized random sam-
ple from the data. We have more to say on this approach in
section 4.

3. A MODIFIED LSI

As mentioned in the last section, the conventional approach
to LSI is faced with the twin issues of optimal subspace s-
election and rising computational costs. In what follows,
we show that by a slight reformulation of the LSI approach,

- both these issues can be resolved. In particular, in the set-
ting presented below, the question of optimal subspace se-
lection has a trivial solution and the scalability of the modi-
fied scheme has no direct relationship with data size.

3.1. Attribute class co—occurrence

The emphasis in the current section (as opposed to conven-
tional LSI, c.f section 2) is on directly modeling the un-
certainty in the relationship between (discretized) attributes
and the class labels. For this purpose, we construct the at-
tribute class co-occurrence frequency matrix, Z € R *™,
where n,, m carry over their usual meanings from the pre-
vious section. For clarity and ease of presentation, we de-
scribe the new approach in terms of the attribute instance
frequency matrix, X € R XN introduced in the last sec-
tion. Further, without any loss of generality we restrict our
attention to the two-class case (m- = 2); the extension to
the multiclass case (m > 2) is trivial and follows naturally
from the presentation below.

We begin by partitioning X into two blocks as X =
[X1 Xa)], where X; € R%*M and Xy € R XNz, re-
spectively denote instance attribute frequency matrices for
classes 1 and 2 (N = N7 + Ns). Then the attribute class fre-
quency matrix Z € R *2 can be obtained by summing up
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Figure 2: Test points in the projected “class space”.

all the columns in the respective classes. More compactly,
in matrix notation, one can write:

1M

Z=XT Wherefz(o 172

> € ]RNX2 (5)

and 1V1(N2) ¢ RN1 (N2) 5 a column vector of Nj (N3) con-
secutive ones. Compute the SVD factorization Z = AQC,
where A € R"*2 and C' € C*>*? contain the left and right
singular vectors of Z and € R2*2, is a diagonal matrix
containing the corresponding singular values. As before, '
given a novel data instance, we compute its discretized ver-
sion z € R™, and project it into the reduced 2(i.e., m)
dimensional LSI subspace by computing 2 = z7 AQ~!. A
subsequent nearness score s can now be computed by treat-
ing the columns of C = [¢; ¢2] as representative “class
vectors”, i.e. s = [2¢;  Zco] and the appropriate nearest
class assigned to the new instance. We shall refer to the
scheme introduced here as LS, ., where the subscript indi-
cates the attribute class nature of Z directly. Since, in gen-
eral, C € R™"*™ and CTC = I, the columns of C i.e., the
“class vectors” fully characterize an m~dimensional space,
which we shall refer to as the “class space”. We mention
that this interpretation is consistent with the proximity based
probabilistic model proposed in [10], where the columns of
C perform the role of the so called characteristic vectors.

Fig.1 shows a toy problem and the ideal separating
plane. Also shown are two test points which are projected
into the “class space” defined above. Fig. 2 shows geomet-
rically the effect of projecting the test points into the space
where the “class vectors” reside (as discussed above). The
perpendicular bisector of the line joining the two “class vec-
tors” ¢y and ¢» has been used to decide the class of the new
query. As shown in the figure, test point 1 lies on the same
side as the class vector ¢ and hence is labelled as belonging
to the class C;. Similarly, test point 2 lies on the same side



as the class vector ¢4 and hence is labelled as belonging to
the class Cs. Since the ascribed class labels of the test points
match the true ones (see Fig. 1), the LSI-based classifier has
been able to correctly classify them.

3.2. Discussion

Notice that the simple modification suggested in Equation
(5) offers us two distinct advantages when compared with
the traditional LSI approach (ref. section 2). Firstly, we
note that computing an SVD factorization of the attribute-
class co-occurrence frequency matrix, Z € R™ *™ involves
expending O(n,m> + m?) computations[12]. Therefore,
computational cost scales linearly with number of discrete
regions, ng, and has a cubic dependence on the number
of classes, m, present in the dataset. Since, in practice,
m < N and is usually a constant for a problem, the effec-
tive computational complexity is O(n,), i.e., it scales lin-
early with number of discretized bins (as opposed O(N?)
for LS1;4). Since n, has no (explicit) relationship with NV,
the data size, this scaling is extremely attractive. Secondly,
since p = rank(Z) ~ min(n,,m), the size (k) of the op-
timal LSI subspace will be less than or equal to m. When
p = m, the m columns of the C' matrix can be effectively
used as class representatives and prediction done as above.
Finally, the case of p < m i.e., when some singular val-
ues are exceptionally small or zero, may be used to indicate
(i) the likely presence of spurious class(es) i.e., when the
underlying structure in the data does not bear out the dis-
tinction between two (or more) class labels, and/or (ii) the
possible ill-posedness of problem or insufficient data.

4. FURTHER COMPUTATIONAL ISSUES

An interesting situation arises when one needs to frequently
update the SVD factorization obtained in the LSI schemes.
One can show that for large data (i.e., N > (ng,m)), the
LSI,. model can be updated atleast N2/(n,m)[15] times
faster than LSI;4, per update. An alternative approach is
computing a semi-discrete decomposition (SDD)[14] of the
co-occurrence frequency matrix, Z(or X). SDD requires
only about one-twentieth of the storage space required by
SVD and about half the query time. Furthermore, updating
the SDD is much faster than updating the SVD, although
constructing the initial SDD representation may take five
times as long as constructing the corresponding SVD. How-
ever, since this is only a one time expense, it does not in-
crease the cost of the update process. Finally, deleting terms
from the SDD representation is a trivial operation while it
is quite complicated for SVD, due to orthogonality require-
ments.

