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On stress concentration on nearly flat contacts

M Ciavarella?*, G Macina? and G P Demelio?
ICNR-ITC, Bari, Italy

2Centro di Meccanica Computazionale (CEMEC) and DIMeG-Politecnico di Bari, Bari, Italy

Abstract: Fretting fatigue can severely damage components subjected to oscillatory tangential loads,
leading to a dramatic reduction in fatigue life and causing catastrophic ruptures. A conservative approach
that can be used when considering the effect of stress concentration induced by fretting is to ensure that the
peak stress is smaller than the fatigue limit of the material. However, this depends on details of the
geometry as well as loading conditions. In the present work, the contact problem of a flat rounded punch in
contact with a half-plane is considered, where a dovetail joint contact geometry is approximated and the
classical Hertzian contact is retrieved in the limit. Developing the analytical results given by Ciavarella,
Hills and Monno, an approximate Hertzian equivalent solution using Cattaneo superposition is obtained,
leading to a simple formula to estimate the maximum tangential stress as a function of the load parameter
Q/(f P) and geometric parameter a/b. The accuracy of the formula is checked numerically. The proposed
formula gives a maximum error as low as 4 per cent in the case of zero bulk loads. For non-zero bulk loads
an analytical solution is possible for the Hertzian case for moderate bulk. This leads to a second general
formula containing the three dependencies (geometry, tangential load and bulk stress), which also gives a
very good approximation for rounded flat and larger bulk loads, the error being generally well below 10

per cent.
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1 INTRODUCTION

Fretting fatigue is known to occur in mechanical devices
where one assembly of two components is under oscillatory
tangential load. The localized relative motion associated
with fretting fatigue can cause localized damage and
induce accelerated crack initiation, thus affecting the
fatigue life of the mechanical device. Nowadays, fretting
fatigue is of particular interest in the estimation of the
fatigue life of aeronautical components such as discs and
blades in turbine engines, which are connected via dovetail
Joints (Fig. 1a). Both theoretical and experimental studies
on fretting fatigue have been mostly focused on simple
geometries, such as the Hertzian problem, even though
dovetail joints can be more accurately reproduced by flat
rounded punches. The contact problem of a flat rounded
punch in contact with an elastic half-plane has recently
been solved by Ciavarella et al. [1]. In particular, they
considered the problem shown in Fig. 1b, where a flat
rounded punch is subjected to an oscillatory tangential load
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Q and pushed in contact with an elastic half-plane by a
constant force P. The half-plane is loaded by a uniform
remote bulk stress Opyy, cycling in phase with the tan-
gential load (because generally the source of both com-
ponents is the same).

An important geometric parameter in the flat rounded
punch contact problem is the aspect ratio a/b between the
semi-width of the flat region, a, and the semi-width of the
whole contact region, b. Notice that the Hertzian punch
problem (cylindrical profile) is retrieved for a/b — 0,
while the flat punch case is retrieved for a/b — 1
(although not exactly, being the half-plane -elasticity
approximate in this case).

More recently, Giannakopoulos et al. [2] considered the
contact problem of a flat rounded punch in contact with a
finite thick elastic slab and introduced the concept of rotch
analogue. They compared the case of a rounded flat contact
with the case of a rounded crack and the Creager—Paris
equations for the latter case were modified to fit the stress
field for the contact case. However, the notch analogue
remains simply a stress concentration criterion for initiation
in the simplest form, i.e. conservatively assuming that
any crack initiated may propagate and ultimately induce
failure. It is well known that, particularly for severe stress
concentrations, initiation may only induce self-arrested
cracks. Further, in the case of cracks, it is well known
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Fig.1 (a) Schematic of dovetail joints. (b) A flat rounded punch in contact with an elastic half-plane

that the appropriate condition becomes the threshold on
the stress intensity range amplitude, rather than the peak
stress.

Supposing, however, that the stress concentration is not
too large, so that a peak stress criterion is realistically a
design methodology, clearly it is the peak stress only,
induced by the contact, that matters, and Giannakopoulos
et al. [2] have already given a simple formula for a limited
range of conditions, namely a nearly flat punch under full
sliding conditions (when bulk stress effects on shear
traction can be neglected, as well as, in turn, tensile surface
stresses). The maximum surface tangential stress 0, would
also be corrected for finite thickness on one of the
contacting bodies, but in general for the partial slip
condition, it depends on the exact loading condition.

