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Abstract. The optimization of a transonic civil transport aircraft is a
complex and difficult task, due to the complexity of the cost surfaces
and the human expertise that is necessary in order to achieve high
quality results. In this paper we describe an Automated Optimization
System that provide recommendations to design engineers on the
choice of optimization search technique to use, especially when
searching within familiar domains. The Automated Optimization
System uses Artificial Intelligence, specifically machine learning
techniques to perform knowledge discovery from past optimization
searches and reuses this knowledge to facilitate intelligent
recommendations for search routines selection. Results of a case study
on the design of a transonic civil transport aircraft wing using the
Automated Optimization System are presented in the paper. It is
shown that the Automated Optimization System not only aids design
engineers to make improved decisions when working on complex
aircraft wing but also helps improve design search performance.

1. Introduction

Optimization is a mature technology that has been studied extensively by
researchers over the last half century. Although available for many years it
has only recently been heavily used by the design community (Keane and
Nair, 1999). This take up is now happening because increases in computing
power allow increasingly accurate analysis codes to be deployed in this way,
see for example the work reported in (Jameson, 1999) in a recent theme
issue dedicated to optimization. With a long history of research and
development, optimization methods have evolved considerably and many
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algorithms and implementations are now available. Generally, they can be
classified into two broad categories: conventional numerical optimization
methods (mostly gradient based) and stochastic optimization methods.

Typical conventional methods are CFSQP; Approx; Simplex;
Hooke&Jeeves and others (Lawrence and Tits, 1996; Schwefel, 1995 ;
Siddall, 1982). Among the modem stochastic optimizers are Genetic
Algorithms (GA); Simulated Annealing (SA); Evolutionary Programming
(EP) and Evolution Strategies (ES) (Yin & Germany, 1993; Kirkpatrick et
al., 1983). Gradient-based methods have the known advantage of their
efficiency; however, they are very sensitive to starting point selection and
are more likely to stop at non-global optima than modern stochastic
algorithms. Stochastic techniques on the other hand produce new design
points that do not use information about the local slope of the objective
function and thus are not prone to stalling in false optima. They do tend to
require more analysis effort, however.

It remains the case, however, that much complex engineering design
exploration is still carried out manually. The design engineer use computer-
aided-design tools to visualize and modify designs and evaluate their
performance, providing information about their merits and limitations by
numerical simulations. He then enters a design-evaluate-redesign process
and stops when he thinks that the design is adequate based on his experience
and knowledge of past designs. Engineering design optimization helps
reduces the cycle time for these design iteration loops and often finds better
designs by computerizing parts of this iterative process. In general, given a
set of design variables D, a set of bounds and constraints B and C,
constrained design optimization is the problem of determining values of D to
minimize or maximize an objective function F(D), subjected to B and C.

In practice, however, unless one knows which optimization methods most
suits the design problem in hand, the optimization may not perform properly
or achieve truly optimum design. Some methods might not even be capable
of producing a feasible design on some problems. Sandgren (1997) applied
35 nonlinear optimization algorithms to 30 engineering design optimization
problems and compared their performance. Bramlette and Cusic (1989) also
compared the application and performance of different methods including
gradient based numerical optimization to the design and manufacture of
aeronautical systems. The applicability of different conventional numerical
optimization methods to aircraft design has been further explored by
Sobieszczanski-Sobieski & Haftka (1996) and Vanderplaats (1984). The
general conclusion obtained from all these studies is that no single
optimization search technique always performs well in all optimization
problems.
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Nevertheless, it remains common to find design engineers relying very
much on their intuition, experience and knowledge of the design domain
when making a choice of optimization method to employ whenever a design
search is conducted. The effect of this is that the design quality is heavily
dependent on the experiences and knowledge of the design engineer and it
may lead to non-optimal designs being produced at high cost due to the
limited experience of novice or inexperienced designers (i.e., in reality,
designers often stick to a very limited range of optimization techniques
regardless of the design problem involved or the sophistication of any
optimization methods suite available). It may also have a detrimental effect
on design innovation by placing too much dependence on a single
individual’s past designs, which usually contain biases.

