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Abstract

In this paper, the Cattaneo theory of frictional contact is extended to elastic half-spaces in contact through rough disordered in-
terfaces. The discrete version of the Cattaneo theorem is provided, and represents the basis of a multiscale numerical contact algorithm.
Mathematical surfaces with imposed roughness, as well as experimentally digitised ones, are analysed. By means of a numerical
method, the evolution of the contact domain, at different resolution, is investigated. Roughness of the interfaces provides lacunarity of
the contact domains, whose fractal dimension is always smaller than 2.0. When a tangential force is applied, the extent of the stick area
decreases in the same way as the contact area develops with increasing pressure, and the slip area is found to be proportional to the
tangential force, as predicted by Cattaneo theory. The evolution of the shear centroid, as well as the amount of dissipated energy up to
full-sliding, are provided. Finally, it is shown that, at a sufficient level of discretization, the distribution of contact pressures is mul-
tifractal. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction
1.1. Cattaneo’s approach to tangential contact

Contact mechanics has occupied a central place in the development of several areas of research, like
tribology, solid mechanics, machine design but also geology, study of earthquakes and other fields. The
paper by Hertz [1] gave the solution for the frictionless normal contact of two elastic bodies of guadratic
profile, and consequently the basis for design procedures used nowadays in many industrial situations
involving elastic contact. The subject has since then seen considerable development, both from a mathe-
matical standpoint, and from that proper of engineers, as the monograph by Johnson [2] illustrates in its
excellent overview.

A contact problem involves the determination of the traction distributions transmitted from one surface
to the other, in general involving normal pressures and, if friction is present, shear tractions, according to
an appropriate set of equalities and inequalities governing the physics of the contact. When there is friction
at the contact interface, ‘Coulomb’ friction behaviour is usually introduced to give the conditions necessary
to determine the shear traction distribution: any point in the contact area must be either in stick, or slip, and
the tangential tractions must behave accordingly. Frictional slip is essentially an incremental process and
hence the solution depends on the history of loading, even if the loading rate is slow enough to define a
quasi-static solution, which is what we will assume in the following.
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The first contact problem transmitting tangential forces was solved by Cattaneo [3], who considered
the extension of the Hertz problem (between similar materials) with a monotonically increasing tangential
force at constant normal pressure. Similar results were obtained, apparently in an independent manner,
by Mindlin [4]. In this problem, slip occurs in an elliptical annulus homothetic to the contact area,
starting from the edges of it — that is to say the points at lower pressure are the first to slide — and the
resulting shear traction distribution is the difference between the traction distribution at limiting friction
and an opposing distribution in the central ellipse. Cattaneo’s results were extended to other loading
scenarios by Mindlin and Deresiewicz [5]. A significant generalization of these results has recently been
discovered by Ciavarella [6], who showed that the frictional traction distribution satisfying both equality
and inequality conditions for any plane contact problem (not necessarily Hertzian) will consist of a su-
perposition of the limiting friction distribution and an opposing distribution equal to the coefficient of
friction multiplied by the normal contact pressure distribution at some smaller value of the normal load.
Thus, as the tangential force is increased at constant normal force, the stick zone shrinks, passing
monotonically through the same sequence of areas as the normal contact area passed through during the
normal loading process. Jiger [7] established results similar to those of [6], for more general loading
scenarios.

The Cattaneo solution, valid for plane contact, can be in principle extended to the general three-
dimensional contact problem only when the Poisson’s ratio is zero. In all other cases, the Cattaneo’s
traction distribution satisfies the limiting friction equations but predicts a mismatch between the direction
of the traction and the direction of slip. However, similar conditions apply to the original Cattaneo and
Mindlin solutions and the effects of this error have been shown to be small in particular cases. With this
caveat, the solution can probably be automatically extended to the general loading case using the argu-
ments of Jiger [7]). !

1.2. Role of surface roughness

Most of the classical solutions of contact problems, starting from the Hertzian case, rely on the as-
sumption of nominally smooth geometries, which is reasonable at large enough scales. However, real
surfaces are rough on the microscopic scale and the effect of roughness is important for a series of phe-
nomena involving friction and wear. In contact mechanics, most models consider real surfaces as statistical
distributions of asperities of prescribed shape, each of which can be more or less deformed, depending on its
initial height and on the load distribution.

Early breakthrough in this area were made by Archard [12] and Greenwood and Williamson [13]. The
first suggested a deterministic model of rough surfaces that is very prescient. Indeed, his construction of a
cascade of smaller hemispherical asperities superposed on a larger scale, is what in the limit we would now
call a “fractal” surface [14]. Greenwood and Williamson [13], on the other hand, considered statistical
distributions of asperity heights, and discovered that the relations between load (or thermal and electrical
conductivity) and total contact area are all linear, independently of the details of the local asperity beha-
viour. Archard had reached similar conclusions with his multiscale deterministic model, suggesting that
these linear behaviours are a strong characteristics of rough contacts, as confirmed by the experimental
observations and by the Amontons—Coulomb’s law of friction in particular.

With modern experimental methods, measurements performed on fracture surfaces have revealed the
existence of a hierarchy of scales up to the limits of experimental discrimination, and therefore attention is
now focused to develop multiscale models reproducing most features of a real surface, whereas asperity
model theories are being abandoned, because the definition of an asperity is scale dependent, as most of the
quantities obtained from these models (like the mean and variance of the surface elevations, of the slopes
and of the curvatures).

! Other results are known for twisting problems, i.e., where the remote displacement is torsional [8-11]in Hertzian contacts; however,
even in the case of pure twist of Hertzian contacts, the equations become quite cumbersome, in particular in the case of elliptical
contact [9], and therefore we do not address this configuration. In the case of general combination of remote rigid translation and
rotation, this shear traction distribution follows a complex stick-slip patterns, and a fully numerical solution is necessary.
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The linear relationships discussed above are very easily obtained with many models and coarse res-
olutions, but they are not the only feature to be extracted from a contact model. For example, the re-
lationship between the total actual area of contact S and the normal load P is predicted to be almost
linear, say S = cP, at all length scales, but the constant of proportionality ¢ decreases with increasing
resolution.