Turning to stating the problem in mathematical terms,
the 0, peak is localized at the trailing edge of the punch,
i.e. the point (,0) in Fig. 1b. For elastically similar half-
planes in contact, p(x) and ¢(x), i.e. the normal and
tangential tractions respectively, are uncoupled, and using
the classical integrals of the point force solution, as in
references [3] and [4],

2" 4
O xx(b, 0) :EJ bb—;;dl+‘7bu1k+0§x €]
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where the notation in reference [2] has been used. In
particular, regarding the 0 P_ term, the correction due to the
finite thickness of the slab over which the punch slides will
receive no further attention in the present paper. The
Giannakopoulus et al. [2] result, for the case of full sliding,

i.e. g(x) = f p(x), reads

1.926 _Q_
NN

Ox(b, 0) = + Opu + 0, 2)

This formula is exact only under full siiding conditions and
by direct integration of equation (1) can be found to
overestimate significantly the maximum surface tangential
stress, up to 15 per cent, when Q < fP. The aim of this
work is to introduce simple and more accurate formulae for
estimating the maximum surface tangential stress, and thus
to estimate the non-linear effect of bulk stress into the
fretting-induced stress concentration. Moreover, in order to
judge the accuracy of the various formulae, approximated
analytical results are compared with numerical results
derived by integrating the general expression (1) by means
of Chebyshev polynomials of the second type.
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2 AN ALTERNATIVE EXPRESSION FOR THE
CONTACT PRESSURE DISTRIBUTION OF A
FLAT ROUNDED PUNCH

The contact pressure distribution at the interface between a
flat rounded punch and an elastic half-plane has been given
by Ciavarella et al. [1]. However, in this work, an
alternative expression is used as presented below:

x(¢) = b sin(ep)

- .
2mb (—— q)0> cos(¢) + mbln w
2 sin(@ — ¢o)

cos(¢p) — cos(®g)

b Rl cos(@) — cos(pq)
P(‘P)'Ig == — 2
2D COS(CPO) - "'2—"Sln(2(p0) -+ mb (@0 — 5)
(3)

where

(o = arcsin (a/b)

R = radius of the rounded edge
m=—1/R

D= —a/R

P = normal load

Equilibrium along the normal direction implies that

b mb b1
=— 2D ——si b -
P " { cos (¢@g) > sin (2¢q) + m <qu 2)}
“
where
A = composite modulus [for the same materials in plane
strain A = 4(1 — v?)/E]

v = Poisson’s ratio
E = Young’s modulus

Substituting m and @ as defined above in equation (4) and

rearranging, a simple relation between the normal load P
and the contact width 2 is then derived:

PAR—E—E 1- az—- resin( & 3)
2 2 b p) ~ A

Also, recalling that ¢ = arcsin(x/b) and ¢y = arcsin(a/b),
from equation (3) it follows that

wh 5 arcsin (2) _ Vb? - x2
p(x) P arcsin A A

_m(
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This relation can be rearranged as the sum of a Hertzian
contribution ppe,(x) and a corrective solution peor(x), i.e.
Peor(X) = Pher(X) + Peor(x), where the Hertzian term is
given by

b 2 /a x\ 2
Pher(X) = — R [1 — arcsin (Z)J 1- (E)

b x\?2
T AR 1‘(‘5) @

It is worth noticing that for @ = 0 (the Hertzian problem)
the load relation gives 2P/(%th) = b/(AR), whereas in
general R* is an equivalent Hertzian radius defined as

" R

~ 1= @/marcsin (a/b) ®

In Fig. 2 the pressure distribution for two flat rounded
punches with different aspect ratios a/b is plotted together
with the Hertzian pressure contribution. It is clearly shown
that the pressure distribution close to the rounded edge is
basically given by the Hertzian equivalent term, whereas
the Hertzian contribution alone overestimates the contact
pressure as the centre of the contact path is approached.
Thus, the larger the ratio a/b the bigger the difference
between the actual and Hertzian pressure contributions, and
in the limit for a/b =0 the pure Hertzian problem is
recovered.

