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Abstract

This paper is concerned with the forced response
statistics of mistuned bladed disk assemblies subjected to
a deterministic sinusoidal excitation. A stochastic
reduced basis method (SRBM) is used to compute the
statistics of the system component amplitudes. In this
approach, the system response in the frequency domain
is represented using a linear combination of stochastic
basis vectors with undermined coefficients. The three
terms of the second-order perturbation approximation
(which span the stochastic Krylov subspace) are used as
basis vectors and the undetermined coefficients are
evaluated using stochastic variants of the Bubnov-
Galerkin Scheme. This results in explicit expressions for
the response quantities in terms of the random system
parameters. The statistics of the System response can
hence be efficiently computed in the post-processing
stage. Numerical results are presented for a model
problem to demonstrate that the stochastic reduced basis
formulation gives highly accurate results for the response
statistical moments.

1. Introduction

A bladed disk assembly represents a typical periodic
structure where parameter uncertainties arising due to the
stochastic nature of manufacturing processes and in-
service degradation can lead to mistuning. The mistuning
problem, which arises from the disruption of perfect
periodicity, has received much attention in the literature
[1-5]. A driving factor behind this has been the ever
increasing need for efficient and accurate computational
models to predict the existence of rogue blades that
exhibit failure due to the excessive stress levels.
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Mistuning is known to have a potentially dramatic effect
on the free vibration behavior of coupled blades, since it
can lead to the spatial localization of energy around one
or a few blades. In the case of the forced vibration,
mistuning can lead to significant increases in the
amplitudes and stresses of blades compared to their
perfectly tuned counterparts [2]. Another characteristic is
the increase in amplitude of the maximum-responding
blade at any frequency, which could result in a
significant decrease in fatigue life. Also, moderately
weakly coupled systems are found to be more sensitive
than strongly coupled ones through a greater increase in
component response amplitudes. A detajled exposition of
factors that influence the sensitivity of disordered
periodic systems to mistuning can be found in the
literature; see, for example, 3, 4, 5].

Statistical methods provide an enabling tool for dynamic
analysis of mistuned bladed disk assembles. A direct but
computationally expensive approach to accurately
generate the response statistics remains the Monte Carlo
simulation (MCS) method. Samples of the uncertain
System parameters are generated in accordance with their
probability density function (pdf), and the equations of
motion are solved for each realization of these
parameters. Subsequently, the statistical properties of the
response amplitudes, stresses and life fatigue can be
estimated. In practice, this statistical information about
the system response can be employed to plan and
interpret test results, and also to design systems that are
more insensitive to mistunin g.

A major disadvantage of simulation techniques is that the
computational cost may become prohibitive, particularly
for systems that are required to be analyzed using high-
fidelity finite element models. This has motivated the
development of reduced-order modeling techniques [4-71
to make simulation schemes more efficient. However, in
this line of approach, a trade-off must be made between
the accuracy of the reduced-order model and
computational cost,

Another popular approach to mistuning analysis involves
the application of perturbation techniques for analytically
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approximating the response statistics [3,8-12]. Since
perturbation schemes are computationally very efficient,
they can be readily applied to large-scale finite element
models. Further, the resulting explicit expression for the
response allows for the possibility of gaining physical
insights into the dynamics of mistuned systems. Hence,
these schemes, if accurate, can allow reliable statistical
assessments during the turbomachinery design process.
However, the accuracy of perturbation methods tends to
deteriorate significantly for large coefficients of variation
of the random system parameters and increasing
frequency of excitation. In the particular case of
mistuned bladed disks, the accuracy depends on the
relative magnitudes of coupling strength, mistuning
strength, and the material damping properties.

The inherent limitations of perturbation methods were
illustrated in [3], where two perturbation approaches
were presented for mistuning analysis. In the first
approach, the forced response amplitude of each
component system is obtained directly as a perturbation
of the tuned system. It was found that for strongly
coupled systems (i.e, when the ratio of mistuning
strength to coupling is less than or equal to unity), the
accuracy deteriorates significantly if the ratio of
mistuning strength to damping ratio is of order greater
than one. In the second approach, the modal properties of
the free undamped mistuned system are first
approximated  using a perturbation  method.
Subsequently, a modal analysis is carried out to compute
the forced response of each component system. This
approach can be applied to strongly coupled systems
with any damping but its accuracy depends on the ratio
of mistuning strength to coupling strength. Also it was
found that for weakly coupled systems (i.e., when the
ratio of mistuning strength to coupling is greater than
unity), only direct simulation techniques could provide
accurate results for the response statistics.

