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Multi-objective optimization approach to the

ALSTOM gasifier problem
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Abstract: A control system design procedure based on the optimization of multiple objectives is
used to realize the control design specifications of the linear gasification plant models. A multi-
objective genetic algorithm (MOGA) is used in conjunction with an H, loop-shaping design pro-
cedure (LSDP) in order to satisfy the requirements of this critical system. The H,, LSDP is used to
guarantee the stability and robustness of the controller while its associated weighting matrix param-
eters are selected using the multi-objective search method in order to achieve performance require-
ments. A controller emerges which is stable but unable to completely meet some of the control
objectives. Despite this shortcoming, the study is an excellent vehicle for introduction to an effective
H,, loop-shaping procedure. Further work, beyond the scope of this challenge has subsequently

produced an improved controller design.
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NOTATION

Sf(x)  multi-objective function vector

G open-loop plant transfer function matrix

Gy disturbance transfer function matrix

G, shaped open-loop plant transfer function
matrix

‘H’ infinity

controller transfer function matrix
matrix of output singular vectors
matrix of input singular vectors
pre-plant weighting matrix
post-plant weighting matrix
vector of decision variables

“FE<CAE

robustness metric

normalized perturbation

eigenvalue

spectral radius (largest eigenvalue magnitude)
singular value

diagonal matrix of singular values
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1 H,, CONTROL SYSTEM DESIGN METHOD
TUNED BY A MULTI-OBJECTIVE GENETIC
ALGORITHM

The specified objective for the work summarized in this
paper was to perform a controller design procedure for
the gasifier described in reference [1]. The nature of the
input and output constraints categorize the gasifier as a
critical system [2, 3], i.e. a system which requires the
error, or other outputs, to remain within strict limits.
The aim of the control system designer is to ensure that
these critical limits are not breached due to the presence
of disturbances or changes in the system inputs. The
basis of the chosen controller design method is the H,,
loop-shaping design procedure (LSDP) of MacFarlane
and Glover [4] and Glover and MacFarlane [5]. This
technique is used in conjunction with a multi-objective
genetic algorithm (MOGA) [6] to produce a powerful
controller design strategy.

1.1 H_, design process

H,, control system design is an optimization-based con-
troller design technique. Recent research has reported
that the technique has been applied in a number of areas,
notably aerospace [7-9]. It offers the designer a method
which can handle multi-variable as well as single-loop
systems. Levels of robustness can be specified and trade-
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offs between performance and robustness in the design
procedure can be incorporated. The technique utilizes
the related concepts of singular values and the H_, norm,
the latter being defined for the transfer function matrix
G:

1G(8) lloo = max[6(G(jo))] (1)

where o(-) denotes the singular values and ||+ ||, denotes
the H_, norm.

Classical controller design addresses the robust-
ness concerns using gain and phase margin settings.
Interactions present in cross-coupled multi-variable sys-
tems render these methods unreliable as indicators of
system robustness. Instead, model uncertainty is incor-
porated into the design process by representing the plant
using a nominal model augmented by a model of the
possible uncertainty or disturbance. The controller strat-
egy is to maximize the size of the modelling error that
can be tolerated while retaining closed-loop stability. In
other words, the design procedure seeks to stabilize the
set of possible systems that could result from the uncer-
tainty in the plant representation. This is achieved
by minimizing the H, norm of the reciprocal of the
modelling error.

Performance requirements are addressed through the
shaping of frequency responses. This is achieved by using
weighting function matrices to provide an acceptable
trade-off between disturbance rejection, noise attenu-
ation and the minimization of control energy. The usual
mechanism for doing this is the minimization of the H_,
norm of the weighted frequency response. The majority
of H,, techniques address a closed-loop system and the
frequency response used for this exercise is that of the
sensitivity function. The particular technique used for
the gasifier problem is the H,, loop-shaping design pro-
cedure of MacFarlane and Glover [4] and Glover and
MacFarlane [5]. This is unusual in that weighting func-
tion matrices are applied to the open-loop plant. This
technique has the advantage of offering levels of robust
performance, a stronger condition than that of robust
stability.

As suggested above, the attainment of performance
specifications depends on the selection of the weighting
function matrices, denoted W, and W,. It is through this
selection process that the designer interacts with the
design procedure. This procedure usually involves a
degree of trial-and-error style iterative design. Various
factors influence the choice of these weighting function
matrices, such as the bandwidth, roll-off rate and low-
frequency gain magnitude. Certain selection techniques
require knowledge of the disturbance process to which
the plant is subjected. Redefinition of the performance
requirements may be necessary following an unsatisfac-
tory outcome to the design procedure. The designer is
faced with a number of considerations that must be bal-
anced against one another in order to achieve the
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optimum trade-off between performance and robust-
ness. Hence H,, optimization can be viewed as a multi-
objective problem in itself.