3 AN APPROXIMATED EXPRESSION FOR THE
TANGENTIAL TRACTIONS DISTRIBUTION OF
A FLAT ROUNDED PUNCH

If the bulk stress is zero, the tangential tractions g(x) can be
approximated as the sum of two elliptic distributions of
opposite signs, as proposed above for the contact pressure
distribution:

X 2 C
q(x):fR*A 1-<z> *fm

where c is the semi-width of the stick zone and R* is given
by equation (8). Invoking equilibrium along the x direction
and integrating equation (9) over the contact area, it follows
that
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Fig.2 Actual normal pressure (solid line) and Hertzian contribution (dashed line) for (a) a/b = 0.2 and (b) a/b = 0.7
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from which the unknown ¢ can be derived. In Fig. 3, the
analytical distribution g(x) proposed by Ciavarella ez al. [1]
(solid lines) is compared with the approximated distribu-
tion (dashed lines) given in equation (9) for several
different values of the ratio /b and under different load
conditions Q/(f P).

It can be seen that the approximated solution gives an
accurate estimation of the actual tangential tractions and
that the smaller the values a/b and Q/(f P) the larger is
the accuracy of the approximated solution. The simple
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formula (9) can readily be employed to estimate the
maximum value of the tangential surface stress O, as
described in the next section.

4 THE PEAK VALUE OF ¢,,: ZERO BULK
STRESS

Using the expression in formula (9) and the formulae
reported in classical contact mechanics handbooks [3, 4],
the peak tangential stress 0y, in the case of zero bulk stress
is given by
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Fig.3 Actual and approximated tangential tractions g(x): (a) for a/b = 0.3; (b) for a /b=038
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and the maximum point is localized at the trailing edge of
the contact path (x = b). Thus, considering the relations in
equations (5) and (10) and introducing the corrective stress
o®_due to the finite thickness of the slab, it follows that

Q

7P 0w

Ox(b, 0) = 2 prax k (12)
with prax = 2P/(7h) (note that it is not the maximum
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pressure, except for the Hertzian case) and the constant k&
given by

i

A comparison between this approximated formulation
and the exact solution given by equation (1) with
(Oxw)putk = O is presented in Fig. 4, where the percentage
error between the two solutions is plotted as a function of
the ratio a/b and for different ratios Q/(f P). The plot is
related to the case 0 P = 0; thus the indenter is in contact

1 — (2/m)asin (a/b)
1 — (2/m)asin(a/b) — 2/7)(a/b)/1 — (a/b)?
(13)
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Fig. 4 Percentage error for the maximum value of 0, as a
function of the ratio a/b for different values of Q/(f P)

with a half-plane. Clearly, the percentage error is always
smaller than 4 per cent, thus showing the good accuracy of
the approximated formula (11).

5 THE PEAK VALUE OF ¢,,: NON-ZERO BULK
STRESS

The case of non-zero bulk stress is now considered. It is
worth noticing that the bulk stress Opyy affects the
tangential tractions distribution g(x); thus its effect on the
tangential stress O, given in equation (1) is non-linear.
However, as a first approximation, suppose that it can be
neglected:

Uxx(b’ 0):2fpmaxk“f%+obulk+o§x (14)

This approximation will clearly be closer to correct when
the tangential load is high and hence dominating over the
bulk stress. In particular, it is exact when Q/(f P) = 1. At
the other extreme, when the bulk stress is large but the
tangential load is negligible, or indeed zero, the formula
will give an underestimate of the stress concentration.
Although some analytical results are possible for the case
of bulk stress only, this would not be possible in general
(such as in the case of combined loading or non-Hertzian
geometry). Therefore, the correct tangential stress 0, will
be computed numerically by approximating the tangential
traction distribution as a linear combination of Chebyscheff
polynomials of the second type. In this way the integral
equation in the tangential direction is replaced by a linear
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algebraic system whose inversion gives the coefficient of
the Chebyshev polynomial series and thus the actual
traction distribution. Details of the technique are not given
here, as they are described in the book of Hills et al. [4]. As
an example result, in Fig. 5 the tangential tractions
distribution is presented for a/b = 0.6 and Q/(f P) = 0.6,
with Owu[b/(f P)] = 0.5, determined by the numerical
integration described above.

Before moving to the comparison between the approxi-
mated solution [equation (14)] and the numerical ‘exact’
solution, the case of bulk stress alone will be considered in
detail, as it is where the approximate solution equation (14)
is expected to give largest errors. The solution will also
give a more accurate formula for the combined loading
case.