More recently, Nair and Keane [13, 14] proposed a class
of stochastic reduced basis methods (SRBMs) to solve
random algebraic equations arising from discretization of
linear stochastic partial differential equations in space,
time, and the random dimension of the problem. This
. approach essentially involves approximating the random
solution process using the terms of the preconditioned
stochastic Krylov subspace as basis vectors. It was
shown for a class of problems that SRBMs can be orders
of magnitude more accurate than traditional perturbation
methods. A more detailed exposition of the theoretical
underpinnings of SRBMs can be found in [17].

2

The objective of this paper is to leverage SRBMs 1o
develop a novel approach for statistical analysis of the
forced response of mistuned bladed disks. In particular,
our focus is on computing the response statistics in the
frequency domain. The key idea here is to represent the
response in the frequency domain by a linear
combination of complex stochastic basis vectors with
undermined coefficients. Motivated by the theoretical
analysis in [15], we employ the terms of the
preconditioned stochastic Krylov subspace as basis
vectors. Note that for the choice of preconditioner used
in the ' present investigation and the random
parameterization of the system, the basis vectors become
equivalent to the terms of the perturbation series.
Subsequently, two variants of the stochastic Bubnov-
Galerkin (BG) scheme are employed for computing the
undetermined terms in the reduced basis representation -
an exact and a zero-order BG scheme. It is shown that
the present approach leads to an explicit expression for
the response as a function of the random system
parameters, which enables a complete statistical
characterization of the system response in a
computationally efficient fashion.

We present extensive numerical studies on a model
problem to demonstrate that highly accurate results can
be obtained for the first two statistical moments of the
response and the mean of the maximum blade amplitude.
The results obtained using SRBMs are compared with
the classical second-order perturbation method and
benchmark results computed using MCS. Our results
clearly demonstrate that SRBMs can be up to orders of
magnitude more accurate than the classical perturbation
method. We conclude this paper with an outline of some
directions for further research on stochastic reduced basis
methods for dynamic analysis.

2. Preliminaries

Let M, K and C denote the system mass, stiffness and
damping matrices respectively and N be the total number
of degrees-of-freedom (dof). Let us assume that
mistuning affects only the stiffness matrix K. Then the
equations of motion in the frequency domain can be
written as

A(0)q(8)=F, (1)

where q(8) is the random displacement response and

ez{ei} » i=1,...,p is the vector of p uncertain system

parameters. The uncertain parameters are assumed here
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to be uncorrelated zero-mean Gaussian random variables
with standard deviation ¢ . F is the external excitation
vector chosen to be the engine order excitation force.
A(8)=-&'M+joC+K(8) is the random dynamic stiffness
matrix, where @ is the external excitation frequency and
j=+~1. Note that for simplicity of notation, we do not

explicitly indicate the dependence of the dynamic
stiffness matrix and the response on the excitation
frequency o .

If K, is the stiffness matrix of the perfectly tuned

system, then K (8) can be expanded as

K(e):Ko+ﬁ<=K0+fK,.9i, @)

i=1
where 0K is the deviation of the kstiffness matrix due to

mistuning and K; is a deterministic matrix. Note that

this representation is chosen here for the sake of
convenience. When the random system parameters
appear nonlinearly in the stiffness matrix, a similar

expression can be derived by expanding K (8) in terms

of orthogonal random polynomials; see, for example,
Ghanem and Spanos [16].

Using Eqn. (2), the matrix A (8) can be written as

A(0)=A,+5A
Ag=-0’M+ joC+K, ®)
JA = 6K

The fundamental idea of SRBMs is to approximate the
solution of Eqn. (1) using a subspace spanned by a set of
stochastic basis vectors. Nair [15] presented a theoretical
Justification  for employing the terms of the
preconditioned stochastic Krylov subspace as basis
vectors. It was shown that the solution of a random
algebraic system of equations can be approximated to an
arbitrary degree of accuracy using this set of basis
vectors. For the representation of the random stiffness
matrix in Eqn. (2), and further by employing the matrix
Aj'asa preconditioner, it can be shown that the terms of
the preconditioned stochastic Krylov subspace coincides
with the perturbation series expansion. This implies that
the same results can be obtained by using the terms of
the perturbation series as stochastic basis vectors.

