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ABSTRACT The use of oprimal orthogonal array latin hypercube designs is proposed.
Orthogonal arrays were proposed for constructing latin hypercube designs by Tang (1993).
Such designs generally have better space filling properties than random latin hypercube
designs. Even so, these designs do not necessarily fill the space particularly well. As a
result, we consider orthogonal-array-based latin hypercube designs that try to achieve
optimality in some sense. Optimization is performed by adapting strategies found in
Morris & Mitchell (1995) and Ye et al. (2000). The strategies here search only
orthogonal-array-based lanin hypercube designs and, as a result, optimal designs are found
n a more efficient fashion. The designs found are in general agreement with existing
oprimal designs reported elsewhere.

1 Introduction

A major application area for designed experiments is to enable the optimization of
complex engineering systems. Such systems are generally represented by expensive
computer codes (for instance, a finite element solution in a structural analysis, or
a Navier-Stokes solution in computational fluid dynamics (CFD)). Due to the
expense of the code, direct optimization is quite often infeasible and approximation
methods are then considered. The output of these expensive computer codes can
be, for instance, approximated using a response surface model, see for example,
Myers & Montgomery (1995), or by a kriging model, for example Jones ez al.
(1998).
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One key question when the available data are to be limited due to the cost of
running the model is: at which values of the input variables do we run the code?
In the absence of any a priori information on the system of interest, it is commonly
recognized that some form of uniformity of the design points throughout the region
of interest is favourable. Many experimental design planning methods exist in the
literature and an exhaustive list is well beyond the scope of this paper. Here, we
restrict ourselves to latin hypercube designs, first introduced by McKay et al.
(1979).

A latin hypercube is an n by m matrix, each column of which is a permutation
of 1,2, ...,n. Such designs are seen to enjoy good ‘space-filling’ properties, covering
the design space well without replication. However, one must note that amongst
various latin hypercube designs, some are better than others, so optimal latin
hypercube designs have recently been considered (Park, 1994; Tang, 1994; Morris
and Mitchell, 1995; Ye, 1998 and Ye ez al., 2000).

A second question one may ask is: how do we assess such designs? Previous
approaches to experimental designs have included the use of maximum entropy
designs (Shewry & Wynn, 1987; Currin ez al., 1991), integrated mean squared
error of prediction (Sacks et al., 1989) and minimax and maximin distance designs
(Johnson ez al., 1990).

Here we consider an alternative distance related metric

n n 1
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D15 dy
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where # is the number of sampled points and dj; is the Euclidean distance between
points 7 and j. We seek to minimize this quantity in an attempt to spread the design
points as uniformly as possible. This criterion is most closely related to maximin
designs. Experience suggests (Ye ez al., 2000) that the resulting approximations are
relatively insensitive to optimal design criteria. The designs found herein are also
in agreement with those presented elsewhere (see for instance, Park, 1994; Tang,
1994), despite the fact that we use a different measure. Therefore, no direct
comparison will be made between different design criteria. The approach presented
here is entirely general and could be implemented using any of the aforementioned
criteria.

The purpose of this paper is to apply optimization strategies to search a restricted
subspace of the set of all latin hypercube designs, namely orthogonal-array-based
latin hypercubes. The idea is that restricting the search space should allow good
designs to be found more efficiently. Previous optimization strategies for latin
hypercube designs are drawn upon and we show how these algorithms can be
modified to search orthogonal-array-based latin hypercube designs.

The rest of the paper is organized as follows: Section 2 briefly reviews orthogonal
array latin hypercube designs and includes some simple examples to demonstrate
the idea. Section 3 considers optimal designs within this class. In particular, we
focus on adapting and applying the approaches introduced by Morris & Mitchell
(1995), based on simulated annealing and the columnwise pairwise (CP) algorithm
introduced in Li & Wu (1997), and which have been used for generating optimal
symmetric latin hypercube designs in Ye ez al. (2000). These algorithms are seen
to perform better than earlier algorithms suggested in the literature (e.g. Park,
1994). Section 4 shows some results, Section 5 compares the approach to other
work on optimal orthogonal array latin hypercube designs and, in Section 6, some
final conclusions are drawn.
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2 Orthogonal-array-based latin hypercubes

First, a brief description of orthogonal arrays is given. The approach described
here follows the work of Tang (1993). An n by m matrix A with entries from the
set {1,2,...,s} is called an orthogonal array of strength r, size n with s constraints
and s levels if each # x r submatrix of A contains all possible 1 x r rows with the
same frequency A. Here / is termed the index of the array, and # = As". The array
is denoted by OA(n, m,s, ). Here, as in Tang (1993), the s symbols are taken as
1,2,...,s throughout this article.