Few studies in the literature have directly addressed the problem of
choice of optimization search routines for engineering designs. Nevertheless,
the problem that we are considering shows some resemblance to those of the
Problem Solving Community (Dyksen and Gritter, 1992; and Houstis ef al.,
2001). Generally, they try to map scientific software to various classes of
problems that are represented by partial differential equations (PDEs). For
example, in Houstis ez al., 2001; based on the characteristics of PDE models,
recommendations are made from the choices of numerous scientific software
approaches available. In contrast, engineering design optimization cannot be
easily set in these terms, as the design problems (objective functions) are not
often represented directly by PDEs.

Although the system developed for mapping PDE models to scientific
software is not directly applicable here, the implementation approaches
presented have provided resources that have aid in the development of an
Automated Optimization System. This paper thus describes the Automated
Optimization System developed for tackling this problem of choice of
optimization search methods in complex engineering design optimization.
This involves the use of Artificial Intelligence, specifically Machine
Learning techniques, to learn about the merits and limitations of different
search methods on a design domain, such that recommendations of
appropriate methods could be made to search on future design problems
within given domain. The design of the transonic civil transport aircraft
wings using the Automated Optimization System is presented in this paper.
It is shown that the system can help reduce the reliance on optimization
domain experts by ensuring that the minimum of knowledge on optimization
techniques is required from design engineers when performing search
activities. At the same time, it improves the performance of design
engineering optimization.
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2. Automated Optimization System (AOS)

Companies usually have limited diversity of trade and thus work-scope. For
example, BAE (Airbus) focuses mainly on aircraft design; Rolls-Royce on
engine design; while a ship building company focuses on ship design.
Depending on the complexity of a domain, some optimization techniques
that may have proven to be useful in one domain might not work so well in
other domains. The same reasoning applies to individual design problems
within a domain. This fundamental observation is the reason why it is
important to have an Automated Optimization System (AOS) that makes
recommendations to designers whenever a design-space search is to be
initiated on a design problem. The AOS described in this paper is generally
made up of three major components; namely the 1) Optimization Engine 2)
Domain Knowledge Discovery and 3) Search -Method Advisor. Here, we
briefly describe each of these components.

2.1. OPTIMIZATION ENGINE

The Optimization Engine is basically an optimization software package that
contains multiple sophisticated optimization and exploration techniques for
design-space search. The Optimization Engine used in the AOS is the one
described in (Keane, 1995), and known as OPTIONS. OPTIONS is a design
exploration and optimization package that may be used to study and
compare a large range of optimization methods when applied to design
problems. The user provides routines describing his or her problem plus
enfries in a problem-specific database. It is then possible to manipulate the
design manually, systematically map out the effects of design changes, or,
having specified design variables, constraints and an objective function,
invoke one of the many optimizers within the package. Among the many
different optimization search routines in OPTIONS, some are from standard
libraries (Schwefel, 1995 and Siddall, 1982), while others have been
specially developed for the suite, based on ideas culled from the literature.
OPTIONS Optimization Engine currently contains the following 30
optimization routine implementations:

o The Davidon-Fletcher-Powell strategy (David) by Siddall (1982);

e Fletcher’s 1972 method (Fletch) by Siddall (1982);

e Jacobson and Oksman Method (Jo) by Siddall (1982);

e Powell direct search method (PDS) by Siddall (1982);

e Hooke and Jeeves direct search (Seek) by Siddall (1982);

o The simplex strategy (Simplx) of Nelder & Meade by Siddall
(1982);

o The method of successive linear approximation (Approx) by Siddall
(1982);
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e Adaptive random search (Adrans) by Siddall (1982);

¢ A bit climbing algorithm (BClimb) (Davis, 1991);

e A dynamic hill-climbing algorithm (DHClimb) (Yu & Maza, 1993);