In the present study, we use three basis vectors to
represent the solution of Eqn. (1) as

3

4

v

4(0)= 24 (0)w, (0) =¥ (0)5(0),

where :[% (8)w.(8)y, (8)]e M denotes the matrix of

stochastic basis vectors. g:{go(e),gl(e),gz (9)}Te c™

denotes the vector of undetermined coefficients in the
reduced basis.

We choose ‘the three terms of the second-order
perturbation method as basis' vectors, As mentioned
earlier, this is equivalent to employing the first three
basis vectors spanning the preconditioned stochastic

Krylov subspace. We assume that q(8) can be well
approximated in the subspace spanned by ¥, ¥, (0) and
¥, (8). The first basis vector Yo is obtained by solving
for the frequency response of the tuned system, i.e.

vy =A;'F. S

The other two basis vectors are given by

P aq
=Y —21g. 6
Wl (9) [:]aei 1 - ()
and
PP azq

0)= =00, . 7

The response sensitivities appearing in Eqns. (6, 7) can
be computed as

dq 4 9K
ael 0 89‘ Y (€3]
and
azq A -l dK -1 JK oK 4 oK
ae,,ae,.‘A" {36’5 Ao 36, q0+T9jAo 3% ©

It can be clearly seen from the preceding equations that
sensitivity analysis of large-scale systems across a broad
range of excitation frequencies will be computationally
expensive. Further, at each excitation frequency point,
we need to compute an independent set of stochastic
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basis vectors for obtaining the statistics of the response.,
- Therefore the matrix Ay needs to be repeatedly inverted

at each excitation frequency of interest. This may lead to
a significant increase in computational cost particularly
when the size of the system is large and/or the response
at a large number of frequency points is to be computed.

The efficiency of the procedure described here can be
improved by employing the eigenvectors of the tuned
system to compute the sensitivities of q [17]. In the

particular case of cyclic structures, A, is a circulant

matrix. Since these eigenvectors coincide with the
eigenvectors of the Fourier matrix E that diagonalizes

Ay , the basis vectors can be computed more efficiently.
When the system components have multiple dof, Ay is a
block-circulant matrix that can be block-diagnolized
using the transformation (E* ®I) Ao (E®I), where *,
®, and Idenote the complex conjugate transpose of a

matrix, the Kronecker product and an identity matrix of
size equal to that of a block in Ay (i.e., of a blade-disk

sector), respectively.
3. Stochastic Subspace Projection

To compute the undetermined coefficients in the
stochastic reduced basis representation, we use stochastic
variants of the Bubnov-Galerkin (BG) scheme [15]. This
involves defining a stochastic residual error vector by
substituting Eqn. (4) in (1), which gives

r(8)=A(8)¥(8)£(0)-F - (10
For simplicity of notation, the dependence of ¥, and v,

on the random vector 8 will not be explicitly shown in
the equations that follow. In the BG scheme, the
undetermined coefficients are evaluated by enforcing the
condition that r(8) is orthogonal to ¥(8) . Two variants

of the BG scheme are presented next for the computation
of §(6), which arises from the way the orthogonality

condition for two random vectors is interpreted.
3.1, Zero-order BG Scheme

Here the undetermined coefficient vector go) s
determined by enforcing that the stochastic residual r(g)
is orthogonal to ¥(0) in an approximate sense. By
considering the inner product of two random vector

4

functions in the Hilbert space of random variables, this
involves enforcing the condition

(w*(e)r(e)>=o, (1

where <> denotes the ensemble average and the
superscript * denotes the complex conjugate transpose.
Since Egn. (11) can be interpreted as a zero-order
condition [15], this formulation is henceforth referred to
as SRBM—BGO. Eqn. (11) ultimately leads to the
following 3x3 reduced deterministic system of
equations for the coefficients &),& and &

<'P*(e)A(e)‘y(e)g-w*(o)F>=o. (12)
The deterministic system of equations to be solved for
the vector of undetermined coefficients & can be written
in a compact form as

ASRBM-RG,,‘i =F SRBM ~BG, » (13)

where and

Asran-5G, =<‘1"(9)A(°)'*’(9)>
Fzap-s0, :(qﬁ(@]@) denote the reduced dynamic
stiffness matrix and the force vector, respectively.
Explicit expressions for their elements are given in
Appendix A for the case when the elements of gare
uncorrelated zero-mean Gaussian random variables.

