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1 Introduction

Bowden and Tabor ([1] BT, in the following) state that friction
is dictated by ‘‘adhesion (cold weld)”” and ‘‘ploughing (inelastic
deformation term),”” between asperities. Amonton’s law could
easily be explained for the ploughing term, as the real area of
contact would simply be A= P/H, where H is the hardness of the
softer of the contacting bodies, and P is the applied load. How-
ever, for the elastic term, which in most cases would be the domi-
nant one, Hertz’ theory would not predict linearity with load. Dur-
ing the 1950s, several articles appeared in prestigious journals
{[2-4]) where multiscale models were introduced to explain Am-
onton’s and several connected well-known laws for friction, wear
and electrical/thermal resistance, in terms of elastic deformations
of multiscale, and rigorously »-scale model which we would now
call a fractal ([4]), as depicted in Fig. I—this is not the only
possible choice, as the Archard model only takes into account of
load redistribution and not of the actual geometry. These models
found that the relation real contact area to total load for an en-
semble of elastic asperities separated enough from each other to
neglect interaction effects, is
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where E=E/(1 —v?), and K,, is a coefficient which depends on
the number of scales introduced n, and was computed by Archard
for the first few scales only of his model. Archard’s main finding
was that «,, tends rapidly to one as n is increased. No particular
attention was, vice versa, paid by Archard to the coefficient K, ,
which will be here recomputed in general and will be specialized
for a fractal geometry.

Independently from these multiscale models, and actually ex-
tending these results, Greenwood and Williamson ([5], GW
model, in the following) showed that statistical distribution of
heights asperities leads (at least approximately) to linearity be-
tween 7 and p independently on the exact law relating locally T
with p, i.e., including any arbitrary local elastoplastic constitutive
and frictional laws. Only recent experiments at very small scales
with just one asperity in contact under very carefully controlled
conditions are having some success in explaining the intrinsic
properties of friction (see [6]). It has been found in particular that
the friction coefficient is a function of the size of the asperity, and
varies from very high values close to the elastic moduli of the
materials (around G/30, in particular, where G is the shear modu-
lus of the material), for smallest size to Peierls stress values, com-
parable to yield limits at larger sizes. When this knowledge will
be completed, the way towards quantitative predictions of the ac-
tual “‘averaged’’ friction coefficient will depend on the actual pre-
cise determination of the distribution of contact sizes. This in turn
will need an-accurate modelling of real surfaces. As recently pro-
posed, fractal models seem to have a promising role in concisely
describing the apparent self-affinity of roughness, i.e., with fea-
tures repeating themselves at different scales ([7,8]) but early at-
tempts to use measurements of real surfaces and modelling of
contact ([9,10]) were somehow unsatisfactory because they only
considered a geometrical method for computing the contact area
from a ‘‘bearing area’’ assumption. Borri-Brunetto et al. [11],
vice versa, created a finite numerical realization of a surface with
appropriate fractal properties and then used a numerical method to
solve the resulting elastic contact problem at various levels of
spatial discretization, suggesting that in the fractal limit the con-
tact may consist of an infinite number of infinitesimal contact
areas of total area zero. In other words, the actual contact area
appears to be a fractal with dimension below two. This originated
a discussion between the authors during the process of writing a
review paper ([12]), and then to develop a rigorous analysis, spe-
cialized to the plane contact for a Weierstrass profile ([13], CDBJ
model in the following), demonstrating that extended regions of
contact are not possible with this model.

After this effort, we moved back to the original Archard’s work
and recognized that, although its surface is not a fractal of well-
known characteristics. and although the contact mechanics is not
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Fig. 1 Example of geometry for the Archard model

as rigorous as it can be with the Weierstrass profile, the result of
fractal contact area can be reached very simply by extending the
calculations of the original Archard paper ([4]) a little further,
with the appropriate assumptions on the asperities geometry. The
results, as shown in the present paper, are surprisingly similar to
the Weierstrass profile CDBJ model, in many respects. A discus-
sion of possible implications of these findings for friction theories
follows.

2 The Revisited Archard’s Model

Archard’s model is based on the assumption that each asperity
at scale n is replaced by many asperities at the higher scale. This
permits an ‘‘uncoupling”” of scales in the calculations of the re-
distribution of the pressure from one scale to the next, smaller
one. Therefore, a very simple, analytical recursive argument can
be developed. In order to consider ‘‘interaction of scales’’ one
would need to consider the effect of smaller asperities in the cal-
culation of the compliance of the larger ones, as Greenwood and
Tripp [14] have done in the context of the statistical models. It is
instructive to consider, however, that while the GT model seems
to introduce some degree of multiscale features, the decision of
having just two scales is somehow arbitrary, except for the case
where the macroscopic roundness of the sphere is evident. Also,
the GT model only obtains in most cases a minor modification of
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the pressure distribution at the largest scale, due to the small com-
pliance effects, but loses the Archard feature of showing the pres-
sure levels at smaller and smaller scales. It is clear that in prin-
ciple a numerical model could take into account of all these
effects simultaneously, but it remains a problem to build a multi-
scale model from a measured spectrum of the profile.