¢ A population-based incremental learning algorithm (PBIL) (Baluja,
1994);

e The Powell routine as implemented in the Numerical Recipes
cookbook (Num Rep) (Press et al., 1986);

e A design of experiments based optimizer using either pure random
numbers or pseudo random sequences (DoE) (Statnikov& Matusov,
1995);

o Repeated application of a one-dimensional Fibonacci search
(Fibonacci) by Schwefel (1995);

e Repeated application of a one-dimensional Golden section search
(Golden Sect) by Schwefel (1995);

e Repeated application of a one-dimensional Lagrangian interpolation
search (Lagrange Int) by Schwefel (1995);

e Hooke and Jeeves direct search (Hooke&Jeeves) by Schwefel
(1995);

e Rosenbrock’s rotating co-ordinated search  (Rosenbrock)
(Rosenbrock, 1960) by Schwefel (1995);

e The strategy of Davis, Swan and Campey, with Gram-Schmidt
orthogonalization (DSCG) by Schwefel (1995);

e The strategy of Davis, Swan and Campey with Palmer
orthogonalizational (DSCP) by Schwefel (1995);

e Powell’s strategy of conjugate directions (Powell) by Schwefel
(1995);

e The Davidon-Fletcher-Powell strategy (DFPS) by Schwefel (1995);

e The simplex strategy (Simplex) of Nelder & Meade by Schwefel
(1995);

e The complex strategy (Complex) by Schwefel (1995);

e Schwefel’s two-membered evolution strategy (2MES) by Schwefel

(1995);
e Schwefel’s multi-membered evolution strategy (MMES) by
Schwefel (1995);

e A genetic algorithm based on clustering and sharing (GA) (Yin &
Germay, 1993);
Simulated annealing (SA) (Kirkpatrick ez al., 1983);

e Evolutionary programming (EP) (Fogel, 1993);

¢ An evolution strategy based on the earlier work of Bick ef al (ES)
(Back et al., 1991).
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2.2. DOMAIN KNOWLEDGE DISCOVERY

The Automated Optimization System makes use of a Domain Knowledge
Base that contains information about the merits and limitations of each
search methods on particular design domains. This form of knowledge is
often specialized and applicable only to a single domain.

2.2.1. Data Acquisition

The domain knowledge can be derived from the mass of data that exists
implicitly in past designs. Throughout the entire engineering design
processes, designer engineers often produce a great deal of data as a result of
their design-evaluate-redesign actions. These data have often been discarded,
and thus represents a potential source of useful information from which
knowledge may be extracted for use in future design activities. The other
form of data considered in this paper is obtained via offline simulations
conducted on a range of design problems sampled from the design domains
that are of interest. The Latin Hypercube method is used to generate the
sampled design problems so as to provide a good representation of the
domain of interest.

In engineering design, it is common for design problems from a single
domain to be uniquely identified by a set of key design parameters. For
example in the aircraft wing domain, this set of parameters may include
cruise height, mach number and fuel weight'. These parameters that
characterize each problem are termed the ‘Domain Problem Descriptors’ or
DPD. Here it is assumed that the DPDs vary over some predefined ranges
specified by the design engineers. Offline simulations are then conducted
over the set of sampled design problems by performing searches on them
using every optimization search routine available in the Optimization engine.
The data generated by the simulations is used to define the merits and
limitations of the optimization search routines to the domain.

2.2.2. Machine Learning Techniques for Knowledge Discovery

Here machine learning techniques are used to carry out knowledge discovery
on the data archived from past designs. Machine learning is a category of
Artificial Intelligence that is particularly suitable for use in the Automated
Optimization System because it is able to automate the process of
generalizing past design data on the applicability of optimization search
methods to different subsets of problems within a design domain. To extract
knowledge about the merits and limitations of the many optimization search
methods on a design domain, using machine learning, it is necessary to pre-
process the archives from past design studies before they can be use. This

' Note that here cruise height, mach number and fuel weight are not design variables
to be optimized but rather considered the fixed parameters of a design problem and
vary uniquely for different problems within the aircraft wing design domain.
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involves the conversion of the original data sources into a table-like dataset,
such that the sampled design problems are labeled and ranked according to
the optimization search method that performs the ‘best’. Machine learning is
then employed as a classifier on these pre-processed datasets. It aims to
generalize or learn as much as possible from the dataset, so as to accurately
identify clusters of design problems from the sampled set that belong to the
same class. The resulting classes represent the search methods that were
observed to be ‘best’, among all those available in the Optimization engine.
If learning is successful, extrapolating from these data should be possible to
aid in future design sessions by successfully recommending the most
appropriate optimization technique that best matches a new design problem
to be searched.

