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Abstract

This paper deals with the convexity control and the strain energy control of inter-
polating curves using a rational cubic spline with linear denominator. The sufficient and
necessary conditions for controlling the interpolating curve to be convex or concave are
derived. When the function being interpolated is f () € C®[to,,], the error estimation
of the interpolating function and the boundedness of the optimal error coefficient and its
double symmetry with regard to parameters are obtained.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Design of high quality, manufacturable curves or surfaces, such as the outer
shape of a ship, car or aeroplane, is an important yet challenging task to to-
day’s manufacturing industries. Many authors have studied various kinds of
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splines for curve and surface design and control [1-28]. In general, the common
spline interpolations are fixed interpolations which means that the shape of the
interpolating curve is fixed for the given interpolating data. If one wishes to
modify the shape of the interpolating curve, the interpolating data need to be
changed. An important question is how can the shape of the curve be modified
under the condition that the given data are not changed? In [29], a rational
interpolating spline with linear denominator was constructed, and it was used
to control the shape of the interpolating curves, such as controlling the curves
to be in a given region. Because the parameters in the interpolating function
can be selected according to the control needs, the constrained control of the
shape becomes possible.

In curve control, one of the most significant things is to control the con-
vexity of the interpolating curves: to control the interpolating curves to be
convex or concave, or even to change the convexity in a local area. On the
other hand, the second-order derivative of an interpolating function has been
used in estimating the strain energy and, consequently, smoothness of the in-
terpolant. Smaller energy generally implies smoother shape. It is possible,
however, that the overall energy of an interpolant is small yet great enough to
generate abnormal shape at some points or even in some small intervals. Thus,
both the convexity control and the energy control depend on the second-order
derivative control. Because the spline has linear denominator, the derivation
calculus is easier when compared to that with cubic or quadratic denominator,
so, it is much easier to get the control conditions.

In Section 2 of this paper, rational cubic splines with linear denominator are
restated briefly. Section 3 deals with the convexity and strain energy control.
The sufficient and necessary conditions for the second-order derivative of the
interpolating function to be constrained in the given interval [N,M] are de-
rived. Thus, the convexity control and the strain energy control can be carried
out by constraining the second-order derivative of the interpolating function to
be in the given interval [0, M] or [N, 0]. Also the existence conditions for these
interpolations are given in this section. Numerical examples are given in Sec-
tion 4. Section 5 is about the approximation properties of the spline. When the
function being interpolated is f(¢) € C®ty, t,], the error estimation of the in-
terpolating function is obtained and the boundedness of the optimal error
coefficient and its double symmetry with regard to parameters are established.

2. Rational cubic interpolating spline with linear denominator

Given a dataset {(t, f;,d;),i =0,1,...,n}, where f; and d; are the function
value and the first-order derivative value of the function being interpolated,
£ (1), defined at the knot, respectively, and a =t < t; < --- < t, = b is the knot
spacing. Let h; =ty — ;, 0= (t —t;)/h;, and let o; and f; be positive para-
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meters. The C'-continuous, piecewise, rational cubic spline with linear de-
nominator is defined in the interpolatory interval [a, b] as follows [29]:

pilt ,
P(z)|[,h,i+1]=;%, i=0.1,...n—1, (1)

where
pilt) = (1= 0)'sf; + 0(1 = 0)°V; + 6 (1 = )i + 6B, i,
qi(t) = (1 — O)e; + 65,

I

and
Vi = 2o + ;) fi + ouhud,
W, = (04 -+ 2B;) fir1 — Bibudisr-
This rational cubic spline satisfies
P(t) =1, P(t)=d; i=0,1,...,n

Furthermore, let P"(¢;+) = P"(t,~) for i = 1,2,...,n — 1. The conditions lead
to the following tri-diagonal system of linear equations:

hi&l—di—l + (hi<l +gi:'l—> +hiy (1 +EL>>CL +hi——1& i1
Bz By % %

=hi_1<1 +2§i>4,~+h,-<1 +2%ﬂ>4i_1; i=1,2,...,n—1, (2
i i—1

where 4; = (fix1 — fi)/h:. It is easy to see that if the successive parameters {o;}
and {B;} satisfy (2), then P(f) € C*[a,b).