1.2 Multi-objective optimization

Multi-objective optimization (MO) recognizes that most
practical problems invariably require a number of design
criteria to be satisfied simultaneously:

minf £(x)] @

where x =[x, X, ..., x,] and £ define the set of free
variables x subject to any constraints and f(x)=
[f1(x), f2(%), ..., f,(x)] contains the design objectives to
be minimized.

Clearly, for this set of functions fi(x), it is unlikely
that there is one ideal ‘optimal’ solution, rather a set of
Pareto-optimal solutions for which an improvement in
one of the design objectives will lead to a degradation
in one or more of the remaining objectives. Such solu-
tions are also known as non-inferior or non-dominated
solutions to the multi-objective optimization problem.
An example of Pareto ranking for two objectives
assuming a minimization problem is shown in Fig. 1.
Individuals are ranked according to the number of indi-
viduals that show superior performance in terms of
all the objectives. Hence, individual A is ranked 9
while individual B is ranked 0 and is referred to as non-
dominated. (The box formed by connecting A to each
of the objective axes contains nine solutions, all of which
dominate A.)

Thus a multi-objective optimization strategy is com-
patible with the H, controller design method. The
inherent compromise between performance and robust-
ness, which is prevalent in all control design approaches,
lends itself to formulation as a multi-objective H_, opti-
mization. Various specific performance criteria can be
analysed in the context of how they affect the levels of
stability. The ultimate task of the designer is to select a
suitable controller from a range of non-dominated
options. The population-based nature of genetic algor-
ithms (GAs) offers an optimization strategy that can be
adapted to perform within a multi-objective framework,
Selection of the weighting function matrices W, and W,
can be performed using this evolutionary technique and

Objective 2

Objective 1
Fig. 1 Pareto ranking
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the result assessed in terms of multiple performance
objectives.

2 H,LOOP-SHAPING DESIGN

The H,, loop-shaping design procedure is essentially a
two-stage controller design technique [10]. Firstly, per-
formance requirements are addressed by shaping the fre-
quency response of the open-loop plant in a manner
analogous to that of classical loop shaping. Secondly,
robustness requirements are addressed using H,, optim-
ization [10, 11] to stabilize the shaped plant, given a
range of possible model uncertainty. The result is a single-
degree-of-freedom controller, a configuration adequate
for the disturbance rejection task of the challenge [1].
The design procedure assumes positive feedback in the
closed-loop system.

2.1 Loop shaping

In classical linear single-input single-output (SISO) loop
shaping, the magnitude of the open-loop transfer func-
tion is a function of frequency and is manipulated
in order to meet system requirements. The gain of a
multiple-input multiple-output (MIMO) plant, however,
varies at any given frequency with the direction of the
input vector. No unique gain value can be given for a
multi-variable system as a function of frequency. A mea-
sure analogous to that of SISO plant gain is required
for multi-variable systems if loop shaping is to be
employed. Eigenvalues are unsuitable for this task as
they provide only a measure of gain for the specific case
of a square system whose input and output vectors are
in the direction of an eigenvector. However, an accurate
representation of the gain of a multi-variable system can
be found using the singular value decomposition.

The singular value decomposition of any / x m matrix

G can be written as
G =UxVH 3)

where VH is the complex conjugate transpose of V. Each
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column vector of matrix U represents the direction of
the vector output signal produced by the plant G subject
to an input in the direction of the corresponding column
vector of matrix V. These column vectors are each of
unit length. X is a diagonal matrix of min {/, m} non-
negative singular values in descending order of magni-
tude, the remaining diagonal elements being zero. These
singular values represent the gain of G for the corre-
sponding input and output directions in V and U and
can be computed as the positive square roots of the
eigenvalues of GHG.

0i(G) = VA(G"G) (4)

where o(+) denotes a singular value and A(-) denotes an
eigenvalue. Hence the maximum singular value 0,,,,(G)
and the minimum singular value ¢,,,;,(G) constitute the
upper and lower bounds respectively on the range of
system gains in response to all possible input directions
at a given frequency.

In order to determine what constitutes a desirable
shape for the plant singular values, the closed-loop
configuration in Fig.2 can be analysed. From this
configuration the output y can be derived as being

y=(I-G,K) 'G,Kr+(1—GK) 'G,d

+(I-G,K) 'G,Kn (5)

where r is the reference signal, d is the disturbance, n is
the measurement noise, # is the plant input, y is the
actual output and y,, is the measured output.

From equation (5) it can be seen that, when |G K] is
large, reference signals are propagated while disturb-
ances are attenuated. However, a large value of |G,K|
fails to subdue measurement noise and a trade-off situ-
ation arises. A compromise can be found because refer-
ence signals and disturbances are usually low-frequency
events while measurement noise is prevalent over a much
wider bandwidth. Acceptable performance can therefore
be attained by shaping the singular values of G,K to give
a high gain at low frequencies for disturbance rejec-
tion and a reduced gain at higher frequencies for noise
suppression [10, 12].