Note that learning from past designs through feature extraction and
indexing is, of course, nothing novel. It is just an analogue to designers’
actions in deriving qualitative rules from their experiences on past designs
and using these rules to aid them in making decisions for new designs.
However, the novelty here lies in our attempt to model and improve this
learning process using machine over human learning.

2.2.3. A Brief Survey of Machine Learning Models

A brief survey of the many machine learning models described in Aha,
1992; Chen et al., 1991; Deerwester et al., 1990; Holte, 1993; Langley and
Sage, 1994 and Quinlan, 1993 has been performed to identify a suitable
learning model for this application (see figure 1 for a lists of the different
learning models investigated here). These models were evaluated according
to their accuracy estimation, standard deviation and transparency. The
algorithms that have appeared to be the most competitive in this application
are C4.5, Naive Bayes and Probabilistic Neural Network (Quinlan, 1993;
Langley and Sage, 1994; Chen et al., 1991). For example, figure 1 reports
the percentage accuracy estimation and standard deviation of each machine
learning models when applied on the aircraft wing design domain (the
details of this domain are presented in section 3). Although most of the
machine learning techniques considered here allow manual tuning, this has
been considered to be too time-consuming and computationally expensive.
Among the techniques considered, the use of decision tree inductive learning
model such as C4.5 (Quinlan, 1993) is preferred because they produce
reasonable classification accuracy at relatively low cost but more
importantly, because they posses the ability to generate trees or rules that
provide the transparency we seek to give to designers. Designers often lack
great expertise in the use of optimization methods and therefore have little
confidence that extensive computational runs can produce worthwhile results
as opposed to just burning up compute cycles. Therefore, when
recommending optimization search methods for design optimization, it is
important for the decision-making process to provide some transparency. Of
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the many machine learning models available, knowledge derived in the form
of rules using decision tree models seems to satisfy this human-centered
criterion the most. Besides, human specialists can validate these machine-
generated rules and also use them to enhance the domain and optimization

knowledge of less experienced designers.

” v ’ Best Accdracy ;
76.1% £ 5.6% :

§..%8 B

% Accuracy

5

Accuracy Estimation of Machine
Learning Algorithm,
Mean + Standard Deviation

IR ID3 C45 IB NB LSI PNN

Al Machine Learning Techniques
LEGENDS

IR Simple Classifier (Holte, 1993)
ID3 Decision Trees I (Quinlan, 1993)
C4.5 | Decision Trees II (Quinlan, 1993)
1B Nearest-Neighbor (Instance-based) (Aha, 1992)
NB Probabilistic (Naive-Bayes) (Langley et al, 1994)
LSI Information Retrieval (Latent Semantic Indexing) (Deerwester et
al, 1990)
PNN | Neural Network (Probabilistic Neural Network)
(Chen et al, 1991)
Figure 1: Accuracy Estimation of the different machine learning algorithms when
tested over the Aircraft Wing Design Domain. The machine leaming algorithms
investigated are also listed.

2.3. SEARCH METHOD ADVISOR

The rules derived by the Domain Knowledge Discovery component are
directly incorporated into the Search Method Advisor. When presented with
a new design problem, this rule-based component actively advises on the
choice of search method using past experiences.
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3. Demonstration of Automated Optimization System On The Domain
of Transonic Civil Transport Aircraft Wing Design

In this section, the use of the Automated Optimization System in the design
of transonic civil transport aircraft wings (Keane and Petruzzelli 2000) is
presented.

The design of the wings for a transonic civil transport aircraft is an
extremely complex task. It is normally undertaken over an extended time
period and at a variety of levels of complexity. Typically, simple empirical
models are use at the earliest stages of concept design, followed by ever
more complex methods as the design process proceeds towards the final
detailed stages. The parameters used to describe the wing design problem
considered here consist of the free-stream velocity and coefficient of lift of
the wing together with a small number of overall wing geometry variables.
The geometry is characterized by the plan-form shape of the wing together
with several span-wise functions such as twist and thickness to chord ratio.
These are represented by eleven parameters (i.e., eleven optimization design
variables). In order to prevent the search from driving the designs to
unworkable extremes, several constraints are placed on the wings designed.
These are the under-carriage bay length (which must be accommodated
within the root to kink section of the wing), the fuel tank volume (which
must be accommodated between the main spars within the wing), the wing
weight and the pitch-up margin. A typical geometric view of such an aircraft
with streamlines and its wing design variables are shown in figure 2. The
goal to this problem is to design a wing with minimal drag based on
empirical models.