Note: The parameters o; and f; are used to keep the symmetry of the
functions p;(¢) and g;(¢). In fact, by letting a; = o;/;, both p;(¢) and ¢,(¢) can be
expressed in one independent parameter ¢; as

i

() = (1 = 0)arfi +60(1 — 0V + 0°(1 — O)W" + 0 fin,
gi(t)=(1=0)a; +0

and
V7 = (2a; 4 1)fi + aihid,,
VV;’* = (ai + 2)fi+1 — hid;

and hence, one parameter can be used throughout the paper.
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3. Constrained control of the convexity of the interpolating curves

The convexity control and strain energy control of the interpolating func-
tion depend on the control of its second-order derivative. If the second-order
derivative of the interpolating function can be controlled to a given interval,
then the convexity control and energy control can be carried out. Since the
rational cubic splines defined by (1) have linear denominator, the second-order
derivatives can be found easily. When ¢ € [t;, #;11], from (1) it is easy to see that

P (8) = (h((1 = 0)ou + 06)") " {((1 = ) + 65, (6(1 = Ot
+ (60 — 4)V; + (2 — 60)W; + 60, fis1) — 2(B; — ) (1 — O)o + 08;)
% (=3(1 = 0)%0uf; + (1 — 40 + 36%)V; + (20 — 36°) Wi + 36°B.fir1)
+2(B, — 00)* (1= 0)°asf + 0(1 — 0)°V; + 6°(1 = O); + 6°Bfisn)}-
Let P"(¢) < M, then it is easy to show that
0(60) = MR (1= 0+ 0,)" +{—((1 = O)a + 05;)*(6(1 — )
+(60—4)V; 4+ (2 — 60) W+ 60, f141) +2(B; — o) (1 — 0)oi + 63;)
x (=3(1 = 0) ey f;+ (1 — 40+ 36°) Vi + (20 — 36*) W+ 36° B, fi11)
— (B~ ) (1 0) aufy+ 0(1 = 0)V; + 02 (1 = O) i+ 0°Bfir)} > 0.
Since
Q'(6) = (1 = 6)os + OB [3(B; — )M + 6(aufs — Vi + W, = Bifict)],
Q(6) is monotone in [0, 1]. On the other hand,
0(0) =202 B,(2f; — 2f i1 + hids + hidi) + o (M} +2f; = 2y + 2hidh) 2 0,
O(1) = B} (MB} = 2 + 21 = 2hidhsr) + 2045} (Afier = 4fi = 2hidis = 2hidh).
Therefore, the following theorem holds.
Theorem 1. For the rational cubic interpolating function P(t) defined by (1), the

second-order derivative P"(t) is less than or equal to M in [t;, t,1] if and only if the
positive parameters w;, P; satisfy the following inequality system

28,2 = 2fist + hud; + hidir) + 0 (MB? + 2y — 2fiy + 2hidy) 2 0,
Bi(MK? = 2f; 4 2f i1 — 2hidiy) + 200211 — 2f; — hidisr — hid;) = 0.

Let M =0 in Theorem 1, then there is a corollary concerning the convexity
control condition for the interpolating function P(t). It is

Corollary 1. The rational cubic interpolating function P(t) defined by (1) remains
concave in [t;, t;1] if and only if the positive parameters &, B; satisfy the following
inequality system
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2B,(2f; — 2fi1 + hid; + hidi) + 0:(2fi — 2fin + 2hid;) = 0,
Bi(=2f; + 2fi1 — 2hidsy1) + 20:(2fis1 = 2f; — hidsyr — hidi) 2 0.

In a similar way as for Theorem 1, the following theorem can be obtained.

Theorem 2. For the rational cubic interpolating function P(t) defined by (1), the
second-order derivative P"(t) is greater than or equal to a given number N in
[t;, 1) if and only if the positive parameters o, B; satisfy the following inequality
system

2B.(2fi = 2fi1 + hidi 4 hidiyy) + o (Nh? + 2f; — 2fig1 + 2hid;) <0,
ﬁ,-(Nh? — 2f; + 2fie1 — 2hidi) + 20:{2fir1 — 2fi = hidi1 — hid;) <0.

Let N = 0 in Theorem 2, then there is the Corollary 2 related to the convexity
control condition for the interpolating function P(t). It is

Corollary 2. The rational cubic interpolating function P(t) defined by (1) is
convex in [t;, tis1) if and only if the positive parameters %;, f; satisfy the following
inequality system

2B.2f; = 2fix1 + hids + hidiy) + 0u(2f; — 2fi1 + 2h,d;) <0, 3)
B(=2f; 4 2fis1 = 2hidisr) + 204(2f i1 — 2fi — hidir — hid) < O.