For this particular design procedure, the purpose of

¢d

Gy

-+

Ym

Fig. 2 One-degree-of-freedom feedback control system
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K is to stabilize robustly the shaped plant as described
in the next section; this shaping procedure cannot be
accomplished through the manipulation of K. Hence G,
is defined to be the augmented plant G,=W,GW,,
where G represents the fixed plant. This structure allows
the designer to shape the singular values of the aug-
mented plant G, through the selection of appropriate
weighting matrices W; and W,. The selection of these
matrices is therefore the key element in attaining the
performance requirements of the system and is the focal
point of this design technique. This design task will be
performed using a MOGA as outlined in Section 3.1.

2.2 H,_ robust stabilization

The normalized left coprime factorization of a plant G
is given by G=M"!N. A perturbed plant model G, is
then given by

G, =(M+AM) (N + AN) (6)

To maximize this class of perturbed models such that
the configuration shown in Fig. 3 is stable, a controller
K, that stabilizes the nominal closed-loop system and
minimizes y must be found, where

Y= 7N

K, g
[ I ](IwGKS) M~!

This is the problem of robust stabilization of nor-
malized coprime factor plant descriptions [5]. From the
small-gain theorem [10], the closed-loop plant will
remain stable if

AN
AM
The lowest possible value of y and hence the highest
achievable stability margin is given by y..=
[1 + p(ZX)]*?, where p is the spectral radius, and Z and

X are the solutions to the following algebraic Riccati
equations:

(A—BS™!DTC)Z + Z(A —BS™'DTC)"

<y (8)

0

—ZC™R™ICZ+BS™'BT=0 9
'—.—" ™
——{x w1
1K, J*
Fig. 3 Robust stabilization with respect to coprime factor
uncertainty
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(A—BS™!DTC)TX + X(A —BS™'DTC)
—XBS™'BTX+C™R™IC=0 (10)

where A, B, C and D are the state-space matrices of G
and

R=1+DD7, S=I1+D'D (11)

By solving these equations, the state-space controller K
can be generated explicitly [10]. This controller gives no
guarantee of the system’s performance, simply that it is
robustly stable. It is therefore necessary to shape the
system’s response with both pre-plant weighting function
matrix W; and post-plant weighting function matrix W,
shown in Fig. 4. This will ensure that the closed-loop
performance meets the specifications required.

3 MULTI-OBJECTIVE OPTIMIZATION USING
GENETIC ALGORITHMS

The GA is a stochastic global search method which
employs a Darwinian survival of the fittest principle. At
each generation a population of potential solutions is
assessed in terms of their performance in the problem
domain. These individuals are then ranked according to
their performance, the fittest having the highest prob-
ability of breeding. Pairs of individuals are then chosen
according to these probabilities and bred together. Their
offspring form the subsequent generation of potential
solutions. A mutation operator is also implemented ran-
domly in order to ensure that the probability of search-
ing any given section of the search space is never zero.
As this cycle repeats over a number of generations, the
population becomes more refined as the least-fit individ-
uals are rejected and an optimal solution is approached.
The steps involved in the execution of a GA can be
summarized as follows:

1. The genotypic representation, often encoded in
binary, of an initial population is randomly
generated.

2. These genotypic representations are converted to the
corresponding phenotypes or decision variables.

3. The performance of each member of the popula-
tion is assessed in turn using a prescribed objective
function [6].

W, Plant W, .

Controller
K

Fig. 4 Loop-shaping controller structure
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4. Each individual is assigned a fitness value according
to its objective function value.

5. Individuals are selected for reproduction according
to a stochastic selection procedure with probabilities
derived from their fitness function values.

6. Individuals genotypic representations are bred using
specified mechanisms such as crossover.

7. A mutation operator is then applied stochastically to
the genotypic representations of the offspring in order
to ensure that the probability of investigating any
given area of the search space is never zero.

8. The newly generated population is then assessed
according to its objective function performance, the
GA operations are repeated and new generations
evolved until termination criteria are satisfied.

3.1 Multi-objective genetic algorithms

The MOGA is implemented using a standard GA [6]
with extensions for multi-objective ranking, fitness
shearing and mating restrictions. The salient features of
MOGA are shown in Fig. 5 and described below.

Multi-objective ranking is based on the concept of the
dominance of an individual and can be described by the
scheme in Fig. 1. This system of ranking is non-unique,
e.g. a number of individuals are ranked zero and these
are said to be non-dominated. Ranking may also be com-
bined with goal and/or priority information to discrimi-
nate between non-dominated solutions. For example, a
solution in which all the goals are satisfied may be con-
sidered superior, or preferable, to a non-dominated solu-
tion in which the goal points of some objectives are not
met [6]. All the preferred individuals thus achieve the
same fitness; however, the number of actual offspring
may differ due to the stochastic nature of the selection
mechanism. Thus an accumulation of the imbalances in
reproduction can cluster the search into an arbitrary area
of the trade-off surface. This phenomenon is known as
genetic drift and can drastically reduce the quality and
efficiency of the search. Proposed as a solution to genetic
drift, fitness sharing penalizes the fitness of individuals
in popular neighbourhoods in favour of more remote
individuals of similar fitness [6].