3.1. AIRCRAFT WING DOMAIN KNOWLEDGE

To use the Automated Optimization System for wing design, the
construction of a Knowledge Base for the domain is essential. To do this, a
set of 729 design problems is first sampled using the Latin hypercube
method, each defined by a cruise height, mach number and fuel weight
fraction, bounded between 7500 ~ 12,000 meters, 0.1 ~ 0.85, and 0.2 ~ 0.5,
respectively”. The C4.5 induction algorithm is then used to extract rules
from two-thirds of the processed dataset obtained via offline simulations.
Table 1 shows a portion of the processed dataset used by the C4.5 algorithm
for domain knowledge discovery and extraction. The remaining one-third of

? The ranges of cruise height, mach number and fuel weight fraction were obtained
from design engineers working within the aircraft wing design domain.
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the sampled design problems form the validation set, which is later used to
validate the system.

11 Wing Design Variable Definitions Four Design Constraints
Wing Area Root thickness/chord Under-Carriage bay length
Aspect Ratio Kink thickness/chord Wing weight
Leading edge sweep | Tip thickness/chord Fuel tank volume
Inner panel taper Wash out at tip Pitch-up margin
ratio i : :

Outer panel taper Fraction of tip wash-
ratio out at kink

Trailing edge kink

position

Figure 2: Geometric view of streamlines over a Transonic Civil Transport Aircraft
and its wing design variables and constraints.

Table 1: A portion of the Processed Dataset constructed from past aircraft wing
design activities and offline simulations.

Domain Problem Descriptors of ‘Best’
Aircraft Wing Design Problem Optimization
F-Mach Fuel-Fraction Height Technique
(0.1~ 0.85) 0.2~0.5) (7500 ~ 12,000) ‘

0.35 0.225 8625.0 Approx
0.725 0.425 10125.0 PDS
0.10 0.450 9750.0 ‘ Powell
0.82 0.45 7500.0 Fletch
0.75 0.275 8250.0 2MES
0.65 0.175 10075.0 Lagrange Int
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The average design search performance (i.e., search efficiency and
quality) of each search routine in the aircraft wing design domain is also
summarized in figure 3, with the values normalized to unity®. Even though
there are 30 optimization search routines available in the OPTIONS system,
only six were found to figure as ‘best’, within the design domain. The six
optimization techniques identified were Approx, PDS, Powell, Fletch,
Lagrange Int and 2MES. Each abbreviation represents an optimization
search routine described previously in section 2.1.

Figure 4 shows the six rules found for the aircraft wing design domain, by
the C4.5 machine learning induction algorithm. This knowledge can be used
to aid designer engineers in future design search activities, by
recommending search methods that would perform well when used to
optimize a new aircraft wing design problem.
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Figure 3: A Plot of Average Design Search Efficiency against Average Design Search
Quality for each Search Method used in the.Aircraft Wing Design Domain. The
performances are normalized to unity.

* Here, 1 or unity represents the best possible performance a search method can
achieve.
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Rule 1:
{F_Mach<=0.1625} OR
{ (F_Mach <= 0.225) AND (Height > 11250) } OR
{ (06625 >= F_Mach > 0.6) AND (Fuel_Frac > 0.45) AND (10125 >= Height > 9000) } OR
{ (0.6625 => F_Mach > 0.6) AND (Fuel_Frac <= 0.3) AND (Height > 10500) } OR
= Powell
Rule 2:
{0.6 >=F_Mach > 0225} OR
{(0.6 >=F_Mach > 0.1625) AND (Fuel Frac <= 0.45) AND (Height <= 11250) } OR
{ (0.6 >= F_Mach > 0.1625) AND (Height <= 9000) } OR
= Approx
Rule 3:
{0.7875 >= F_Mach > 0.6625 } OR
{(0.225 >=F_Mach > 0.1625) AND (Fuel_Frac > 0.45) AND (11250 >= Height > 9000) } OR
{(0.6625 >= F_Mach > 0.6) AND (Fuel_Frac > 0.275) AND ( 9000 >= Height > 7500) } OR
{ (F_Mach > 0.6) AND (Height > 9375) } OR
= PDS
Rule 4:
{ (0.6625 >= F_Mach > 0.6) AND (Fuel_Frac <= 0.3) AND (10500 >= Height > 9750) }
= Lagrange Int
Rule 5:
{ (F_Mach > 0.7875) AND (Height <= 9375) }
=» Fletch
Rule 6:
{ (F_Mach > 0.725) AND (Fuel_Frac <= 0.375) AND (8250 >= Height > 7875) }
= 2MES