These multiscale effects indicate that a fractal description of the surface and of the contact process
would be more appropriate [15]. Experimental spectral densities of the heights, f(w), typically show a
power-law form f(w) ~ w# at high frequencies ®, with an attenuation at low frequencies, associated
with the finite length of the body. The fractal properties of rough surfaces can also be revealed by plotting
various statistical measures of the profile on a logarithmic scale, in which case a true fractal will plot as a
straight line, where the slope is linked to 4, the fractal dimension, and the position of the line is linked to
a constant related to the amplitude of the roughness. Typical rough surfaces are found to lie in the range
2.0 < A4 < 2.5 [16]. The advantage of the fractal description is that it eliminates the implied truncation at
small length scales by assuming that the same power-law behaviour continues without limit. In the same
way, the spectral density of the heights is assumed to maintain the same power-law form for arbitrarily
large w.

Majumdar et al. [15,17] argued, for a plane contact of fractal surfaces (using Weierstrass-type functions),
that the distribution of actual contact area sizes would follow power-law behaviour, based on geometrical
considerations on the distribution of “islands™ generated by cutting the surface at a constant height z.
Neither attention was paid to the effect of elastic deformation on the distribution of contact areas, nor to
elastic interaction among the asperities. A direct treatment of a fractal normal contact problem, fully taking
into account elastic deformations of the half-spaces, has been proposed by Borri-Brunetto et al. [18]. A few
large actual areas of contact are obtained at coarse grids. As the grid is refined, these break up progressively
into clusters of smaller and smaller areas and the total area of actual contact decreases. This suggests that,
in the fractal limit, the contact consists of an infinite number of infinitesimal contact points of zero total
area, in agreement with Archard’s results. In the particular case of a two-dimensional Weierstrass profile,
this assumption has been mathematically proved [19].

In this paper, the discrete version of the Cattaneo—Mindlin theorem for rough surfaces is put forward.
First, the equations of pointwise elastic contact are outlined. The solution is then implemented into a
multiscale numerical method able to solve the normal and tangential contact problem at any resolution.
The algorithm is applied to synthetic fractal surfaces and to a real rock fracture surface. The mechanical
response, as well as the characteristics of the contact domains, are investigated. The solution for tangential
loadings permits to follow the partial-slip regime and calculate, at any stage, the position of the centroid of
shear tractions and the amount of dissipated energy. The distribution of contact micro-forces is eventually
shown to be multifractal. Moreover, the width of the multifractal spectra increases with load, as the range
of the stress singularities increases.

2. Discrete normal contact of rough surfaces

We shall focus on the problem of an imposed tangential shift with fixed normal load. Notice that in
normal contact case the half-spaces may have different elastic properties if the contact is frictionless. In the
case of tangential loading, this implies a trivial solution, so will not be considered. On the other hand, the
coupled problem, making use of the full Green’s function, is of cumbersome solution even in the simplest
loading and geometrical cases already with only normal load [2]. Notice that, as we shall be dealing with the
case of isotropic materials, elastic similarity is ensured when f, the second Dundurs’ constant, is zero. For
this case, we do not need all the terms in the Green’s function, and normal and tangential problems are
uncoupled [20].

In general, there is coupling between tangential and normal displacements, and therefore between
pressures and shear tractions. Let us write the elastic surface displacements relative to the undeformed
condition as Wy = {u1, Uy, uzl}T and w, = {un,u, ulZ}T. The relative displacement between two initially
facing points is given by u = u; — u,, where the subscripts 1 and 2 indicate body 1 and 2, respectively. For
the most general case of contact problem between half-spaces exchanging a set of concentrated forces
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(tangential forces ¢, g, and normal force p), the elastic displacements of the points at one surface are given
by

A&y (x; = xi) v =)
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where the sum is extended to all N contact points belonging to the contact domain S, as yet undetermined,
r; is the distance between the point j where the force is applied and the point i where the displacement is
measured, and A4 and y are respectively the composite compliance and the composite Poisson ratio of the
bodies >

1—v 1-—
A=—1, "7 (4a)
Hy 1253

(32

where v;, y1; are respectively the Poisson’s ratio and the shear modulus of the material of the body i. In the
general case, as formulated in Egs. (1)~(3), exact analytical solutions are not known even in the simplest
geometrical and loading configurations. However, the effect of coupling is generally small [21], and indeed
there is a wide class of situations where the contacting bodies are of the same material, or the materials are
elastically similar: more specifically, the case, where Dundurs’ constant f is zero

(e =) = (e —1)
*ﬂz(K1+1)+u1(K2+l)—0’ (%)

where « is the Kolosov’s constant, given by x = (3 — 4v). In this case, the equations relating normal and
tangential tractions become uncoupled, and the normal contact problem is independent of the tangential
one. Then, the equation relating normal displacements to the pressure becomes, simplifying Eq. (1)

A D
zi T 6
w53 [2) ©
This discretized integral equation is sufficient to solve the normal contact problem, by imposing the ap-
propriate boundary conditions. In particular, the equality (resp. inequality) relating to contact over the area
S (resp. non-interpenetration condition exterior to S), are

Uy = 5z - [exyi + nyi] - [hl(xhyi) - h2(xi7yi)]a (xiayi) S S7 (73)
U > 52 - [exyi + eyxi] - [hl(xiayi) - hZ(xiayi)], (xiayi) ¢ S7 (7b)

where h;(x,y), ha(x,y) are the functions describing the rough surfaces of the contacting bodies in the un-
deformed configuration, i.e., the elevations above a common datum; (6., 6., 6,) is the relative rigid body
motion that brings the two bodles into contact. > Given (4, 0,,6,), the distribution of pressure p(x,y) is

2 Notice that 4 corresponds to 2/E* in Johnson’s notation [2].

3 Note that, with the term relative displacement we intend the difference between the motion (elastic and/or rigid) of two points
initially corresponding in the two bodies. Instead, with the term elastic displacement, we intend the displacements related to the purely
elastic deformation of each body.
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determined and, as a consequence, it is possible to compute a resultant load P and a resultant moment M of
components M, and M,

N N N
P=3 p M=) py, M=) pp (8)
J J 7

The point where P can be applied without any moment is called the centroid of the normal pressure dis-
tribution, and is indicated by G».