From Theorems 1 and 2, the following theorem is obtained.

Theorem 3. For the rational cubic interpolating function P(t) defined by (1), the
second-order derivative P"(t) on [t;, tiy1] is in the given interval [N, M) if and only
if the positive parameters o;, B, satisfy the following inequality system

2B,(2f; — 2fir1 + hidy + hidi1) + o (MR? + 2f; — 2fi1 + 2hid;) 2 0,
Bi(MR? — 2f; + 21 — 2hidi1) + 204(2fix1 — 2f; — hidiyy — hidi) 2> 0,
—2B,(2fs = 2fs1 + hids + Bidiir) — 0(NB} + 2fi — 2fi1 + 2hidy) 2 0,
“ﬂi(Nh? - 2fi + 2fi-H - 2hidi+l) - Z“i(zfiﬂ - zfi - hidH-l - hidi) = 0.

Considering both the convex interpolation and strain energy control simulta-
neously in shape design, it is necessary to constrain the second-order derivative
to be bounded in a given interval [0,M] or [N,0], where M >0 and N <O0.
These are described in the following corollaries.

Corollary 3. For the rational cubic interpolating function P(t) defined by (1), the
second-order derivative P"(t) on [t;, t,1] is in the given interval [0, M] with M >0
if and only if the positive parameters &;, p; satisfy the following inequality system
(a" + ") + (MR} + ") >0, 4)
(Mh? — b*){; — (a* +b") =0, (5)
—(a*+b");—a" =0, (6)
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b*(i+ (a* +b%) =0, (7
where {; = B;/o;, and

a* =2(f; — fin +hdy),
b* =2(fi — finn + hidisi).

Corollary 4. For the rational cubic interpolating function P(t) defined by (1), the
second-order derivative P"(t) on [t;, t41] is in the given interval [N, 0] with N < 0 if
and only if the positive parameters oy, f; satisfy the following inequality system

(a* + b*)Ct + Cl* > 0,

b~ (a"+0) 20,

~(a* +b*); — (@ + NB}) 2 0,
(=NR? + b*); + (@" +b*) 2 0,

where ¢;, a* and b* are as defined for Corollary 3.

As discussed above, to ensure the second-order derivative of the interpo-
lating function to be constrained in a given interval requires the existence of
positive parameters «; and f; which satisfy a corresponding constrained system
of equations. The remaining of this section deals with the problem do these
parameters always exist? and if so how to get them. The following theorems,
Theorems 4 and 5, give the existence conditions for the parameters in Corol-
laries 2 and 3 under the conditions that the function being interpolated, f(f), is
convex in the interpolating interval [a, b].

Theorem 4. If the function being interpolated, f(t), is convex in the interpolating
interval, for given {(t;, findi),i =1,2,..., n}, there must exist parameters o; > 0,
B; > 0 such that the interpolating function P(t) defined by (1) is convex.

Proof. System (3) can be rewritten as
—(@ + b)) —a =0, “ (8)
b+ (a +07) 20, ©)

where {;, a* and b* are defined as in Corollary 3. Since f(¢) is convex in the

interpolating interval [a, ], it is easy to get a* <0 and b* > 0.

(1) If a* + b* = 0, then for any {; > 0 both (8) and (9) hold.

() If a*+b* >0, it is obvious that for any ¢ >0 (9) holds. Denote
0 = —a*/(a* + b*), then ¢ >0, and when {; < ¢ (8) holds. Thus, when
¢; < ¢ both (8) and (9) hold.

(3) If a* + b* < 0, for any {; > 0 (8) holds. Let (" = —(a" +b")/b*, then " >
0, and when ¢; > {* (9) holds. Thus, when {; > ¢* both (8) and (9) hold.

Thus, the proof is complete. [
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The following theorem gives the conditions for the second-order deriva-
tive of the interpolating function to be constrained in the given interval
[0,M].

Theorem 5. If the function being interpolated, f(t), is convex in the interpolating
interval [a,b], for given {(t;, fi,d;),i=1,2,...,n} and the given real number
M >0, when t € [t;, 1], if one of the following conditions is satisfied, there must
exist parameters a; > 0, f; > 0 such that the second-order derivative values of the
interpolating function P(t) defined by (1) are in the interval [0, M].