Figure 4: Knowledge of the Aircraft Wing Design Domain in the form of rules. These are
derived by the C4.5 inductive algorithm using the datasets obtained from offline simulations.

3.2. PERFORMANCE OF AUTOMATED OPTIMIZATION SYSTEM FOR
CIVIL TRANSPORT AIRCRAFT WING DESIGN

When assessing the Automated Optimization System, it is useful to develop
standards for comparison. The following approaches are termed ‘Common
Designer Strategies’ (CDS). These are derived from analogues to designers’
behaviors (both novices and optimization experts) when working with
design problems using a basic optimization engine (i.e., one that requires
design engineers to choose the optimization search methods manually, based
on experience). Five potential strategies have been identified as follows:

e The simplest and most obvious strategy adopted by a design
engineer (usually a novice) is (CDSI) ‘Random Guessing’. This
just means randomly choosing optimization routines from those
available in the Optimization engine to search on each design
problem.
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¢ The second strategy (CDS2) is the notion of always using the same
randomly selected optimization routine given that it was able to
successfully generate a feasible design the first time it was used in a
domain.

e The third strategy (CDS3) is to utilize an optimization method that is
thought to be most robust, e.g., the Evolutionary Programming (EP)
optimization method is often regarded to be most robust and thus
chosen.

e The fourth strategy (CDS4) is an analogue to the optimization
method favoritism that may be displayed by a designer. Here the
Genetic Algorithm (GA) is chosen to be the designer’s favorite.

e The final strategy identified (CDSS5), is utilizing a optimization
method that has generally been accepted as having the ability to
provide a design within the shortest time, e.g., Successive linear
approximation (Approx) is often regarded as the fastest available

" method.

The normalized search performances for the basic optimization engine
combined with the various ‘Common Designer Strategies’ and the
Automated Optimization System are summarized in table 2. These
performance statistics were estimated based on searches conducted on the
validation samples mentioned previously. It may be seen from table 2 that
the use of Automated Optimization System results in significant
improvement in aircraft wing design search performance.

Table 2: Normalized Performance Measures of the Automated Optimization System based
on the remaining 1/3 validation samples, in comparison with the ‘Common Designers
Strategies’ CDS 1-5. N.B. Performance here is an average of the speed of the system and
the quality of the results obtained, taken over 243 unseen problems from the domain.

Strategy for Choice of Estimated Optimization Search
Optimization Search Performance on the Aircraft
Technique Wing Design Domain*
CDS1 0.2496
CDS2 0.3155
CDS3 0.3882
CDS4 0.3861
CDS5 0.4443
Automated Optimization System
using Machine Learning (C4.5 0.7191
Induction Method)

* The nearer the value is to 1, the better is the performances of each strategy in
conducting design search in the aircraft wing domain.



14 Y.S. ONG AND AJ. KEANE

4. Conclusions

In this paper an Automated Optimization System for complex engineering
design optimization is presented. The system is made up of three major
components, the Optimization Engine, Domain Knowledge Discovery and
Search Method Advisor. The C4.5 induction algorithm has been used for
performing knowledge discovery on data archived from past design studies.
It is shown that significant improvement in search performances can be
achieved if design searches are conducted using the Automated Optimization
System. Besides improvement in design search performance, the system also
helps reduce reliance on optimization domain experts by ensuring that
minimum knowledge of optimization techniques is required by design
engineers when performing design searches, and at the same time,
eliminating any human biases that may exists.
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