3. Multiscale analysis and resuits of the normal contact problem
3.1. Numerical procedure

Since analytical solutions can be obtained only to a very limited category of problems, there has been
considerable development of numerical methods, as discussed in [22-26]. Contact algorithms are also
routinely included in most commercial finite element packages. The unilateral contact problem has been
extensively approached by many authors, often as a non-linear optimization problem [22]. In our case, an
incremental active set strategy has been preferred. The algorithm has been designed to determine the
geometrical properties of the contact domain S between two linear-elastic half-spaces with a rough inter-
face. In particular, we focus on the consequences of varying the resolution in the representation of the
interfaces undergoing contact.

A discrete version of the problem is considered, by introducing in the reference plane x—y a square grid
of points with spacing s. Of course, s is the scale chosen for solving the problem and corresponds to the
resolution adopted in generating the mathematical surfaces or in digitizing the natural surfaces. At each
node of the grid two material points can touch and transmit a force. We assume that a small contact zone is
involved around the grid point. This contact region is supposed to be an indivisible atom of surface, whose
area is related to the spacing s of the grid. This assumption, which is physically correct (since any mea-
surement is performed at a given resolution), permits to avoid the point forces singularities.

Let 6. be the relative displacement between two points far from the interface, assumed as positive in the
closure direction. The function Ak(x,y) — the composite topography — can be introduced, representing the
difference between the maximum gap and the current gap of two corresponding points in the undeformed
condition. It is well-known that, in normal elastic contact, Ah(x,y) governs the mechanical response. In
particular, due to the additivity of the power spectral densities of fractal surfaces, the problem of normal
contact between two self-affine surfaces with given fractal dimensions can be transformed into the problem
of the contact between the composite topography and a plane. The following linear system of equations can
be written (in the simple case of two bodies with the same elastic properties)

ot S o, wRes o)
where p, is the resultant of the normal forces acting on the contact spot around point P, and S is the set of
the points undergoing true contact. The left-hand side of Eq. (9) has to be understood as a known imposed
displacement ii,. Note that the point force formulation (Eq. (6)) is not used directly, but is integrated over a
circular area of radius a = 5/2, as requested by the resolution adopted in the simulation. The influence
terms H,, are thus evaluated by referring to the settlements induced by a unit load applied to an elastic half-
space through a rigid plate acting at point P,

1—v
H,, = —— arcsin s 10
= S AreSin(a/), (10)
where r,, is the distance between P, and P,. By solving the system of Eq. (9), the contact forces between the
two bodies are determined, provided the contact domain S is known. The solution is sought in terms of
pressure and surface displacements, paying attention to the unilateral condition at the interface. This is
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conveniently achieved by means of an incremental-iterative algorithm (active set strategy). In matrix form,
the problem, at increment /, can be written as

ﬁ] = H1p17 (1 1)
where @, = {w.1,u0, ..., 1.} is the n-component vector of the displacements imposed to the points of the
current contact domain S; = (P, Py, ..., P,) for a given closure d.;, p, = {p\,P»,---,D, }T is the vector of the

unknown contact forces and H; is the flexibility matrix.
The flexibility matrix H}l) is assembled by adding, at each displacement increment /, the terms pertaining

to the tentative domain S The initial domain S\" is chosen as the set that contains all those gridpoints

which would compenetrate if contact forces were absent. Thereby, the normal contact forces p}l) are
evaluated. The points where tension forces are found, are eliminated from the contact domain, obtaining
the new contact domain S,(Z) and the new matrix H}z). After a few steps of the algorithm, through successive
eliminations of tension points, the correct solution is attained for the displacement increment /. Then, the
closure 6,741 is imposed, passing to a new increment. The solution of the simultaneous Eq. (11) is achieved
with an iterative Gauss—Seidel method, taking into account the symmetry of matrix Hy.

3.2. Multiscale analysis and lacunarity of the contact domains

When the evolutive contact problem is solved for a given interface, with a fixed fractal dimension 4, but
at different values of discretization s, the resulting contact domains S; can be compared (Fig. 1). It can be
easily realized that the concept of area of true contact [13], although representing a step forward with
respect to the concept of apparent (nominally flat) area, is not able to describe consistently (that is, in a
scale-independent manner) the interface interactions. As it clearly emerges from Fig. 1, the real contact area
A, progressively decreases with increasing the resolution of the discretization, ideally tending to zero in the
theoretical limit of s — 0.

This behaviour implies the lacunarity of the contact domain S, and therefore the necessity of abandoning
the euclidean description and moving to the fractal model, characterized by the non-integer dimension
A, (4,<2.0) of the domain S. This suggests that larger contact domains (i.e., larger apparent areas 4,) are
less dense in the euclidean sense, that is, the probability of the occurrence of large zones without contact
increases with the size of the interface. Application of the box-counting method [14] to a large number of
contact sets (Fig. 2) allows to compute their Hausdorff dimension 4, [18]. In this way, it is possible to
compare the topology of the contact domains obtained for surfaces with different fractal dimensions and to
follow the evolution of 4,, for a given fractal surface, during the loading process. It is worth noting here
that the contact domains are, to a great extent, self-similar sets, that is, they show isotropic scaling.

Following [27], let us consider now the following renormalization group:

PZO'(}AO:O']A]:62A2:"':0'n14n="':0*%5') (12)

where P is the applied normal load (scale-invariant quantity), 4, and o, are respectively the real contact
area ([L]’) and the real mean pressure ([F][L]~%) measured at the pre-fractal scale n, 4y is the apparent
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Fig. 1. Decrease of the real contact area and increase of the corresponding pressure (under the same external load) with increasing
resolution (4 = 2.1, 4, = 1.39) (a)-(c), and power-law decrease of 4, (d).
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Fig. 2. Box-counting method applied to the contact domain generated by a Brownian surface (4 = 2.5) pushing against a flat half-
space.