Once the coefficients £.¢ and &, are computed by
solving the deterministic reduced-order problem in Egn.
(13), the mean () and covariance (Z ﬁ) of the system

response at each excitation frequency can be computed
as

() =(@)=(&w +&w + &) a4
and

(Za)=(a@a @)= (¥ () (o)) -

=5 246 (v (0)y; (o)

The final expressions for the mean and covariance matrix
are given in Appendix B.
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3.2. Exact BG Scheme

By specifying that the stochastic residual error is
.orthogonal to the approximating space of basis vectors
with probability one, an alternative formulation can be
derived, henceforth referred to as SRBM-BG. In contrast

to the SRBM-BG0 formulation, this projection scheme

leads to random function models for the undetermined
coefficients since the following reduced-order random
system of equations has to be solved

Asran-568 = F gapur_pc » (16)

where ASRBM_BG:\II“(Q)A(Q)W(G) and Fopaupe =¥ (0)F are
the reduced-order random matrix and the force vector,
respectively. .

It can be seen that explicit computation of a random
function description of the undetermined coefficients
will involve the symbolic inversion of A SrBy -5 - Note
that this is readily possible here since only three vectors
are used in the reduced basis representation of the

random displacement response q(8). Hence, an explicit

expression for the system response as a function of the
random variables can be achieved. However, since the
resulting approximation is a highly nonlinear function of
the random system parameters,  analytical
characterization of the response statistics is no longer
readily possible. Fortunately, Monte Carlo simulation
schemes can be applied to efficiently compute the
response statistics by sampling the stochastic reduced
basis representation with random function models for the
undetermined coefficients.

4. A Note on Theoretical Aspects

For the sake of completeness, we cite some important
theoretical properties of SRBMs, which were derived in
[17]. The first result mentioned in the previous section
states that the solution of a linear random algebraic
system of equations with a non-singular coefficient
matrix always lie in the stochastic Krylov subspace. This
guarantees that nearly exact results can be computed
provided a sufficient number of stochastic basis vectors
are deployed in the response representation. However,
the computational cost and memory requirements
increase significantly when the higher-order basis
vectors are used. Fortunately, for many problems of
practical interest, three basis vectors are sufficient to
achieve highly accurate results; see also Section 5.

5

A desirable feature of any stochastic subspace projection
scheme is that some measure of the error in the
approximated solution must converge when the number
of basis vectors is increased. In [17] it was proved for

SRBM-BG, that the A-norm of the error is mean square

convergent. For the exact BG scheme, it was conjectured
that the A-norm of the error converges in probability.
However, these results hold only for Hermitian positive
definite matrices.

In the context of frequency response analysis of linear
stochastic structural systems, the coefficient matrix A (e)

tums out to be complex symmetric. For such non-
Hermitian matrices, convergence results can be
established for the L, norm of the residual only if an
oblique stochastic subspace projection scheme is used.
This involves incorporating  the Petrov-Galerkin
condition that the residual error is orthogonal to the
stochastic subspace 4 (o) ¥(8). Equations similar to

those presented earlier in Appendix A can be readily
derived for the reduced-order terms when this oblique
stochastic subspace projection scheme is employed; see
Appendix A of [15] for details.

In the present study, we present results only for the
orthogonal BG projection scheme. We show that, even
though this scheme is not provably optimal for non-
Hermitian matrices, highly accurate results can be
obtained for the response statistics.

5. Results and Discussion

In this section, we present numerical studies conducted
using a simplified discrete model [3] of a weakly coupled
10-blade assembly, although the SRBM schemes can be
applied to more sophisticated models. One advantage of
this simple model is the attendant ease of
implementation. Further, this problem has the essential
characteristics of real-life problems, and can help in
gaining a  preliminary understanding  of  the
computational properties of SRBMs applied to mistuning
analysis of periodic systems.

The model used here consists of a cyclic chain of masses
(each has one grounded spring  and damper)
interconnected by identical linear Springs representing
the interblade coupling. Hence the total number of
random variables p equals the number of dof N . The

mass and damping of each blade is considered to be
identical and represented by m and ¢ respectively. The
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modal stiffness of the i-th blade is represented by £,
where k =k (1+06) and 6, is the random variation in

the i-th blade stiffness. 6, are assumed to be uncorrelated
zero-mean Gaussian random variables with standard
deviation ¢ . The values of the model parameters are
taken from reference [18] to be m=0.0114 kg,
ko =430000 N/m (the nominal blade natural frequency
@ =6141.6rad/s ). The viscous damping ratio is fixed as

£=001.