The construction of an orthogonal-array-based latin hypercube from A is as
follows: for each column of A, the As~! positions with entry % are replaced by a
permutation of

[((B— 1A'+ 1,(k— 1A ' +2,...,(k— DA '+ A5 =kis ] @)

for all k=1,2,...,s. After this is carried out for every column of A, the newly
created matrix is a latin hypercube.
For example, using OA(9, 2, 3, 2) of index 4 =1 we might have
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This design is shown in Fig. 1(a). Such designs, in general, enjoy better space
filling properties than general latin hypercubes; placing the designs all on the
leading diagonal still gives a latin hypercube.

Examples of latin hypercubes generated from OA(S,2,2,2), 0OA(25,2,5,2),

F1G. 1. (a) Random, (b) optimal midpoint and (c) optimal orthogonal-array latin hypercube design in 2D
—9 points.
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F1G. 2. (a) Random, (b) optimal midpoint and (c) optimal orthogonal-array latin hypercube design in 2D
—=8 points.
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FIG. 3. (a) Random, (b) optimal midpoint and (c) optimal orthogonal-array latin hypercube design in 2D
—25 points.

OA(81,4,3,4) and OA(128,7,2,7) are shown in Figs 2(a), 3(a), 4(a) and 5(a)
respectively. The latter two figures show that such designs are not guaranteed to
be good space filling designs. Orthogonal-array-based latin hypercubes are simply
better space filling designs, on average, than general latin hypercube designs. This
fact is evident from columns three and four of Table 1, which lists the results of
applying equation (1) to several random ‘midpoint’ latin hypercube designs (see
Park (1994) for a description of midpoint designs). The domain in m dimensions
is taken to be [0, 1]™.

The fact that random orthogonal-array-based latin hypercube designs are not as
good at space filling as well-chosen latin hypercube designs (c.f. Figs 4(a), 5(a)
and column four of Table 1 with Figs 4(b), 5(b) and columns five and six of
Table 1 (where the latter figures and columns are generated by our algorithm
described in the next section)) leads us to consider optimal orthogonal-array-based
designs. (Note that it is possible to improve significantly upon latin hypercube
designs if equation (1) is the only criterion being applied—for example if m =2
and n =8 then placing four points on the corners of the unit square and four
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F1G. 4. (a) Random and (b) optimal orthogonal-array latin hypercube design in 4D—81 points.

midway along each side minimizes the metric at 53.4; such a strategy, however,
involves a larger search space than restricting ourselves to latin hypercube designs.)

3 Optimal orthogonal-array-based latin hypercubes

In this section we adapt the approaches of Morris & Mitchell (1995) and of Ye
et al. (2000) to search for optimal midpoint orthogonal-array-based latin hypercube
designs. Both of these algorithms consider interchanging two elements within a
column of the latin hypercube when searching for good candidate designs. The latter
algorithm is adapted to search for symmetric designs; here we will search for optimal
orthogonal-array-based latin hypercube designs. To do this, the referenced algo-
rithms must be modified. This section gives details of the necessary modifications.

Let us consider the strategy via an example: consider the same orthogonal array
(0A(9,2,3,2)) and latin hypercube design presented earlier, and let us consider
swapping, without loss of generality, the first element on the first column of the
latin hypercube, see Fig. 6.