(nominally flat) area and o = P/A4, is the apparent mean pressure. As one can realize from Fig. 1, at any
given value of the normal load P, g, increases with increasing resolution and tends to infinity as s — 0,
because the euclidean measure ([L]”) of the contact domain S vanishes. Hence, in the limit of the highest
resolution, the classical definition of area (according to Lebesgue) loses its significance and leaves place to
the Hausdorff measure # s of the domain S (which is univocally defined by the non-integer dimensionality
[L]*?). Correspondingly, the fractal mean pressure ¢ can be defined as the dimensionally anomalous
pressure acting at the fractal interface. Due to dimensional homogeneity, this quantity holds the physical
dimensions [F][L] *". By equating the second and the last term in Eq. (12) and taking the logarithm of both
sides, if b is a characteristic linear size of the interface, the following scaling law is provided:

logoy = logo® — (2 — 4,) logb. (13)

The fractal mean pressure ¢* represents the dominant quantity in the description of fractal contact. Two
interfaces exchanging the same value of ¢* are assumed to behave similarly. Therefore, in order to achieve

IIIGO ~ ln‘tO‘

Ll

no size-effect (A;—2.0)

€
Inc* ~ Int"¢

p Inb

0 <0y <03

(b) (b) ()

Fig. 3. Size-scale effects on the nominal pressure (and on the nominal shear strength) for different lacunarities 4, corresponding to
different fractal mean pressures ¢* (a). Schematic view of the size-scale effect on the limit slope angle (at constant apparent pressure)

(b)—(d).



6060 M. Borri-Brunetto et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 6053-6073

the same mechanical behaviour, the apparent macroscopic mean pressure oy = P/4, must scale according
to Eq. (13), stating its dependence on the size of the specimen (Fig. 3(a)). If the existence of a fractal limit
shear traction t* = f*¢* is postulated, a scaling law can be deduced for the nominal friction coefficient f,
ie., f = f*b*. Depending on the dimension of the domain where an effective shear strength can be acti-
vated, fmay decrease with size (i.e., 4 < 0), according to the experimental evidence of decreasing limit slope
angle with increasing specimen size (Fig. 3(b)). This may shed light on many rock slope instabilities, which
are not explicable when compared to the relatively high friction values measured on smaller specimens [28].

3.3. Mechanical response of mathematical fractal surfaces

Numerical simulations have been carried out by means of mathematical surfaces, generated by the
random midpoint displacement (with fractal dimension 4 varying between 2.1 and 2.5), pushing against a flat

150 . v

100}
50 =

Bo=120] gl

(c) U] ’ 0 50 100 150 200 250

Fig. 4. Fractional Brownian surfaces generated by the random midpoint displacement method (a)~(c) and corresponding contact
domains (d)(f) at the same closure displacement.
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Fig. 5. Diagrams of the true contact area vs normal load for different fractal dimensions (at fixed resolution, (a)), and for different
resolutions (at fixed fractal dimension, (b)). Computed normal load-joint closure laws and asymptotic values for different fractal
dimensions (c).

plane. All the geometrical and mechanical parameters (e.g., Young’s modulus, Poisson ratio, shape of the
interface) have been kept the same in all the simulations. The contact domains obtained under the same
value of the relative closure displacement 3., for three different values of the fractal dimension of synthetic
contact surfaces, are shown in Fig. 4. [t can be immediately noticed that, the larger 4, the smaller the fractal
dimension 4, of the contact domain (i.e., the larger its lacunarity).

If the area of true contact is plotted vs the applied load, * at a fixed resolution s (Fig. 5(a)), a nearly linear
behaviour is observed (4, ~ P) for all values of the fractal dimension. It is remarkable to notice here that
disorder, which is usually associated with non-linearity and chaos, yields in this case linear behaviour. This
is in agreement with the early observations by Archard [12], and Greenwood and Williamson [13] and with
many experimental results in the literature. Note, however, that Majumdar and Tien [17] found a non-
linear relation (4, ~ P*, 1.0<«<1.33), based on their model of elastic—plastic contact between fractal
surfaces. The effective interface closure can be approximated by subtracting, from the total displacement 6.,
the part due to the linear elasticity of the half-spaces. This bulk contribution depends only on P and can be
evaluated by considering uniform pressure on the nominal loaded area. In this way, the non-linearity, due
to the interface roughness, can be put into evidence. By fitting the data with a hyperbola, the asymptotes of
the diagram can be estimated, which correspond to the complete closure of the joints. It can be noticed that,
as the fractal dimension of the surface increases, the extension of the closing stage increases, together with
the interface compliance (Fig. 5(b)).

Another fundamental aspect to be highlighted is the dimensional evolution of the contact domain S,
which is initially very rarefied and progressively increases its topological density at larger loads. As the

4 Note that the units of forces and lengths in Figs. 5, 6, 10-13, are arbitrary, since we are interested only in the qualitative behaviour
of mathematical surfaces.
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Fig. 6. Three contact domains (a)—(c) at different loads for the same mathematical surface (4 = 2.3, s = 1/256), and evolution of the
fractal dimension with load (d).

apparent pressure gy between the half-spaces increases, the classical theories yield the increase of the
number of contact spots, that is, the increase of the real contact area A4,. However, since the euclidean
measure of 4, is experimentally depending on the measurement precision (or on the numerical discreti-
zation), the classical elastic contact theories do not have unique predictive capabilities. By using the box-
counting method, it can be shown that, as the normal load P increases, the fractal dimension 4, starts from
a value close to 0.0 (corresponding to pointwise non-structured contact), and subsequently takes values
larger than unity as soon as linear contact structures and rarefied contact islands are formed (Fig. 6). The
total saturation of the contact domain S (or, at least, of some islands) would imply 4, = 2.0. This value, in
real materials, can be attained only under very high normal loads, implying the extended plasticization of
the material. In this limit case, the euclidean description would be consistent and the physical quantities
would retain their usual integer dimensions. In the limit of 4, — 2.0, size-effects would disappear, and a
scale-independent friction coefficient could be defined. Ciavarella et al. [19] have shown, for the particular
case of a two-dimensional fractal profile (Weierstrass graph), that in linear elasticity the contact domain
remains lacunar for any value of the applied load. However, in contrast with the numerical results, they
found a constant fractal dimension of the contact domain. It may be argued that this discrepancy is due to
the lower length cut-off of the numerical calculations.