However, since both SVD and SDD update techniques
utilize the initial approximation structures to varying de-

grees, an inevitable performance degradation occurs with
the addition of a significant number of new elements due to
loss of orthogonality in the updated system.

Noise ~—»
0% 5% 10% 15% 20% 25% 30%
LSIy 6.1 98 152 168 206 205 357
k) OEOEES) @ @ @ G
LSI,. | 35 95 152 236 277 298 395
(k=2)

Method

Table 1: Performance evaluation on test function at various
noise levels; k = optimal subspace size.

5. EXPERIMENTAL INVESTIGATIONS

The techniques investigated in this paper were compared
with each other as well as with discretized versions of other
popular machine learning techniques viz., naive Bayesian
classifier and C4.5 trees. A standard CV-10 run was per-
formed for all the techniques considered to compute the
mean percentage accuracy and the variability about the
mean.

Table (1) illustrates a performance comparison of LS ;4
and LST,, on synthetic 2D two class noisy data. For this
purpose, we corrupted randomly generated noise free data
sets obeying the decision sign(f), where f(-, ) is a known
cubic function of the input variables, with varying degrees
of output noise intensities. For each noise level, the data
was randomly split into a training and a testing set of 1000
instances each. The results reported in Table (1) are aver-
aged over 20 such splits.

We observe that at relatively low noise levels, LS1,,
performs as well as LSy, albeit with a (fixed size) small-
er optimal subspace. Understandably, performance deterio-
rates as the noise level (hardness) is increased. Notice that
the disadvantage of smaller, fixed subspace size (for LS1,.)
becomes more clear at high noise levels, when more effec-
tive filtering is required.

Table (2) summarizes the 10-CV performance compar-
ison for 8 standard UCI machine learning datasets. For
LST1;, the optimal model size is also indicated. We ob-
serve that in general, the SVD based techniques perform as
well as the standard machine learning techniques for nu-
meric data. In particular, we note the performance of the
LS1,. technique, which is remarkable given the fact that it
is a one—shot process and does not involve a model selec-
tion stage (as opposed to C4.5 and LSI;4). This fact along
with its better computational features (both offline and on-
line) are important outcomes of this research. Here, we also
point out the exceptional accuracy shown by LST;4 on the
vehicle dataset; we believe this outcome is a combination
of high noise in the data and the availability of a relatively
large set of basis vectors for enhanced filtering.



Dataset Methods

Name Discrete | Discrete | Discrete Discrete
(#Class) C4.5 NB | LSLq (5% | LSl
Breast(2) || 94.5£2.1 | 97.0£1.6 959£2.1 () | 97.3£1.8
Diabetes(2)|| 74.5+4.6 | 75.14+3.6 72.3:&5.2(—%) 74.6+7.1
German(2) || 72.94+5.8 | 72.61+5.3] 66.3+5.1 (%) 68.444.1
Glass(7) 71.0+£8.3 | 71.5+6.8 65.9i10.6(% 69.04+9.1
Glass2(2) || 79.0+8.6 | 80.3£6.3 77.6£13.2 (L) | 85.6+8.4
Heart(2) 82.24+10.1] 82.245.5 807:!:7.5(211—3) 84.14+6.9
Iris(3) 95.3+4.5 | 92.745.8 95.4+4.9 (3) | 94.7+4.2
Vehicle(4) || 69.145.2 | 61.1£5.40 72.44+5.1 (%) 62.31+4.9

Table 2: Percentage accuracy comparison for standard UCI
Datasets; k = optimal subspace size based on test data, # sv
= total number of singular values.

6. CONCLUDING REMARKS

In this article, we investigated the application of SVD based
models to numerical data classification. Traditionally, such
techniques (e.g., LSI) have been used effectively for infor-
mation retrieval in the text domain. A straightforward ex-
tension of the popular LSI technique to numeric data per-
forms well (in terms of accuracy) but is fraught with prob-
lems of model selection and escalating computational costs
with datasize. We propose a modified LSI which directly
models the uncertainty relationship between class labels and
the input feature space. The resulting scheme is more effi-
cient than the conventional one and also circumvents the op-
timal subspace selection problem faced in the conventional
approach. Performance comparisons on synthetic and real—
world benchmark data demonstrate the competitiveness of
the current approach w.r.t popular existing machine learning
techniques. Various computational issues and bottlenecks
are highlighted and possible remedies suggested.

As mentioned earlier, updating the classifier without re-
computing the SVD (or the SDD) would inevitably lead to a
degradation in performance. This may be traced to the loss
of orthogonality in the updated system. An interesting en-
hancement to the present work would be to use the extent
of this loss to derive a threshold to determine when to stop
and recompute the SVD (or the SDD) all over again. Work
in this direction is currently in progress although much re-
mains to be done. An alternative direction of work is the
development of fast stable SVD updates, while minimizing
the loss of orthogonality of the system [15].

Finally, it is important to reiterate that while a small
number of discriminative directions can often provide fairly
good generalization for low noise situations, such an ap-
proach maybe counter productive for high noise scenarios.
In such cases, one may actually need to generate more dis-
criminative directions (basis vectors) to enable effective fil-
tering, although the associated costs to be incurred in model

selection need to be appreciated as well.
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