Recombining arbitrary pairs of non-dominated indi-
viduals can result in the production of an unacceptably

high number of unfit offspring, or lethals. A further
refinement to the MOGA is therefore to bias the manner
in which individuals are paired for recombination, often
termed mating restriction. This restricts reproductions
to individuals that are within a given distance of each
other. Population diversity is maintained by adding
random genetic information at each generation as well
as mutating existing individuals (see Add Random
Immigrants in Fig. 5).

A MOGA was used to produce a population of poten-
tial solutions for the gasifier problem. Each solution con-
sisted of a set of matrix elements for the pre-plant
weighting matrix W, and the post-plant weighting matrix
W,. The use of the MOGA provided the means of
implementing a multi-objective controller design strategy
in contrast with other H,, and GA approaches which do
not provide the designer with a visualization of the trade-
off surface [13].

4 APPLICATION OF THE DESIGN TECHNIQUE
TO THE GASIFIER PROBLEM

The flow chart in Fig. 6 provides an overview of the steps
involved in the controller design process. A more specific
discussion of the technique as applied to the gasifier is
also given.

The MOGA tool was implemented using the
MATLAB GA toolbox [14]. In order for the MOGA to
rank the prospective controllers, and objective function
vector tailored to the specific performance requirements
of the gasifier is required. In order to evaluate each set
of possible weighting matrix elements the objective func-
tion first has to construct the H,, controller by solving
the algebraic Riccatti equations (9) and (10) using the
100 per cent load linear model of the gasifier. The weight-
ing function structures used were those of a diagonal
matrix of first-order lags for W, and a diagonal matrix
of gains for W,. The first-order lag structure of W, was
considered necessary to break any algebraic loop which
may appear in simulation due to the non-zero D matrix
in the linear model. The linear models of the gasifier
contained 25 states and this design technique produces
controllers which are at least of the order of the plant.
The terms in W, were specified as stateless in order to

Create Initial recti Pareto Optimal
> Evalu_ate Objective ar P -—-bl Recombination ]-> Mutation
Random Population Function Ranking
Compare Old and ‘____é
New Chromosomes
Add Random
Immigrants
Fig.5 The MOGA
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Construct objective function to reflect
performance requirements of system

!

Generate genotypes of initial random
population of potential solutions

New generation of Matrix of genotypes
potential solutions | Decode genotypic representation into
phenotypes or decision variables
Weighting function
y matrices W) and W,
Fitness ranking, Perform H... robust stabilisation
selection, breeding,
mutation and . Controller K
introduction of random
immigrants performed Apply objective function to every
individual member of the population

A

y—— Vector f of objective

function values

Termination
Criteria
satisfied?

End of
process

Fig. 6 Flow chart of the MOGA H,, controller design process

minimize the order of the resultant controllers. Each
controller’s performance was then evaluated by running
a simulation on the 100 per cent load model subject to
a step and a sine wave disturbance as specified in the
challenge [1]. As the optimization philosophy of MOGA
is to minimize objective function values, the plant model
was not offset, relative values about the operating point
being preferred to absolute input—output values. This
allowed the objective function to assess the peak devi-
ations in gasifier outputs produced by each candidate
controller by taking the maximum absolute value of each
output vector. Input constraints were observed by plac-
ing saturation and rate-limit blocks on the inputs of the
SIMULINK system representation containing relative
values appropriate to the operating point. The minimiz-
ation of the integral of absolute error (IAE) of each
output was also specified as a design objective. In the
case of the gas quality and pressure outputs the JAE was

Proc Instn Mech Engrs Vol 214 Part 1

minimized in order to encourage a short settling time
and to reduce steady state error while in the case of the
bed mass and temperature outputs, the aim was to pre-
vent a possible violation of the output constraints
beyond the stipulated 300 s run time of the test simu-
lation. Stability of the closed-loop system was guaran-
teed by optimizing the maximum closed-loop continuous
eigenvalue and discarding any individual in the popu-
lation which did not result in a maximum closed-loop
eigenvalue less than zero. One further objective
attempted to minimize the H,, norm y in order to max-
imize the robustness of the closed-loop control system.
Figure 7 shows a typical parallel coordinates trade-off
for the gasifier. The ten objectives shown in Table 1 are
identified along the x axis. Each line represents the per-
formance in the objective domain of a potential solution
(one individual), i.e. the performance arising from a set
of weighting matrix elements. The crosses which are
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Simple MOGA - 12 variables, 10 objectives

Cost

1 2 3 4 5

8 7 8 e ] 10
Objective no.