3.4. Mechanical response of natural rock interfaces

A cylindrical specimen of initially uncracked fine-grained sandstone has been fractured at midspan in
three-point bending (Fig. 7). The diameter of the specimen was equal to 50 mm. After breaking
the specimen, the fracture surface at one side was digitised by means of a laser profilometer with a fixed
resolution of 100 um. It is believed that further refinements, in the case of this rock, would not alter
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P = const.

Fig. 7. Scheme of the numerical simulation on the rock joint: normal displacement 6., imposed horizontal shifting v, and composite
topography (c) obtained for v = 10 mm.

significantly the numerical simulation of contact, at least in the desired mesoscopic scale range. Due to the
remarkable homogeneity of the considered surface, the scanned area (1962 mm?) can be considered as a
representative surface for the contact behaviour of this rock joint. The calculated fractal dimension 4 of the
surface is equal to 2.21. Only one side of the fracture was digitized, because the hypothesis of perfectly
corresponding surfaces at the opposite sides of the fracture is implicitly assumed in the following. There-
fore, in the case of fracture surfaces, simulations must be performed after applying a relative shift v to the
opposing faces. This gives rise to a composite topography Ah different from zero (Fig. 7(c)).

If the area of true contact is plotted vs the applied load, a nearly linear behaviour (4, ~ P) is observed,
as in the case of the mathematical surfaces (Fig. 5(a)), for any value of the tangential shift. In Fig. 8(a), the
effective closure curves obtained, for the rock interface, in correspondence of five different values of the
relative offset v (west direction), are shown. By fitting the data with a hyperbolic function, the asymptotes of
the curves can be estimated, which correspond to the complete closure of the joints. It can be noticed that,
as the initial offset v increases, the extension of the closing stage increases, together with the interface
compliance. This corresponds to the increase of the fractal dimension of the composite topography.
However, this is true only for the very initial stages of sliding. After a certain shifting, the curves overlap
and the joint deformability becomes constant. On the other hand, when v becomes very large (v ~ 10 mm),
the joint compliance increases again because no more correlations are present between the opposite pushing
surfaces (see the last contact domain in Fig. 8(d)). Finally, by comparing samples of different sizes, it was
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Fig. 8. Crack closure laws of the rock interface (at fixed resolution) for different horizontal shifting (a). Calculated contact domains
(at fixed normal load P = 10000 N) for three different values of the shift v (b)-(d).

noticed that the larger the samples, the larger the closure deformability, independently of the relative shear
displacement. This again is due to lacunarity of the contact domain, i.e., to the higher probability of finding
larger voids in larger specimens’ domains.

4. Discrete tangential contact of rough surfaces
4.1. General statement of the problem

It is known that, in a general contact in gross or full-sliding, the condition to obtain pure relative
translation is the application of a tangential force through the centroid of the normal micro-forces Gp, i.e.,
the point of application of the normal force. > However, the condition for full-sliding cannot be reached,
other than through an increase of the tangential force starting from zero. Now, when a tangential load is
applied to a general contact between elastic bodies, a complex frictional shear traction distribution q(x,y)
arises to equilibrate the applied load. The contact area is divided into regions of micro-slip and regions of

3 This is actually true, a rigori, only in the absence of Poisson’s effects.
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adhesion, according to Coulomb’s law, and the position of the centroid of shear forces is not necessarily
coincident with Gp.

Problems in the tangentially loaded regime invariably reduce to finding the correct size and location of
stick and slip areas, Syic, Ssip, as Well as the position of the centroid of shear, Gy, and the the direction of
slip, which in general must be postulated and checked a posteriori. The conditions in terms of equalities and
inequalities are given by Egs. (7a) and (7b) and by the classical Coulomb friction law, which can be
summarized by writing:

lq(xayv Z)' <fp(xay7 t) (X,Y) € Ssticka (143)

_a_ gt(xd’: t)
ot lgz(xJ’a t)l

where fis the friction coefficient. Note that the vectorial notation is necessary because, in general, q(x, y)
has two components, and a fictitious time variable ¢ is introduced to impose shear to be aligned with the
direction of relative change in the direction of slip. ¢ Finally, g, = g.e. + g,e, is the relative tangential
displacement. The solution of the problem is, in general, incremental [2,20]. On applying a monotonically
increasing tangential load in direction x, there will in general be stick and slip zones. The shear tractions are
strictly related to the limiting value of Coulomb friction (see below). The other two (discretized) integral
equations defining the problem both relate to elastic displacements of points parallel to the surface, one in
the direction of the tangential force, and the other perpendicular to it. They are, putting § = 0 in Egs. (2)

1q(x’y? Z‘)| = "fp(xvy7 t) (X,y) € SSliP7 (14b)

and (3)
4 gy (o —x)’ (xj = x) (v — »)
i = — - i — . , 15
i = on Z rij + y( ry T 3 D (15)
4 & 4y (yj - yi)z (x; ~—x:) (v, — »)
i =5 Ej Ty +v o 9y — ” 9 (16)

for (x;,¥;) € S. It is clear that, even though we are considering the f = 0 case, there is a second coupling, due
to 7, between the distributions of shear tractions themselves. Indeed, this system of coupled equations gives
a solution [q,(x;, %), q,(x;, 1), (x;,3;) € S] for any couple of assigned functions [u,(x;,;),u,(x;,,)] in the
contact domain S. Therefore, in the general case, even if we impose, say, u,(x;, ;) = 0, due to the coupling it
does not follow that ¢, (x;, ;) = 0. Also, again due to the coupling, there is no analogy between the integral
equation for the normal displacements and the tangential correspondents.