The external excitation vector chosen to be the engine
order excitation force (see, for example, reference [7]),

F:F,,,{e”"}r,
where ¢ =2zn(i~1)/N, i=1..,N, F, isthe amplitude

of the excitation force, @, is the phase angle of force for
the i-th blade component, and # is the engine order.

which  can  be  written as

Numerical studies were conducted for the case when the
standard deviation of the mistuning, ¢=005. Three
different values of the non-dimensional coupling strength
parameter are considered: weak interblade coupling
R=0.1, moderately weak interblade coupling R=0.325

and strong interblade coupling R=05 R2=kc [ky s

defined as a non-dimensional interblade coupling
parameter.

Results are obtained using the exact and zero-order BG
schemes. We show here the mean and variance of the
frequency response of a typical degree of freedom, i.e.,
the first blade component. The response  statistics
computed using SRBMs are compared to the classical
second-order (PM2) perturbation method and benchmark
results generated by applying MCS. Note that in all the
figures presented, the statistical moments are plotted as
functions of the frequency of the first engine order
excitation,

Figures 1 and 2 shows the mean and standard deviation
of the first component computed using SRBM-BG,
SRBM-BG,, PM2 and MCS for R=0.1. It can be seen

that SRBM-BG provides highly accurate results despite
the fact that the coupling is weak and the damping is
low. SRBM-BG, misses the higher amplitudes within

the region of clustered resonant frequencies. PM2
drastically fails to predict these amplitudes and therefore
cannot be applied to systems with such parameters.
Figure 3 displays the mean of the maximum amplitude

among the blades. It is shown that while PM?2 clearly
excellent

over predicts MCS, SRBM-BG gives
agreement with the beqchmark results,

ponse, m

Mean Displacement.Res,

L L i
7000 7500 8000 8500 9000

Excitation Frequericy, rad/s

= H ;i
5500 5000 8500

Figure 1: Mean of the first component amplitude for
R=0.1. The solid line (—) represents exact results
obtained by MCS, the dots represent SRBM-BG, the

dashed line (—) line represents SRBM—BGO and the
dash-dotted line (-.) represents PM2 results.

700 7500 2000 2500 3000
Excitation Fréquency, rad/s

5
5500 §000 500"

Figure 2: Variance of the first component amplitude as a
function of excitation frequency for R=0.1. Same
legend as in Figure 1.
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Mean of Maximum Amplitude, m

8000 8500 3000

5500 5000 8500° 7600 7500
Excitation Frequency, rad/s

Figure 3: Mean of the maximum amplitude among the
blades across the frequency region of interest, for
R=0.1. The solid line (—) represents exact results
obtained by MCS, the dots represent SRBM-BG and the
dashed line (—) represents PM2 results.

It is well known that in the case of weak coupling (i.e.,
R=0.1), significant errors result when the classical
perturbation method is used. To circumvent this problem,
Wei and Pierre [3] proposed to use a modified
perturbation method. In their approach, the coupling
parameter is used as perturbation rather than the
mistuning parameter. Furthermore, for systems where the

ratio of mistuning to coupling o/R? >0(1), it was
concluded that only MCS could be effectively applied.
Figure 3 shows that under the same conditions of
coupling and mistuning strengths, SRBM-BG gives
highly accurate results and at a lower cost.

Figures 4 and 5 display the mean and standard deviation
of the first component system amplitudes when the
interblade coupling is moderately weak, i.e., R =0.325.
Here SRBM-BG and SRBM-BG ; match very well with
MCS results. PM2 misses the peak mean amplitude but
is accurate elsewhere. However, it fails to predict the
second moment at. different excitation frequencies, see
Figure 5.

When the interblade coupling is strong, i.e, R=0.5,
SRBM-BG and SRBM-BG , gives accurate results even
when the damping ratio is low (¢ =1%). This is

illustrated in Figures 6 and 7. In contrast to the stochastic
reduced basis approach, the traditional PM2 (which is

based on perturbation of the tuned system) is valid only
for (6/R* <0(1) and 0/¢ <0(1).

Mean Displacement Response, m
&

10 L L R
5500 6600 £500 7000 7500 8000 8500
Excitation Frequency, rad/s

Figure 4: Mean of the first component amplitude for
R =0.325. Same legend as in Figure 1.

; i ; i : -
5500 5000 6500 7000 7500 5000 8500 3000
Extitation Fredjuency, rad/s

Figure 5: Variance of the first component amplitude as a
function of excitation frequency for R =0.325. Same
legend as in Figure 1.
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Mean Displacement Response, m

5500 6000 6500 7000 7500 8000 8500 9000
Excitation Frequency, rad/s

Figure 6: Mean of the first component amplitude for
R =0.5. Same legend as in Figure 1.