Turning back to the Archard model, at scale 0 Hertzian rela-
tions ([15]. 4.2a) give the contact area as (1) with Ko
=m(3R/4)*3, ay=2/3, and R, being the radius of the sphere.
The pressure distribution is p(r) =2E/ 7R \ry—r?. We now as-
sume that in the area A there is a uniform distribution of asperi-
ties having density m, (number of asperities per unit area). Ex-
tending Archard’s procedure for a contact of always higher
number of scales, we obtain the following general expressions of
the contact area at the nth scale as a function of load:
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Notice that for n— > the dependence on load becomes linear,
independently on the assumptions on the geometrical quantities
m, , R,. If, on the other hand, the ratios my/my_y and Ry /Ry
are Kept constant, we get
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If we now assume for the spacing A, between asperities and for
the radii R, a power-law function, ie., N\, ,/\,=7y and
R,_,/R,=%", the density of asperities is obviously m,= 1/>\ﬁ,
ie., m,_;/m,=(\,1/\,)?=1/y". Then, the ratio between con-
tact area at subsequent scales is found from (3) to be
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The tendency to power-law (5) indicates that the contact area
tends to a fractal set, whereas the fractal dimension computed
with the box-counting method (see CDBJ) is
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indicating that the limifing fractal dimension is

d,=3-D. (7

Considering that D=1 -2 by analogy to the Weierstrass case (see
CDBJ), the contact area has dimension between 1 and 2, analo-
gously to what found in CDBJ.
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3 Discussion

The Archard model leads to asymptotic fractal behavior, under
assumptions on radii of curvature for the asperities similar to the
Weierstrass CDBJ model, and in contrast with Majumdar and
Bhushan [9.10]. and their ‘‘bearing area’ geometrical assump-
tion, with resulting finite area of contact. Obviously, we don't
expect the contact area to be really zero, as real surfaces will have
a truncation at one point, with asperities of given minimum size.
Even if this was not the case, at a certain scale. deformations
would be so intense that plastic deformation, nonlinearities, and
other effects not included in our model would appear. It is clear
that, in the spirit of Archard’s model, if one asperity yields, this
does not affect the load redistribution at the other asperities, as
equilibrium is already accounted for. Therefore. an idea of the
pressure level increase with scale can be found from the total
contact area variation with 7, as can be obtained from equations
given above. The resulting trends are very similar to the ones
obtained for the CDBJ model. In particular, the fractal dimension
is a constant depending only on geometry and not on load level,
but at the first few scale, both higher and lower apparent fractal
dimension can occur. Also, as proved with the CDBI model re-
sults, although both the contact areas and the distance between
asperities become smaller, the ratio between the two decreases, so
that interaction effects become increasingly smaller, and the Hert-
zian approximation becomes valid in any conditions, i.e., even in
cases where high loads predict full contact at macroscopic scale
(in this case, the present model is poor whereas the CDBJ model
correctly considers the Westergaard solution for predicting con-
tact area size).

4 Conclusions

The most striking conclusion of the calculations is that with
multiscale models the contact area generally (if the radius of as-
perities decreases fast enough) tends to zero, i.e., is a fractal. The
reason why such an implication had escaped the attention of re-
searchers for more than 40 years, particularly as the model is quite
well known. A possible explanation is that the main issue at that
time was to find the linearity of relation (1), i.., that a,—1,
whereas the coefficients K, were never computed for more than
2-3 scales. The results confirm the conclusion reached numeri-
cally by Borri-Brunetto et al. [11] that the contact area is defined
by a fractal set—i.e., that contact is restricted to an infinite set of
infinitesimal contact segments in the limit n—: there are no
contact segments of finite dimension and the total contact area
tends regularly to zero. In addition, the deviation from simple
power-law fractal behavior at low wave numbers provides an ex-
planation of their observation that the apparent fractal dimension
is load-dependent. Even at large n, the splitting of segments of the
contact area does not follow a ‘‘simple’” rule for successive
scales. Therefore, at successive scales, even if yielding is reached
at one location, contact splitting will continue at other location,
until yielding is reached even there. Therefore, it now becomes
clear that the Archard model is in the limit compatible in a sense
to the old Bowden-Tabor simple idea of contact area size given by
A=P/H. Therefore, Greenwood-Williamson’s model predicts
Amonton’s law from just the effect of randomness of the asperity
height distribution, independently on the constitutive law at mi-
croscopic scale, Archard’s model explains it as just an effect of
lpad redistribution for a deterministic geometry, and leads in the
limit to the other possible explanation (the Bowden-Tabor’s fully
plast'ic one), this goes some way in explaining why Amonton’s
law is so well hidden and intrinsic in the contact of any surface.

Howevgr, as Bowden-Tabor’s theories and experiments show
that full yield (ploughing term of friction) is negligible with re-
spect to ““adhesive™ elastic term, particularly for hard materials
and repeated sliding (shakedown), we can infer that the real case
has a combination of features from all of the above models, and
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that the normal contact problem is largely unsolved. Future pre-
dictions of global friction coefficient depend crucially on better
solutions and understanding of this problem.
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Appendix

Plane and Oversimplified Archard Models. In two dimen-
sion, with the same assumption for the ratios my.,/m, and
Ri+1 /R, . we have
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which, in the limit for n— 2 reduces to y'~?. Evaluating the
fractal dimension as in the three-dimensional case the limiting
fractal dimension is

dy=2-D. )

An oversimplified model of a surface could be imagined as
having at scale n a number y*" of equal asperities of radius R, not
necessarily equally distributed leads to a fractal dimension

2
d=3(4-D) (10)

which ranges from 4/3 to 2. However, the relation real contact
area versus Joad is still Hertzian at all scales, which is contradict-
ing Amonton’s law.
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