The algorithm notes this element of the orthogonal array: the entry is 1. Then
we search this column of the orthogonal array, and label rows whose elements
match this (here rows 2 and 3). This then provides us with possible elements that
may be swapped with the initial element during optimization. In this way the
orthogonal array structure of the latin hypercube is maintained. Thus, in this case,
the first and third rows might be swapped, leading to the revised design of

S
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TasLE 1. Value of distance metric (1) for random (averaged over 10 designs) latin hypercubes (LH)
and orthogonal-array latin hypercubes (oalLH) designs, optimal midpoint oalLH designs and optimal
oalLH designs of size n X m

Optimum
m n Random LH Random oalLH  midpoint oaLH Optimum oalLH
2 8 171.59 155.62 115.43 83.55
2 9 244.17 184.76 156.77 116.99
2 25 3311.32 2813.56 2035.79 1837.46
4 81 8644.85 8025.52 7047.16 6801.80
7 128 8971.27 8844.32 8170.79 7983.85
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F1G. 6. Illustrative example.

(Note: this reduces the size of the search space compared with the approaches of
Morris & Mitchell, 1995, and the conventional CP algorithm of Li & Wu, 1997,
which both allow any two elements within a randomly selected column to be
switched—as a result, optimal designs should be found in a more efficient manner.)

Finally, we note that these algorithms produce ‘optimal’ midpoint orthogonal-
array latin hypercube designs. Following Park, once such a design is generated, it
is optimally ‘released’ to find an optimal orthogonal array latin hypercube design,
i.e. points are allowed to move randomly away from the midpoints of each cell. A
constrained BFGS routine (Zhu et al., 1994) is used for generating these final
designs.

3.1 Simulated annealing algorithm for orthogonal array latin hypercube search

In the appendix, a simulated annealing algorithm is outlined to search for improved
orthogonal-array-based latin hypercube designs. This algorithm is an adaptation of
the algorithm proposed by Morris & Mitchell (1995). For a more detailed descrip-
tion of the algorithm in the case of optimizing general latin hypercube designs, we
refer the reader to Morris & Mitchell (1995).

3.2 The columnwise pairwise (CP) algorithm

We now briefly describe the adapted columnwise pairwise algorithm for searching
orthogonal array latin hypercube designs. Following Ye et al. (2000) the algorithm
may be described as follows.
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Step 1. Start with a random orthogonal array latin hypercube design.

Step 2. Each iteration has m steps. At the sth step, the best exchange (with
respect to ¢) of points in column 7 is found such that the structure of
the orthogonal array latin hypercube is retained. The design matrix is
updated accordingly.

Step 3. If the design is better with respect to the give criterion ¢, repeat Step 2.
Otherwise it is considered an optimal design and the search is terminated.

Essentially, this algorithm searches through each column and swaps two points
in the column such that the orthogonal array structure is kept and ¢ is reduced as
much as possible.

Clearly, this is a greedy downhill search and the final design is very much
dependent on the initial design. Therefore, the algorithm should be started from
multiple points and the best design from all these points should be considered as
the final design.

4 Results

We now consider optimizing the class of designs described in Section 2. First, the
optimum midpoint designs are created using the algorithms described in Section 3.
The results are shown in column five of Table 1.

By comparing the results with column four of Table 1, it can be seen that
considerable improvements in the designs can be achieved by making use of the
optimization strategies. In the case of m=2,7=8 and m =2,n=9 these results
were confirmed as the global minimum by an exhaustive search.

Some examples of optimal midpoint designs are shown in Figs 1(b), 2(b)
and 3(b).

It is also worth remarking on the merits of the particular search strategies. For
comparison purposes, simulated annealing (using 10 random starts) is compared
with the CP algorithm (using 100 random starts). We assess the performance of
each algorithm based on the convergence histories of each optimization strategy.
These convergence histories plot the number of trial designs considered (x-axis)
against the best current design found in terms of our distance criteria (y-axis). Brief
convergence histories for two of the designs m = 2,7 =9 and m = 2, n = 25 are given
in Figs 7 and 8. Here we consider the average of the ten simulated annealing runs.
When considering the CP algorithm, 100 CP runs are performed and the best
overall design is stored. We show only the first few thousand iterations here.