Fig.7 Trade-off graph

Table1 Objectives

Objective Objective description

Peak fluctuation of CVGAS from the operating point
Peak fluctuation of MASS from the operating point
Peak fluctuation of PGAS from the operating point
Peak fluctuation of TGAS from the operating point
IAE of CVGAS over 300s

IAE of MASS over 300 s

IAE of PGAS over 300s

IAE of TGAS over 300s

Maximum continuous eigenvalue of closed-loop system
H,, robustness measure y

SO 0NN R W -

—

ranged across the graph denote the goal values for each
objective. For example, objective 1 is to minimize the
peak fluctuation of the fuel gas calorific value CVGAS
from its operating point value. The cross is situated at
the specified limit of 10 000 J/kg. Each line on the graph
indicates the performance of the associated individual in
relation to the corresponding objectives. It can clearly
be seen that, for objective 1, all solutions have an objec-
tive value less than that of the goal value. This means
that all potential controllers offered by the MOGA have
been successful in containing the peak fluctuation of the
calorific value to within +10000 J/kg. Figure 8 also
shows a situation in which all individuals perform suc-
cessfully in relation to the performance specifications but
the objectives have been reordered on the graphical
user interface to enable comparison between adjacent
objectives. The displayed ranges of each objective are
normalized to leave the crosses representing the optimiz-
ation goals near the top of the graph.

Competition between adjacent objectives is indicated
by crossing lines whereas concurrent lines represent non-

105300 © IMechE 2000

competing objectives. Here, the goals relating to maxi-
mum output fluctuation (objectives 1 to 4) are set to the
limits stated in the challenge. These targets are specified
as constraints in order to guarantee that controllers rep-
resented on the trade-off graph satisfy the output con-
straints over the run-time of the simulation. From Fig. 7
it can be seen that all the controllers represented here
offer excellent control over peak bed mass fluctuation
(objective 2). Therefore the bed mass peak fluctuation,
as an objective, is not in competition with any other
objective. However, the bed mass does trade off with the
pressure in terms of the IAE of both outputs as shown
by the lines crossing between objectives 6 and 7. There
is also competition between the IAE of pressure and
temperature (objectives 7 and 8). Concurrent lines
between objectives 5 and 6 indicate that both calorific
value and bed mass can be optimized simultaneously in
terms of the IAE.

The objective visualization tool allows the objectives
to be swapped around, producing alternative ordering
of objectives. This provides the user with a represen-
tation more conducive to gaining insight into the trade-
off surface. Further work is currently being undertaken
to produce more advanced visualization techniques to
quantify the degree of competition and to identify trade-
off ‘hot spots’. The peak fluctuation objective value of
each output has been placed adjacent to its IAE in Fig. 8.
Note that objectives 9 and 10 are not relevant to this
study and are left untouched. This format allows assess-
ment of whether the two measures of each output com-
pete with each other. The vast majority of lines are, in
fact, concurrent between the associated objectives. The
controllers represented will therefore optimize both the
peak fluctuation and the TAE of any chosen outputs.

Proc Instn Mech Engrs Vol 214 Part I
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Simple MOGA - 12 variables, 10 objectives

Objective no.

Fig.8 Reordered trade-off graph

This makes the designer’s tasks easier as a final control-
ler selection based on only one of these performance
measures can be made.

The final choice of controller was made with reference
to both the performance requirements and the need for
stability across all three operating points. As previously
stated in Section 1, the properties of performance and
robustness are always in competition during the pro-
cess of control system design. The choice of controller
for which results are shown below was considered to
offer the best possible achievement of goal values while
retaining stability across the entire operating range.

The design solutions shown in Fig. 7 achieved all the
performance specifications at the 100 per cent load
operating point as indicated by the fact that the lines are
beneath the goal marker crosses. However, simulations
showed that these solutions produced unstable or high-
frequency oscillatory behaviour at the 0 per cent
operating point. As this was considered unacceptable,
the priority level of the most difficult objective, that relat-
ing to pressure, was relaxed from constraint to objective.
This allowed a larger number of potential solutions to
be considered and the final choice of controller came
from the subset of potential solutions which were
revealed by this priority change.

4.1 Mapping for the MOGA-tuned H_, method

Controller design specifications relating to system per-
formance are often expressed in terms of time or fre-
quency domain metrics which the resulting system is
required to satisfy or exceed. Other desirable character-
istics relating to the relative stability of the system and
the achievable robustness may also be targeted. The

Proc Instn Mech Engrs Vol 214 Part I

multi-objective optimization approach to control system
design used here expresses system requirements in terms
of vectors of objectives and goals, the aim being to mini-
mize the objective vector elements in accordance with
the goal vector requirements. The mapping between
these alternative expressions is shown in Fig. 9 and the
design specifications can be found in reference [1].

4.2 Results

The results are shown in Figs 10 to 17.

4.3 Performance test figures

Tables 2 to 7 show the performance test figures. The
values in parentheses indicate that a constraint violation
has occurred.

4.4 Discussion of results

At the 100 per cent load operating point, the graphical
results show that the controller exerts effective control
over the calorific value, bed mass and temperature in
terms of not exceeding the challenge’s constraints when
subjected to a step in the disturbance signal. The gas
pressure is less effectively controlled as it can be seen to
peak and settle outside the specified constraints. Steady
state errors are present at all four outputs, the magni-
tudes of these being relatively small for all except the
pressure. Extended run-time simulations show that these
steady state errors remain constant and do not tend
towards the set point.