Therefore, in order to avoid coupling, and obtain an equation similar to Eq. (6), let us consider the case
that the composite Poisson ratio of the bodies is zero, ’ y = 0: in this case, the equations in tangential
direction simplify to

4 & g/

= 1
wege 2|2, 1)

4 ¢ 4y
wege 2|2, 1

which are two independent problems, each one analogous to a normal contact problem. The total shear
forces are

N N
O = Z%jv O = Z‘bj- (19)
J J

® The condition written is valid under monotonic tangential loading.
7 For materials having non-negative Poisson’s ratio, this is only possible if both v; = v, = 0.
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The condition we look for is the pure relative translation. Therefore, we seek here for conditions under
which a simple solution (i.e., with only one component of shear traction distribution) for the pure relative
translation problem is possible. Let us denote with x the direction of the resultant force, i.e., O, = 0: it is
clear that we do not know a priori whether this is also the direction of the relative translation. However, as
the shear tractions in the two bodies are equal and opposite for Newton’s third law, the tangential dis-
placement of the particles of one surface must be constant within the stick zone, and equal to the imposed
relative rigid translation (., d,)

ue(xi, 31) = O, wy(x, %) = 0y, (X5, 01) € Ssticks (20)

where 8, is expected to be zero under symmetry conditions. Moreover, Coulomb’s law applies (Egs. (14a)
and (14b)), and the above equations provide the framework for solving the problem.

4.2. Solution of the problem by the discretized Cattaneo partial-slip method

Since in the normal loading phase there was no tendency for surface particles to slip, the initial stick zone
envelopes the entire contact. A monotonically increasing tangential remote relative displacement will
therefore give rise to a receding problem, according to Dundurs’ classification [29], and therefore there is no
need to follow the entire loading path, and we can solve directly for any particular value of 4,.

In the classical continuous problem, it is usually assumed that, since the traction would be infinite at the
boundary of the adhesion area, a part of the contact area must start sliding and the regime of partial-slip
takes place. The analogy in [6,30] is sufficient to validate the assumption that full stick implies a singular
distribution of shear traction, that cannot be sustained by a finite friction coefficient. Therefore, the
mathematical problem of full stick is practically not very meaningful in this context, unless we consider the
case where the bodies are welded together, i.e., we have an external crack problem with the singularity
giving a stress intensity factor [31]. Although dealing with a discrete contact problem, we follow the same
argument of the continuous case. Following [3,4], we assume a tangential traction distribution given by the
sum of two components, a full-sliding term and a correction, that is

9x; = I — dyps (21)

where g;; = 0 in the region of slip, i.e., for (x;,y;) € Sqip, Whereas it is at yet undetermined in the stick
region. With the previous hypotheses, Eq. (18) in the y-direction is identically satisfied, whereas, writing
again Eq. (17) for the elastic displacements in the tangential direction x, we get

4 < 9 4 Jp; A = 9 4 & 9y
D M A S L e S k- B ey S 2
- 2n Z ':rij 2n Z ij 2n Z vij fu 2n ; ij ( )
where we have used Eq. (21) and we have indicated with N* the number of points in the stick region.
Rearranging the last equation, we have

N*

SR o e »

J J

which can be recognized as being of the same kind as the original Eq. (6) involving the normal pressures, for
a lower value of the vertical rigid body displacement, giving the resulting ‘contact’ area (i.e., the stick area)
to be a subregion of the actual contact area. Note that the rotation is the one fixed by the actual normal
contact problem, i.e., by Egs. (7a) and (7b).

Egs. (21)(23) can be regarded as the elastic version of Coulomb’s law, the tangential forces being the
difference between the actual normal force and the normal force for a smaller contact area, multiplied by
the coefficient of friction [7]. Eq. (23) represents the discrete version of the theorem proved in [6]. Since p; is
always greater than p;, their difference is always positive and the inequalities always hold. Several
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elementary properties can be deduced: (i) flat regions are either entirely in full stick or in full-slip conditions,
as in unloading they either stay in contact, or lose contact simultaneously. In the limiting case of an entirely
flat contact, the behaviour is full stick/full-slip; (ii) the points that lose contact first in the normal unloading,
with the fixed rotation of the actual normal contact problem, are the first to slip when the tangential force is
imposed; (iii) the tangential approach J, can be calculated from the two normal approaches of the normal
contact problems, as

o, = f(6: — 02); (24)

(iv) the shape of the stick zone is the one that maximizes the corrective load for a given corrective normal
approach, therefore the shape of the slip area is the one that minimize the full-sliding component; (v) if the
indenter profile is symmetrical and self-similar, the stick zone is similar to the initial shape, and the cor-
rective solution is always of the same functional form of the normal pressure in the contact area; (vi) finally,
it has been shown in the previous sections that, for rough surfaces, the real contact area is nearly pro-
portional to the normal force [12,13,18]. It follows that the slip area must be proportional to the tangential
force because it is the difference between two contact areas, both proportional to the pertinent normal
force.

5. Numerical simulation of the partial-slip process
5.1. Stick-slip domains and position of the centroid of shear

By applying the theory outlined in the previous section, it is possible to investigate, step by step, the
partial-slip process occurring at rough interfaces. As already pointed out before, in the numerical model we
have to substitute point forces p, ¢,, with the resultants p, g,, acting upon the finite-size flat punch rep-
resenting the asperity cap at the given resolution. It must be kept in mind, however, that a true partial-slip
regime, in the case of rough surfaces, can take place only if the relative sliding displacements are smaller
than the average size of the asperities. In the numerical simulations, this implies that the slip displacements
must be smaller than the adopted resolution. In this case, the interlocking effects come into play only when
full-slip occurs, and the dilatancy behaviour becomes predominant.

In Fig. 9 the contact domain for the brownian surface with 4 = 2.3, is observed, at a given value of the
normal load P, by increasing the value of the total shear force Q. The stick points are black, while the
points where slip occurs are grey. It can be observed that, as in the Hertzian case, the slip areas proceed
inwards from the edges of the contact area. In fact, partial-slip takes place in the external parts of the
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Fig. 9. Extent of the stick (black) and slip (grey) areas of contact for two increasing values of the applied shear force Q (mathematical
surface, 4 = 2.3) (a) and (b). Enlargement of a zone in the second contact domain (c).
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contact clusters, where the normal forces are smaller than in the inner parts. This, of course, depends on the
distribution of peaks and valleys in the composite topography of the surfaces in contact. The same be-
haviour has been observed for the contact domains generated in natural interfaces.