We note that, in both cases, restricting the size of the search space increases the
convergence rate. The CP algorithm typically finds good solutions quickly but
further improvements depend upon the initial design being considered. On average
though, we expect that restricting the search to initially ‘fitter’ solutions ought to
be beneficial.

As the problem size increases, the SA algorithm generally finds better solutions
than the CP algorithm. Once again, the orthogonal-array-based approach leads to
quicker convergence and better solutions, on average, when using simulated
annealing. Here, the final CP design without using an orthogonal array is actually
better than the CP design using orthogonal arrays, however this will not always be
the case and we note the orthogonal array approach finds ‘good’ designs more
quickly. These results are in general agreement with those reported in Ye ez al.
(2000) (where the search space was restricted to symmetric designs).
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Fi1G. 8. Convergence histories for m = 2,1 =25.

We further consider an explicit timing comparison of our approach together with
the standard algorithms that do not impose an orthogonal array structure on the
latin hypercube design. Two examples are considered, firstly m =7 and n=128
and secondly m = 16 and n = 256. In both cases average convergence histories over
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F1G. 10. Average convergence of SA algorithm for m = 16, n = 256.

ten optimization runs are given, these are shown in Figs 9 and 10. For m =7 and
n =128 we used the CP algorithm and for m =16 and » =256 the SA algorithm
is considered. Tables 2 and 3 catalogue the best result after a given number of
function evaluations and the time taken to reach a target objective for these two
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TaBLE 2. CP optimization (m = 7,n = 128). Stopping criteria is when (a) MAX function evaluations
are reached or (b) TARGET objective is reached (to nearest 500 runs)

Best design Best design

MAX LH oalLH TARGET No. evals LH No. evals oalLH
100000 8855.5 8674.1 8800 132500 28500
200000 8748.5 8573.4 8700 285000 85000
300000 8668.5 8499.7 8600 >450000 171000
400 000 8662.2 8444.2 8500 >450 000 297500

(a) (b)

TaBLE 3. SA optimization (m = 16,n =256). Stopping criteria is when (a) MAX function evaluations
are reached or (b) TARGET objective is reached (to nearest 500 runs)

Best design
MAX Best design LH oalLH TARGET No. evals LH No. evals oalLH
100000 13167.6 13116.3 13300 1500 1000
200000 13112.6 13071.8 13200 43500 2500
300 000 13068.9 13041.7 13100 223500 135000
395500 13039.7 13019.7 13050 358000 268500
@ b)

examples. Tables 2(a) and 3(a) demonstrate that if a design is to be found in a
given time, then utilizing orthogonal arrays allows better designs to be found.
Tables 2(b) and 3(b) show that if we specify some target of our space filling metric
as a goal, then orthogonal arrays allow us to achieve this goal in less time than the
standard approaches. With the CP algorithm in particular, these savings can be
considerable.

We also comment on the fact that, with the simulated annealing algorithm, when
considering the orthogonal-array-based approach, although we sometimes find the
overall reduction in the number of function evaluations disappointing, it does, on
average, lead to better designs in all cases considered when compared with a
general latin hypercube search. In addition, since the design space is restricted to,
on average, ‘fitter’ solutions, it may also make sense to start from a lower
temperature. In fact, we note that different choices of the parameters of the
simulated annealing algorithm could all be considered when restricting the search
space. In the results presented here, the parameters were fixed for both general
and orthogonal-array-based searches. However, these parameters could themselves
be viewed as optimization variables and it would be interesting future work to see
if a judicious choice could then be made that allowed comparable results to be
achieved with even fewer function evaluations when restricting the size of the
search space.

Finally, the best designs given in column five of Table 1 are optimally released
to generate the final optimal orthogonal-array latin hypercube designs. The results
are shown in column six of Table 1 and the final designs are shown in Figs 1(c),
2(c), 3(c), 4(b) and 5(b). Note that, in particular, the designs in Figs 4(b) and
5(b) appear to fill the space much better than the starting designs shown in Figs
4(a) and 5(a).
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5 Comparison with other work on optimal orthogonal-array latin
hypercube designs

As far as we are aware, this is the first paper using optimization algorithms to
search orthogonal-array-based latin hypercube designs. However, in special cases,
analytic results are available. An interesting special case of optimal midpoint
orthogonal-array-based latin hypercube designs has been reported by Tang (1994).
This is restricted to the following:

¢ a rectangular maximin distance criterion,
¢ an orthogonal array that is a single replicate factorial design.