6 BULK STRESS ONLY: ANALYTICAL
SOLUTIONS FOR THE HERTZIAN PROBLEM

From equation (1) an analytical expression for the maxi-
mum tangential stress can be derived in the case of
Hertzian contact, i.e. a = 0, and weak bulk stress:

2l
fP

0bu1k$4fpmax 1- -

Under this condition, in fact, the tangential tractions g(x)
are obtained as the sum of two elliptic distributions of
opposite signs, as in equation (9), with the only difference
being an offset between the two distribution centres (more
details are given in reference [4]). The resulting peak stress
has not been computed analytically before, to the best of
the authors’ knowledge, but it takes little effort to obtain it
from standard Hertzian stress field solutions [3]:

S Pep—— p(x)b/P ,
a(x)bAP .

-1 -0.5 0 0.5 1
x/b

Fig.5 Tangential tractions for a/b = 0.8, Q/(fP) = 0.5 and
Tour[b/(f P)] = 0.4
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B O'bulk 2_ _1O1Y | b
Oxx(b,O)“2meax\/(1+4meax) (1 fP>+ 2
(15)

Notice that for full sliding conditions Q/(f P) = 1, equa-
tion (15) gives equation (14) exactly. On the other extreme,
when Q/(f P) = 0 (bulk stress only), the formula does not
give an exact solution (for bulk stress only is a special case
of large bulk), but for very large bulk, when the second
term under parentheses can be neglected, it tends again to
equation (14). Considering that equation (14) is correct for
a shear distribution of full sliding, whereas large bulk stress
induces antisymmetrical shear traction, it is clear that both
equations (15) and (14) give wrong asymptotic behaviour.
However, if the increasing bulk stress term is included, the
total stress will tend to the correct value. Comparison with
the ‘exact’ numerical solution in fact shows that the
maximum error is limited to only 4 per cent (see Fig. 6),
whereas if equation (14) is considered, the error would be
extremely high as equation (14) only adds to the bulk
stress, the term associated with the tangential load. For bulk
stress only, the maximum error is simple to estimate, being
as high as 100 per cent in the limit of nearly zero bulk
stresses and remaining very high for quite large values of
bulk stress [e.g. it is around 25 per cent at Obuik/

4f Poax = 11.

7 A GENERAL APPROXIMATE SOLUTION

It is clear from the previous sections that equation (15) is
the most promising for Hertzian geometries under com-
bined bulk and tangential load. It has been shown that by
attention to that geometry, the largest error (occurring when
only bulk stress is concerned) is limited to around 4 per

Q/fP=0
6 -
error'%
4 -
2
0 T T 1
0 2

O buit
/.

Fig. 6 Hertzian geometry and bulk stress only. Error using
equation (15) with respect to the ‘exact’ numerical
solution. Equation (15) turns out to be very accurate and
conservative, as it overestimates stress concentration
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cent. The situation becomes clearer from Fig. 7, where the
prediction of equation (15) is shown for the entire range of
tangential and bulk stress loadings. In particular, for zero
bulk, equations (14) and (15) coincide, since in this case
the tangential tractions are independent of the bulk. There-
fore, equation (14), not shown in the figure for simplicity,
would simply correspond to the horizontal line starting
from the initial values of the lines in the figure, plotting
equation (15).

For small values of bulk, or more precisely for moderate
bulk, i.e.

[

] — —

P

Opulk = 4f Prmax 1-

Equation (15) is exact. Therefore, except for the case of
bulk stress only (when the limit bulk becomes zero), there
is a range where equation (15) is exact. The locus of the
limit between moderate to strong bulk is also included in
the figure, with the line with symbols. Above the limit
bulk, i.e. to the right of the locus, equation (15) is not
exact, but the error is smaller than 4 per cent in absolute
terms, as discussed in the previous section. However, since
only the additional stresses due to shear traction are
represented (i.e. the difference between the peak and bulk
stresses), the error appears to be larger, as is made clear
from the comparison with the included line of ‘exact’
solution for bulk stress only. In all other cases, the exact
line (not represented) would depart from the initial value of
the represented equation (15) [where equation (14) would
also start and remain constant] and would make a small
deviation for increasing bulk stress, although it would be
smaller than for the case of bulk stress only.