(1) a* +b* =0, Mh? +a* > 0 and Mh? — b* > 0;

Q) @ +b° >0, ME +a* >0, M2 —b* > 0, and (a" + b*)* < a*(b* — MA});
(3) a* +b* <0, ME2 +a* > 0, Mh? — b* > 0, and (a* + b*)* < b*(a* + Mh?).

Proof. Since f(¢) is convex in [a,b], then a* < 0 and b* > 0.

(1) When a* + b* = 0, MA? +a* > 0 and Mh} — b* > 0, it is obvious that (4)-
(7) hold.

(2) When a* + b* > 0, denote {; = —a*/(a* + b*); as shown in the proof pro-
cess of Theorem 4, when {; < {; both (6) and (7) hold; when Mh? +
a* >0 for any (>0 (4) holds; only when Mh? —b*>0 and (>
(a + b")!(Mhi2 —b*) (5) holds. Let { > (a* + b*)/(Mh} — b*), namely,
(a* + b*)* < a*(b* — Mh?), all of (4)—(7) hold simultaneously.

(3) Similar as the proof process for (2), when the given real number satisfies the
condition (3), all of (4)—(7) hold.

The proof is complete. [J

Theorems 4 and 5 give not only the conditions of the second-order
derivative of the interpolating function P(#) defined by (1) to be less than or
equal to a given real number M or in the given interval [0,M], but also
the method to find the parameters o; > 0 and B; > 0 as shown in the proof
process.

In a similar way, the existence conditions of the positive parameters for

Corollaries 1 and 4 can be found.

4. Numerical examples

Example 1. Let f(z) =¢', 0<¢<4, and the knots be 0, 1, 2, 3, 4. In what

follows, three kinds of interpolating function of f(¢) are given:

(1) P(z) is the C*-continuous interpolating function defined by (1). Let a; =
o;/B; and choose ay = 1.0; by (2)

24; — d; — diy
a; =

= . 10
;1 (dimy +dy — 24;_1) +2d; — 4 — Ay (10)
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It can be checked that {a;}, for i = 0, 1,2, 3, satisfy convexity interpolation
condition (3), so P(¢) € C?[0,4] and is convex in [0,4].

(2) Pi(t) is the C'-continuous interpolating function defined by (1). For any
subinterval [t;, ], choose a; = ¢;/B; = 1.2. It is easy to check that {a;},
for i =0,1,2,3, satisfy convexity interpolation condition (3), so Pi(¢) is
convex too. However, {a;} does not satisfy (2), so Py(¢) is only C'-contin-
uous in the interpolating interval.

(3) H(t) is the standard piecewise cubic Hermite interpolating function.

Table 1 gives the values of P(¢), P(t), H(z) and f(¢) for t € [0,4]. It can be
seen that the values of P(¢) and P;(¢) are much closer to the values of f(¢) than
those of H(¢), and that P(f) € C? is smoother than P;(f) € C'. All of these il-
lustrate that the interpolation in which the parameters o;, f;,i =1,2,...,n—1
satisfy (2), not only is smooth interpolation, but also has good approximation
to the function being interpolated.

It is easy to test that f(¢) =€’ is convex in [0,4], the given data and the
chosen a; = a;/p, satisfy the condition of convexity interpolation, so P(¢) and
Py(t) are convex functions in [0,4]. Fig. 1 is the graph of P(f) in [0,4]. Since the
graphs of P(¢) and f(¢) are so close they appear to be coincident.

Table 1
The values of P(), P, (¢), H(t) and f(#) when f(¢) = ¢

4 P(2) Pi(t) H(1) 140

0.00000 1.00000 1.00000 1.00000 1.00000
0.20000 1.21972 1.22096 1.21972 1.22140
0.40000 1.48788 1.49078 1.48788 1.49182
0.60000 1.81801 1.82102 1.81801 1.82212
0.80000 2.22364 2.22503 2.22364 2.22554
1.00000 2.71828 2.71828 2.71828 2.71828
1.20000 3.31803 3.31891 3.31553 3.32012
1.40000 4.05024 4.05235 4.04448 4.05520
1.60000 4.94779 4.95004 4.94187 4.95303
1.80000 6.04718 6.04825 6.04448 6.04965
2.00000 7.38906 7.38906 7.38906 7.38906
2.20000 9.02228 9.02174 9.01255 9.02501
2.40000 11.01676 11.01544 10.99403 11.02318
2.60000 13.45703 13.45561 13.43341 13.46374
2.80000 16.44153 16.44085 16.43060 16.44465
3.00000 20.08554 20.08554 20.08554 20.08554
3.20000 24.52927 24.52363 24.49866 24.53253
3.40000 29.95679 29.94308 29.88487 29.96410
3.60000 36.59103 36.57615 36.51579 36.59824
3.80000 44.69806 44.69086 44.66301 44.70118