In the case of the rock interface, it is interesting to plot the measures of the stick and slip area as
functions of the applied shear force (Fig. 10(a)). It can be seen that the behaviour is linear, as one could
expect by considering that the tangential solution is obtained by means of an analogy with normal solu-
tions. More significantly, plotting the amount of shear force carried respectively by the stick (O ) and by
the slip (Qq;p) domains, one notes that, initially, both quantities increase with the total shear force Q as the
slip area monotonically grows, whereas, after a while, Ogq starts to decrease (Fig. 10(b)). The behaviour, in
this case, is non-linear.

In correspondence of any value of Q, the position of the centroid of the shear forces G, can be computed
for the stick domain as well as for the slip one. Note that the centroid Gyqip) in the slip part coincides with
the centroid Gp(p) of the normal pressures acting in the same domain, due to the linear proportionality of
Coulomb’s Jaw. Instead, the centroid Gp(sick) of the shear forces within the stick part is not coincident with
Gp(siick)» due to the correction term of the Cattaneo solution. Therefore, the horizontal position of the global
centroid of shear Gy, is given by

xGQ@“p) Qslip + xGQ“ﬁCk} Qstick

XG, = 25a

e Qslip + Qstick ’ ( )

yGQ _ yGQ(shp) Qslip +yGQ(SﬁCk) Qstick ’ (25b)
Qslip + Qstick

It is interesting, for instance, to follow the evolution of G, as the total shear increases from zero to the full-
sliding value (Qn. = fP). Note that, due to the properties of the Cattaneo solution, the reverse path can be
interpreted as the evolution of the centroid G when the normal force increases from zero to its final value
Prax. In Fig. 11, relative to a rock interface (a) and to a concrete interface (b), the centroid G, tends to move
away from the geometrical centroid as the total shear force increases. This implies that the external shear
force Q should be continuously adapted to the growing eccentricity, otherwise torsional effects come into
play. If the reverse path is considered, (i.e., by increasing P with O = 0), G tends to approach the geometric
centroid of the interfaces, which plays the role of an attractor. This result implies that we are dealing with
statistical homogeneous interfaces.
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Fig. 10. Linear variation of the extent to stick and slip area with the applied shear force (a). Non-linear variation of the fractions of
shear force carried respectively by the stick (Qgick) and by the slip (Qqip) domains (b).
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Fig. 11. Calculated evolution of the position of the centroid of shear Gy in a rock interface (a) and a concrete fracture (b).

5.2. Energy dissipation during partial-slip

The elastic analogy by Cattaneo allows one to calculate the distribution of energy dissipation in the
micro-slip zones. Assuming, for instance, sliding along the X-axis, the specific energy E, dissipated by
friction in correspondence of any slipping asperity can be easily obtained as

Er(x,y) = q,(x,7)g(x,y) = fp(x,y)g:(x,), (26)

where g,(x,) represents the relative sliding displacement in the micro-slip zones to be computed by means
of the Cattaneo solution. It can be argued that most of this energy results in heat production. However, this
solution implies that the slipping asperity is free to slide of the calculated quantity u,. Analysis of the
dilatancy behaviour, on the other hand, shows that this is not always possible, in the sense that asperities
interlocking may occur before the complete displacement has developed. This imposes a strong limitation
to the Cattaneo solution or, better, to the scale at which it can be considered valid also for displacements.

When the condition of incipient full-sliding is reached, the correction terms vanish and Eq. (22) yields:
u,(x,y) = fAh(x,y), where Ah(x,y) is the original distance between two corresponding points at the in-
terface. Therefore, the energy necessary to attain the condition of incipient full-sliding can be obtained by
summing over the entire contact domain S, as

B = D) Ah(e) (27)

Calculation of this quantity is usually performed by a Winkler approach (i.e., assuming the asperities to be
independent elastic springs). In that model, p(x, y) ~ Ah(x,y), and also the area of the contact domain has a
trivial dependence on the normal load. Instead, in our contact model, all the interactions among the as-
perities are involved in the determination of the contact domain. In Fig. 12, the relation between dissipated
energy E, and normal load P is plotted for three different fractal surfaces. As the fractal dimension in-
creases, the dissipated energy for a given value of normal load increases too. Moreover, the dependence of
E; on P is clearly non-linear.

One has to remind that, of course, displacements become undetermined at full-sliding. The energy above,
however, is extremely meaningful, for instance in presence of fretting fatigue, where Eq. (27) allows to
compute the energy dissipated during cyclic load histories. Another potential field of application could be
seismology, where the analysis of the precursors of a major fault event is of crucial importance for
earthquake predictions.
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Fig. 12. Non-linear dependence of the dissipated energy E, on the normal load P (mathematical surfaces). The dissipated energy (at a
given value of P) increases with the fractal dimension of the interface.

6. Multifractal distribution of the contact pressure fields

The ability of the numerical model to calculate normal and tangential forces at all the contact points
permits to highlight some hidden features of the problem. The distributions of the contact normal forces in
the synthetical interfaces as well as in the rock joint have been investigated, at a fixed value of the reso-
lution.

In the case of the mathematical interfaces, the statistical distributions of the forces p, exerted at the
contact points, under the same external load (i.e., under the same nominal pressure) are reported in Fig. 13.
It can be concluded that the distribution of local micro-forces tends to become more uniform as the fractal
dimension increases. The histograms also show that only a few points undergo very high stresses, especially
for the lower fractal dimensions. This supports the early observation reported in [13], i.e., that plastic
deformations should not add significant new features to the contact model, at least in a wide loading range.
It can be also shown that the population of the p, obeys a semi-log distribution, whereas the p? distribution
fulfills a power-law, i.e., log(N) ~ Blog(p?), where N is the number of asperities bearing a pressure equal to
7. If the hypothesis is made that the elastic energy released by slipping asperities is proportional to the
square of the pressure (W ~ p?), the distribution of energy releases follows a power-law. Note that this
corresponds to the well-known recurrence power-law of seismic events [32].