In the case when the sinusoidal disturbance is applied
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Original Specifications
Output Limits
O.P. - 10000 < CVGAS(J/kg) < O.P. + 10000
O.P. - 10000 < PGAS(N/m” < O.P. + 10000
O.P. - 500 < MASS(kg) < O.P. + 500
O.P.- 1.0<TGAS(’K) < O.P. + 1.0
Further Requirements
System must be stable
Robustness required across 3 operating points
Input Limits
0 < WCOL(kg/s) < 10 : WCOLdot < 0.2kg/s*
0 < WAIR(kg/s) < 20 : WAIRdot < 1.0 kg/s?
0 < WSTM(kg/s) < 6.0 : WSTMdot < 1.0 kg/s*
0 < WCHR(kg/s) < 3.5 : WAIRdot < 0.2 kg/s*
(O.P. denotes operating point)

(dot denotes rate of change with respect to

time)

Multigbiective Optimisation Specifications
Minimise the vector f where
EVGAS fluctuation and IAE i
PGAS fluctuation and JAE
MASS fluctuation and IAE

TGAS fluctuation and IAE

Largest eigenvalue

with respect to goal vector g
lcvGAs| < 10000 kg |
[PGAS| < 10000 N/m®
IMASS]| < 500 kg
[TGAS|<1°K

Max eigenvalue < 0

y<2

NB. Relative values are used in g and input

limits are addressed in the SIMULINK model

Fig. 9 Mapping of system specifications into multi-objective formulation

to the 100 per cent loading operating point, control can
be seen to be more effective in terms of not violating the
challenge’s constraints. All four outputs remain within
their specified limits and extended run-time simulations
show that this situation continues beyond 300 s.

The step disturbance applied to the 0 per cent load
operating point results in control performance similar to
that of the step at the 100 per cent operating point.
Again, there are no constraint violations for calorific
value, bed mass and gas temperature and these responses
demonstrate small steady state errors. Again the signals
result in steady state errors during extended run-time
simulations. The gas pressure, however, can be seen both
to peak and to settle beyond the constraints set by the
challenge as in the 100 per cent case.

The response to a sinusoidal disturbance at the 0 per

105300 © IMechE 2000

cent load operating point differs from that at the 100
per cent operating point. While the calorific value, bed
mass and gas temperature remain within their con-
straints, the gas pressure exceeds both the maximum and
the minimum constraint values.

Results show a robust, stable, controller design cap-
able of exerting effective control over three of the four
outputs across all three operating points. The control
exerted over the gas pressure is, however, not sufficiently
effective to satisfy the requirements of the challenge at
any of the operating points.

The design procedure outlined above evolves a
number of potential controllers. For example, alternative
solutions which exert tighter control over pressure at the
expense of calorific value constraint violations can also
be produced. The design procedure has been shown to
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Fig. 11 Plant outputs resulting from a step disturbance at 100 per cent load

be capable of fulfilling the performance requirements of
all four outputs across two of the three operating points.

However, in
achieved for

this particular case, stability was not
the 0 per cent load operating point.
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Potential alternatives to the results presented in
Section 4.3 demonstrate that the procedure evolves a
family of solutions, allowing the designer to analyse vari-
ous permutations of achievable performance before

105300 © IMechE 2000



MULTI-OBJECTIVE OPTIMIZATION APPROACH TO THE ALSTOM GASIFIER PROBLEM 463

WCHR for Sin Disturbance at 100% load WAIR for Sin Disturbance at 100% load

0.2 1
0.1 0.5
&« c
I —
0 < 0
g 2
-0.1 -0.5
o] . . _1 e
0 20 100 200 300 0 100 200 300
time time
WCOL for Sin Disturbance at 100% load WSTM for Sin Disturbance at 100% load
1 - 0.2
0.5 0.1 ﬂ
= =
Q =
o 0 wn O
= =
-0.5 -0.1
-1 -0.2
0 100 200 300 0 100 200 300
time time

Fig. 12 Plant inputs resulting from a sine wave disturbance at 100 per cent load

CV@Gas for Sin Disturbance at 100% load Mass for Sin Disturbance at 100% load

10 ~ 0.2 -
5 0.1

1)
o w
9o 0 % 0 j
>
5] =

-5t 1 -0.1}

-10 - -0.2 -
0 100 200 300 o] 100 200 300
time time

Pgas for Sin Disturbance at 100% load

Tgas for Sin Disturbance at 100% load

1 1.5
x 104 X 10—31
0.5
0.5
wu) (/2]
© d
0 0]
& S
-0.5
-0.5
-1
—1 -1.5
0 100 200 300 0 100 200 300
time time
Fig. 13  Plant outputs resulting from a sine wave disturbance at 100 per cent load
105300 © IMechE 2000 Proc Instn Mech Engrs Vol 214 Part