) : 2
Variance of Displacement Response, m
. o

07 H i k
3500 5600 §500 8000 500 2000

7000 00.
Excitation Frequency, radfs

Figure 7: Variance of the first component amplitude for
R=0.5. Same legend as in Figure 1.

The numerical results obtained for this example problem
clearly depicts the accuracy of SRBMs. In particular, the
response statistical moments computed using SRBM-BG
can be orders of magnitude more accurate than the
classical perturbation method.

6. Concluding Remarks

In this paper, we present a stochastic reduced basis
approach for computing the forced response statistics of
mistuned bladed disk assemblies. The fundamental idea

8

is to approximate the frequency domain response using
the subspace spanned by the first three terms of the
stochastic Krylov subspace. For the model problem
considered, this is shown to be equivalent to employing
the terms of the perturbation series as stochastic basis
vectors. Subsequently, two stochastic variants of the
Bubnov-Galerkin scheme were presented for computing
the undetermined coefficients in the reduced basis
representation. It is shown that this allows us to arrive at
explicit expressions for the system response as a function
of the random system parameters. This in turn enables an
efficient statistical characterization of the system
response. Some theoretical properties of the Bubnov-
Galerkin scheme are also outlined.

Extensive numerical studies on a model problem are
presented to test the veracity of the present approach.
The results computed using the stochastic reduced basis
methods (SRBMs) have been compared with the
classical ~second-order perturbation method and
benchmark results generated using Monte Carlo
simulation. It is shown that SRBMs give accurate results
for the response statistics across a wide range of coupling
strengths. In particular, the results clearly demonstrate
that SRBMs can be orders of magnitude more accurate
than the classical second-order perturbation method,
particularly for the mean of the maximum blade
displacement.

Even though, the results presented here are for a simple
model problem, SRBMs can be readily applied to
mistuning analysis of bladed disks analyzed using large-
scale finite element models. It also remains to be seen
whether employing the oblique stochastic subspace
projection outlined in this paper can further improve the
accuracy of the response statistics.
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Appendix A

Here, we present expressions for the elements of the
reduced matrix Agpp, —sg, and vector FSRBM_BGO when

the elements of @ are uncorrelated zero-mean Gaussian
random variables with standard deviation o .
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.
Aszau-sc, (L1) = Vo AW Here, we present expressions for the mean ( ya) and

covariance (Z ﬁ) of the system response when the

K dq
Aswa-sc, (1.2) = o'y Z{a—;}'—} elements of @are uncorrelated zero-mean Gaussian
: random variables with standard deviation o .
* azq
Agemr-sc (L3) =020 Ay > —1-
sram-5G, (1.3) 0 0239{2 ( ) <.§0y/0+§l§ae o+
E)q oK L& ﬂ,.eg
A szari-pc, (21) =0 2 522%89 26, e
86’ 86
2109 * 0 +& 0
— 16, (2 2)= 2i=1[%Aoa_;) ( ) SV t+ &,y ?—:13
2 o OK 9% ( ) <§o§o'//o'// +&& %Z +Z
2,3)= 866, 6) — e pt 99
ASRBM—BGO( 3) i,j,kz,l=1< Y% l)[ael aej aekaol a
* 4 q
86;
§0§2WOUZ‘]8986 >
where
(0/0:8) =310+ 803y + 83y <§1§o[§ 5 jwmé.zl s
Lifi=j : o 3%
d e =
and o {O,ifi;tj ‘5‘52%39 ,%aeae 99>
2 9%q" ro3
Ao _sg, (31) =02 A 4_g
SRBM BG.,( ) {El 39,-2} oWo <§2«§0 (,;:3989 ;
68 3 60,5 55
A (32)= S (66,68) g’ K dq “,,2.18980 =T
SRBM ~BGy \7» Ny Vi Ykl 89180] aek 891

.8 ¥q 2 Pq
66,
<§252,-,,Z=] 96,96, ‘gfi,%laeae 99>

i, jokd=1

Y
Agrars-sc, (33) = i <9‘91 0"6»{8989 AOE)@;;@J

The covariance matrix of the frequency response can be

F — 2 2 azq *F . . pe
sram-ncy — | VO Z38? further simplified as
(Z ) $bo '/follfo"'oz‘fole//oz 3
=l a 9
Appendix B o2 3‘1 3q
) _9‘l_f’_2L
) 6262@1‘%1:1(@9]8166[)aeiaej 96,06,

9
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