A related aspect is the spatial distribution of micro-forces, which shows multifractal characteristics. The
mathematical description of this kind of distributions can exploit the concept of multifractal measures [14].
In this context, the term ‘multifractal’ implies that the contact domain S is made out of infinite fractal
subsets, each one with its own fractal dimension and thus with its own scaling properties. The pertinent
kind of singularity of the micro-forces distribution can be associated to each of these subsets. If p[B(x, y, r)]
is the resultant of the micro-forces acting in the circle B, centered at point (x,y), with radius a, the local
dimension of the measure 7 in (x,y) is a(F,x,y) if

. logp[B(x,y,r)]
}li% Iogr —OC(F,)C,y). (28)

Under the assumption of sufficiently small r, it is therefore possible to write
PIB,y, )] ~ P, (29)

If point P were placed in a classical (euclidean) contact area (locally smooth contact, 4, = 2), one would
obtain

ﬁ[B(xayar)]er (30)
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Fig. 13. Histograms (a)-(c) and cumulative distributions (d) of the local contact forces at the same external load P. Note that the total
amount of contact points decreases as the fractal dimension of the surface increases.

and the pressures would correspond to the classical definition of Cauchy stress ¢, with physical dimension
[FIIL]2. In the case « < 2, the non-integer exponent o corresponds to the power of the local singularity of
the micro-forces, and is named Holder exponent. Although o depends on the considered position within the
contact domain S, there are usually many subsets characterized by the same exponent o. If the micro-forces
were uniformly distributed over S, each subset would be characterized by the same value « = 4. However,
reality is more complex. A particular subset S, of the contact domain can be defined for each value of «,
including all the points where the singularity of the contact force p exhibits an exponent equal to «. To
describe the singularities and their spatial distribution, the properties of the S, subsets need to be studied.
For this purpose, the most expressive mathematical tool is represented by the spectrum of dimensions, which
relates, to each local exponent «, the fractal dimension f (o) of the subsets S,.

Put into practice, the contact domain S is divided into N boxes, corresponding to the discretization
adopted for the elastic simulations, and the number of boxes n(s, ) da, where the local fractal dimension is
comprised between « and « + do, is computed. Thereby one gets

‘ . logn(s,a)

f(a)“sh_r% —logs (3D
The function f'(a) is called spectrum of the exponents, and is generally a continuous curve with a maximum

equal to the fractal dimension A4, of the support (i.e., of the contact domain).
In the case of the rock joint, some multifractal spectra, computed for different values of the normal load
P, or for different values of the relative horizontal shift v, are shown in Fig. 14. Note that the micro-forces
distribution depends on the relative shift between the crack faces, because the composite topography
changes with v. In particular, the width of the spectrum is reduced as the offset increases, and the maxima
progressively decrease (Fig. 14(a)). It is also interesting to note that the distributions depend on the normal
load (Fig. 14(b)). As P increases, in fact, the maximum value of the spectrum (max f(«)) becomes higher,
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Fig. 14. Multifractal analysis of the distribution of contact micro-forces at the rock interface. Calculated spectra, for P = constant, by
varying the horizontal shift v (a). Calculated spectra, for v = constant, by increasing P (b).

according to the dimensional evolution of the contact domain. The width of the spectrum increases too,
because the range of micro-forces is progressively enlarged (new asperities come into contact, while the
pressure grows in the previous ones).

7. Conclusions: capabilities and limits of the model

In this paper, the Cattaneo-Mindlin theory of frictional contact has been extended to elastic half-spaces
in contact through disordered self-affine interfaces. The discretized formulation of the Cattaneo theorem is
also provided, and represents the basis of the proposed numerical model. Mathematically generated sur-
faces with different roughness, and experimentally digitised ones have been analysed. The capability of
fractal geometry to describe real disordered interfaces permits to capture some peculiar aspects of contact
mechanics.

By means of the numerical method, the evolution of the contact domain under monotonic loading has
been investigated. We have proven the correspondence to the experimental findings reported in [12,13]. It
has been shown that, for constant normal pressure and increasing shear force, the extent of the stick area
decreases in the same way as the contact area develops with increasing pressure. The slip area is found to be
proportional to the tangential force, as predicted by Cattaneo theory. Correspondingly, the size of the stick
zones decreases as the tangential force increases. Self-affinity of the interfaces results in the lacunarity of the
contact domains, whose fractal dimension, smaller than 2.0, appears to increase with the nominal pressure.
At a sufficient level of discretization, contact pressures show multifractal distributions, i.e., a spectrum of
dimensions is necessary to describe all the moments of their distribution. The spectra change during the
loading history, according to the topologic evolution of the contact domain.

Although many basic features of the tangential problem are captured by the above method, a limitation
is represented by the purely linear elastic behaviour and by the assumption of constant friction coefficient.
In particular, the last assumption eliminates the possibility of modeling the instabilities often emerging in
sliding contact. Explicit energy exchange among the slipping asperities should be considered. That is, if an
asperity attains its limit tangential force, it slips and some elastic energy is released. This energy is partially
dissipated at the interface and partially transmitted (by a stress wave) to the surrounding asperities. Similar
arguments were already exploited in 1967 by Burridge and Knopoff in their famous model for seismicity
[33], where, however, the contribution of disorder was not taken into account. Another way to implement
the mutual interactions could be that of considering a kinetic local friction coefficient f; smaller than the
static one. In this way, once the asperity attains its limit tangential force, its coefficient drops and thus a
certain amount of shear force (Ag; = (f — fi)p;) must be transferred to the surrounding elements under
constant total shear. In both cases, an increase of the tangential forces in the neighbourhood of the slipped
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asperity should be taken into account. The transition from stable shear loading (partial-slip, macroscop-
ically firm body) to instability (full-slip) is critical in the sense that collapse can be sudden and occur much
before than all the asperities reach their local friction limit. This is provided by a cooperative phenomenon
generated by local slip events, due to the aforementioned energy releases. The first events are smoothly
absorbed by the stick domain, but at a certain critical point the local slips could activate a cascade process
leading to full-slip. An incremental load history becomes necessary to model these features.

Regardless of its limitations, the Cattaneo—Mindlin solution can be successfully exploited in the cases of
cyclic tangential loadings below the full-slip condition. For instance, this is the case of fretting fatigue,
which is nowadays recognized as a crucial topic for the assessment of safety and residual life of mechanical
components.
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