464

WCHR for Step Disturbance at 0% load

_

0.5

—

200
time
WCOL for Step Disturbance at 0% load
0.8 - v

0 100 300

0.6

04

WCOL

0.2

100 200 300

time

I A GRIFFIN, P SCHRODER, A J CHIPPERFIELD AND P J FLEMING

WAIR for Step Disturbance at 0% load

0.6
0.4 l
0.2 K’f
o —
02, 100 200 300

time
WSTM for Step Disturbance at 0% load
0.2

0. r/—f

-0.2
-0.4 ]
-06, 100 200 300

time

Fig. 14 Plant inputs resulting from a step disturbance at 0 per cent load

CVGas for Step Disturbance at 0% load
400 -

200

CVGas

-200

-400
0 100 200
time
Pgas for Step Disturbance at 0% load
0

x 104
-0.5

300

-1

PGas

br,

0 100

200
time

300

Mass

TGas

Mass for Step Disturbance at 0% load
1.5

-

N

-0.5
0

100 200

time
Tgas for Step Disturbance at 0% load

0.02

300

Ok

-0.02

-0.04

-0.06

-0.08
0

100 200

time

300

Fig. 15 Plant outputs resulting from a step disturbance at 0 per cent load

Proc Instn Mech Engrs Vol 214 Part I

105300 © IMechE 2000



MULTI-OBJECTIVE OPTIMIZATION APPROACH TO THE ALSTOM GASIFIER PROBLEM

WCHR for Sin Disturbance at 0% load

nnnann

I

o 100

WCHR
o

il

time
WCOL for Sin Disturbance at 0% load

| |

300

-0.5

0.5

o 100 200 300

time

465

WAIR for Sin Disturbance at 0% load

0.5 y
o
< O
=
-0.5 1
0 100 200 300

time
WSTM for Sin Disturbance at 0% load

0.2 ﬂ
s
g 0
ol |
0 100 200 300

time

Fig. 16 Plant inputs resulting from a sine wave disturbance at 0 per cent load

CVGas for Sin Disturbance at 0% load
10

CVGas
o

-10

0 100 200 300
time

Pgas for Sin Disturbance at 0% load

2
x 104

200
time

0 100 300

Mass for Sin Disturbance at 0% load

15
1
057
0
-0.5
-1}

Mass

-1.5 -
0 200

time

Tgas for Sin Disturbance at 0% load

100 300

3
x 10-3
2
1

0

TGas

-1
-2

-3
0 100
time

200 300

Fig. 17 Plant outputs resulting from a sine wave disturbance at 0 per cent load

105300 © IMechE 2000

Proc Instn Mech Engrs Vol 214 Part |



466

I A GRIFFIN, P SCHRODER, A J CHIPPERFIELD AND P J FLEMING

Table 2 Performance figures produced with a step disturbance at 100 per cent load operating point

Maximum and minimum
absolute values

Maximum Minimum Peak rate IAE
Inputs
WCHR 1.19 0.71 0.2 —
WAIR 18.2 17.4 1 e
WCOL 9.61 8.48 0.2 —
WSTM 2.93 2.41 1 —
Outputs
CVGAS 4.36003025 x 10° 4.359968 x 10° 7.603 x 102 2.6288 x 102
MASS 1.000053 x 10* 9.9994 x 103 0.35 —
PGAS 2000000 (19882486 x 10°) 8.06995 x 10° 2.945501 x 10°
TGAS 1.2232 x 10* 1.22319 x 103 0.21 —
Table 3 Performance figures produced with a sine wave disturbance at 100 per cent load

operating point
Maximum and minimum
absolute values

Maximum Minimum Peak rate IAE
Inputs
WCHR 1.05 0.74 0.05 —
WAIR 18.04 16.79 0.16 —
WCOL 9.37 7.73 0.2 —
WSTM 2.89 2.53 0.09 —
Outputs
CVGAS 4.3600062 x 10° 43599943 x 10° 3.01 1.0756 x 103
MASS 1.000013 x 10* 9.9998 x 103 0.06 —
PGAS 2.00748875 x 10° 1.9927634 x 10°® 1.85 x 10? 1.383076 6 x 10°
TGAS 1.22320 x 10% 1.2231987 x 103 478 x 1074 —
Table 4 Performance figures produced with a step disturbance at 50 per cent load operating point

Maximum and minimum
absolute values

Maximum Minimum Peak rate IAE
Inputs
WCHR 1.32 0.72 0.2 —
WAIR 11.78 10.89 1 —
WCOL 6.52 5.34 0.2 —
WSTM 1.86 1.37 1 —
QOutputs
CVGAS 4.490040 5 x 10° 4.4899706 x 10° 1.0495 x 103 2.1639 x 10?
MASS 1.000 064 x 10* 9.999 63 x 10% 0.27 —
PGAS 1550000 (1.537396 6 x 10°) 9.955 x 103 3.0256377 x 10°
TGAS 1.1811 x 103 1.18108 x 103 0.37 —

making the final choice of controller. This is a key
strength of the MOGA approach as the various design
objectives do not have to be prioritized a priori.