Tang considered an OA(s™, m, s, m). Then for any i=1,2,...,n he notes that one
can write in a unique way that

i—1l=ays" "4 aps" 2+ ...+ A 3)

where a;=0,1,...,5— 1. He then defines
m ji—1
LH;=5""+4 3 aps" 727 =% g, 77! )
p=1 p=1

for j=1,...,m. Finally, he observes that LH is an optimal orthogonal-array-based
latin hypercube design (it maximizes the rectangular maximin distance). This
provides a benchmark result for testing the algorithms previously described. Four
of the previous examples demonstrated earlier can be considered and we were able
to generate globally optimal midpoint designs through our algorithmic approach.
Of course, if the orthogonal array has the above properties then use of Tang’s
algorithm is appropriate. Nevertheless, many orthogonal array designs will not
satisfy this property (e.g. OA(8,2,2,2) described earlier) and then our approach
could be considered as a means of generating optimal designs.

6 Summary and discussion

The identification via search algorithms of optimal orthogonal-array-based latin
hypercube designs under a distance-based metric has been considered. In many
instances, optimal latin hypercube designs are also orthogonal-array-based designs,
so a search restricted to these designs seems logical. The approach is able to reduce
the time required to produce an optimal design. Further research is necessary on
tuning the SA algorithm, as highlighted earlier.

The algorithms herein should be compared with other efficient strategies in the
literature. We have also considered restricting the search space to symmetric latin
hypercube designs as suggested in Ye er al. (2000). Initial results suggest our
versions of the two algorithms appear to be competitive, each occasionally out-
performing the other (and both always outperforming a search over all latin
hypercube designs). We observe that only a simple alteration to our algorithm
needs be made in order to search symmetric orthogonal-array-based designs (see
Ye et al., 2000, for a description of symmetric latin hypercube designs) and we
note that this strategy appears consistently to outperform either of the above
strategies alone.

The resulting designs have been used for selecting the input values of a finite
element model of an aero-engine component and, when the resulting response was
approximated using a kriging model, it generally led to a reduction in the mean
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squared error (MSE) when compared with random latin hypercube or random
orthogonal-array latin hypercube designs. A similar result is reported in Ye ez al.
(2000).

Of course, one restriction with our approach is that we must consider latin
hypercube designs for which an orthogonal array exists. When this is the case, our
approach quickly leads to very good space filling designs.
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Appendix

Our simulated annealing algorithm for searching orthogonal-array-based latin
hypercube designs is given below. Here, 7, refers to the initial temperature and ¢
the current temperature whilst FAC, represents the rate at which temperature
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reduction occurs and z,,;, the minimum temperature in the schedule. I,,, represents
the number of perturbations the algorithm will try without improvement before
the temperature is reduced. Finally, ¢ represents the criterion we use to assess
different latin hypercube designs. In the results presented here,

is taken as in equation (1), however other choices are clearly possible.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.
Step 6.
Step 7.
Step 8.

Imitialization

Define ty, I, FAC,, t., and the orthogonal array. Randomly select an
initial orthogonal-array latin hypercube design D using equation (2). Set
Dy=D, t=1,.

Temperature loop

Set FLAG=0,I=1.

Perturbation loop

Set Dy, to D. Randomly select a column of Dy, then randomly select
any element within this column. Randomly choose a second element in
this column whose orthogonal array entry agrees with the first. Exchange
these elements.

If ¢(Dyy) < $(D), or with probability e =@ ~¢PwD set D to Dy, and
FLAG to 1.

If ¢ (Duy) < ¢ (Doest) €t Dieg t0 Dy and I to 1. Otherwise increment Iby 1.
If I < I, branch to Step 3.

If FLAG =1 and > t,;,, multiply z by FAC, and branch to Step 2.

Stop and report Dy