Clearly, it can be concluded that there is no reason to
use equation (14) instead of the correct equation (15) for
Hertzian geometry and moderate or large bulk, as equation
(15) is not significantly more complicated to use. Ob-
viously, equation (14) is of interest because it is based on
linear superposition, and it may be convenient to use for
large enough tangential loads.

The next step would obviously be to generalize equation
(15) for non-Hertzian geometries, and this can be accom-
plished by comparison with equation (14), inclusive of the
coefficient k. In order to add the geometrical factor k into
equation (15) the terms would need to be grouped such that
the geometrical factor affects the entire term due to shear
tractions, resulting in

B Opu \? 9
0 (b, 0) = 2fpmaxk[\/<1 +4fpm) _(1 _3‘7>

__Obui
df Prmax

J + Opu + 0%, (16)

This is the final equation proposed, taking into account the
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Fig.7 Hertzian geometry and combined tangential plus bulk stress. Prediction using equation (15) of the stress
induced by shear traction. Also shown are the ‘exact’ solution for bulk stress only and the locus of limit
bulk stress dividing moderate bulk conditions (on the left of the locus line), where equation (15) is exact,
from strong bulk conditions, where equation (15) is approximate

included in the table are results for equation (14), which
show considerably larger errors.

three factors (tangential load as well as bulk stress and the
geometrical factor k). It will be recalled that the formula is
exact for Hertzian contact under moderate bulk stress and
contains a limited error for non-Hertzian geometry or large
bulk. These errors have been shown to be within a few per
cent when either one or the other effects are considered. In
the case of combined effects, the error may be slightly

8 CONCLUSIONS

greater, but, as shown by the range of conditions in Table 1,
for very flat geometries, low Q/(f P) and large bulk stress,
the error may be near 10 per cent. However, for these cases
even the numerical solution is difficult to obtain. Also

The contact problem of a flat rounded punch has been
revised using and developing the analytical results given by
Ciavarella e al. [1]. A simple and sufficiently accurate
formula has been devised for estimating the peak value of

Table 1 The numerical and approximated peak values of 0, for different bulk stresses and aspect
ratios a/b, with Q/(f P) = 0.3, 0.6, 0.9

a/b=103 a/b =06 a/b=09
Opuik Numerical Equation Equation Numerical Equation Equation Numerical Equation Equation
[b/(f P)] value (14) (16) value (14) (16) value (14) (16)

Q/(fP)=03
0.1 0.939 0.893 0.935 1.167 1.104 1.158 2.202 2.033 2.137
0.5 1.475 1.293 1453 1.782 1.504 1.708 3.147 2433 2.825
1.0 2.07 1.793 2.043 2.427 2.004 2.321 4.06 2.933 3.543
1.5 2.61 2.293 2.603 2.992 2.504 2.897 4.631 3.433 4.188
2.0 3.132 2.793 3.146 3.51 3.004 3.452 5.143 3.933 4.794

Q/(fP) =06
0.1 1.238 1.221 1.237 1.539 1.52 1.540 2.905 2.833 2.871
0.5 1.697 1.621 1.686 2.057 1.92 2.002 3.662 3.233 3.390
1.0 2.251 2.121 2.227 2.624 2.42 2.555° 4254 3.733 3.993
1.5 2.769 2.621 2.757 3.136 2.92 3.093 4763 4233 4.565
2.0 3.274 3.121 3.280 3.645 3.42 3.621 5.266 4.733 5.120

Q/(fP) =09
0.1 1.462 1.473 1.476 1.826 1.839 1.843 3.442 3.447 3.455
0.5 1.88 1.873 1.886 2.246 2.239 2.255 3.867 3.847 3.878
1.0 2.386 2.373 2.395 2.752 2.739 2.767 4374 4.347 4.400
1.5 2.893 2.873 2.901 3.251 3.239 3.275 4872 4.847 4916
2.0 3.391 3.373 3.406 3.752 3.739 3.782 5.37 5.347 5.429
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the tangential stress Op,i. A unique formula equation (16)
for both zero and non-zero bulk stresses has been proposed
for Hertzian and non-Hertzian geometry. The formula is
correct for Hertzian geometry and moderate bulk, whereas
it is approximate for either non-Hertzian geometry or large
bulk, but the error is limited to within a few per cent except
in extreme cases.
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