5 CONCLUSIONS

An evolutionary algorithm approach has been proposed
for the H,, design of a coal burning gasification plant.
The resulting controller has satisfied a number of con-
flicting design criteria typically imposed on such a critical

Proc Instn Mech Engrs Vol 214 Part I

system. The control system has been shown to be stable
across all three operating points, maintaining the fluc-
tuation of the gas calorific value, temperature and bed
mass within stated limits. However, effective control of
the gas pressure in terms of the constraints on signal
fluctuation specified by the Challenge was not achieved
even at the design point.

It has subsequently been shown that the controller
design procedure described above is capable of providing
improved control performance for the ALSTOM gasifier
problem from that presented here. The design procedure
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Table 5 Performance figures produced with a sine wave disturbance at 50 per cent load

operating point

Maximum and minimum

absolute values

Maximum Minimum Peak rate IAE
Inputs
WCHR 1.31 0.46 0.1 —
WAIR 11.61 10.16 0.19 —
WCOL 6.45 4.23 0.2 e
WSTM 1.89 1.5 0.3 —
Outputs
CVGAS 4.490009 x 10° 4.4899934 x 10° 35.53 9.5636 x 10?
MASS 1.00002 x 10* 9.99977 x 103 0.1 —
PGAS (1.560 161 68 x 10°) 1.540008 5 x 10° 2.6232 x 103 1.896 876 x 10°
TGAS 1.1811 x 10% 1.1811 x 10* 6.9x 1074 —

Table 6 Performance figures produced with a step disturbance at 0 per cent load operating point

Maximum and minimum

absolute values

Maximum Minimum Peak rate IAE
Inputs
WCHR 1.01 0.03 0.2 —
WAIR 49 4.24 1 —
wcCoL 2.86 1.96 0.2 —
WSTM 0.8 0.09 1 —
Outputs
CVGAS 47103047 x 108 4.709 767 x 10° 3.239 x 103 2.6431 x 103
MASS 1.0001 x 10* 9.999 53 x 103 0.53 —
PGAS 1120000 (1.100250 1 x 10°) 1.7617 x 104 4.74326 x 10°
TGAS 1.1151 x 103 1.115 x 103 0.95954 —

Table 7 Performance figures produced with a sine wave disturbance at 0 per cent load operating

point
Maximum and minimum
absolute values
Maximum Minimum Peak rate IAE
Inputs
WCHR 0.99 0.02 0.12 ——
WAIR 4.84 3.83 0.16 —
WCOL 2.65 1.63 0.2 —
WSTM 0.94 0.41 0.16 —
Outputs
CVGAS 4.71 x 108 4.709992 8 x 10° 3.61 1.30539 x 103
MASS 1.00011 x 104 9.999 x 103 0.28 —
PGAS (1.13782 x 10%) (1.102096 x 10°) 4.47959 x 103 3.40265 x 10°
TGAS 1.1151 x 103 1.1151 x 10° 0.001 —

can be modified to address specifically the robustness
issues involved in applying the same linear controller to
a wide operating envelope. The number of objectives
used by the MOGA was extended from 10 to 14. This
enabled the peak fluctuation of each output to be
assessed at each operating point while still retaining the
minimization of the largest closed-loop eigenvalue and
the measure of H, robustness as design objectives. The
minimization of the IAE of each output was not
addressed in this modified design procedure. Control

105300 © IMechE 2000

performance was shown to be much improved as a result
of these modifications with the gas pressure only
violating the constraints at the 0 per cent load operating
point. Steady state errors did, however, remain as in
the results presented here. For a full account of this
improved design procedure, see reference [15].

It should be noted that the mixed optimization
approach allows other design parameters to be included
in the problem formulation. For example, the IAE of all
four outputs were declared as explicit design criteria.
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The evolutionary algorithm approach to controller
design employed here is advantageous in that the result
is that the designer has a choice of controllers rather
than one specific design. The final selection between vari-
ous performance characteristics can be made in the
knowledge that all comply with the restrictions imposed
on the system. The trade-off graph informs the designer
of the implications that his or her choice will have on
all the explicit design objectives. The approach auto-
mated the process of selection of suitable weighting func-
tions, searching a wider range of options than would
normally be contemplated when using conventional
techniques. A particularly strong feature of the GA
approach is the ability to use a mixture of discrete and
continuous parameters in the problem formulation. This
leads to an intuitive and natural representation for the
problem being considered and simplifies the process of
efficiently searching a large space.

One limitation of this approach is that it addresses a
very specific formulation of the design problem. While
the response of the chosen controller may be optimal in
terms of the objectives expressed, there is no guarantee
that its performance will be acceptable in other scen-
arios. Use of the design technique therefore requires
careful selection of design objectives and a posteriori
simulation testing.
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