4.00000 54.59815 54.59815 54.59815 54.59815
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Fig. 1. The graph of P(¢) for Example 1.

Example 2. The second example consists of points given by (4, f;), where

f(O)=—1—-(t— 1)* + 3/2 (semicircle of radius unity) [10], and the knots
t; = %(i +1),i=0,1,...,4. The C'-continuous interpolating function P;(¢) for
the convex data ((#,/;),i=0,1,...,4), for ;=12 and ¢ in [2/6,10/6] is
given in Table 2. For these values of «;, it can be easily checked that the
convexity condition (3) is satisfied (other values of a; which satisfy (3), can
also be chosen easily). Fig. 2 shows the graph of the C'-continuous inter-
polating function P;(¢) in [2/6,10/6]. As the graphs of Pi(f) and f(¢) are so
close they appear to be coincident. To achieve the C2-continuous interpo-
lating function (P(z)), the values of @;, i = 0,1,...,4 need to be chosen such
that they satisfy both conditions (2) and (3). In this case, choosing
ap = do/fBy < 0.88, it can be checked numerically that the values of a,
i=1,...,4 obtained from Eq. (10) satisfy the convexity condition (3). The
C*-continuous interpolating function P(¢) for ap = 0.5 and ¢ in [2/6,10/6] is
given in Table 2. From this table, it can be seen that the values of P;(#) and
P(t) are closer to the values of f(¢), and that the values of P(¢) are slightly
better than Pi(¢).

In curve design, there is a need in which the shape of the designed curves
need to be modified locally from convexity to concavity or from concavity to
convexity. This is not usually easy. The following example shows that even if
the function being interpolated, f(¢), is not a convex function in the interpo-
lating interval then, as long as the parameters a; = o;/f; satisfy (3), P(¢) can be
constrained to be convex.
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Table 2

The values of P,(¢), P(t), £(2), |Pi(£) — £()] and |P(2) — £ ()] when f(¢) = —/1 = (¢ = 1)* +3/2
! A1) P(r) £ @) —f(0) 1P = f)
0.33333 0.75464 0.75464 0.75464 0.00000 0.00000
0.40000 0.69962 0.70017 0.70000 0.00038 0.00017
0.46667 0.65330 0.65439 0.65409 0.00079 0.00029
0.53333 0.61482 0.61580 0.61557 0.00075 0.00024
0.60000 0.58317 0.58357 0.58348 0.00032 0.00009
0.66667 0.55719 0.55719 0.55719 0.00000 0.00000
0.73333 0.53614 0.53626 0.53621 0.00007 0.00005
0.80000 0.52005 0.52027 0.52020 0.00015 0.00007
0.86667 0.50878 0.50897 0.50893 0.00015 0.00004
0.93333 0.50216 0.50224 0.50222 0.00007 0.00001
1.00000 0.50000 0.50000 0.50000 0.00000 0.00000
1.06667 0.50219 0.50224 0.50222 0.00003 0.00001
1.13333 0.50885 0.50897 0.50893 0.00008 0.00004
1.20000 0.52013 0.52027 0.52020 0.00008 0.00007
1.26667 0.53618 0.53626 0.53621 0.00004 0.00005
1.33333 0.55719 0.55719 0.55719 0.00000 0.00000
1.40000 0.58336 0.58357 0.58348 0.00012 0.00009
1.46667 0.61526 0.61580 0.61557 0.00031 0.00024
1.53333 0.65375 0.65439 0.65409 0.00035 0.00029
1.60000 0.69982 0.70017 0.70000 0.00018 0.00017
1.66667 0.75464 0.75464 0.75464 0.00000 0.00000

Pi(t)
0.8

0.7 -

0.6

0.5

0.4 0.6 0.8 1.0 1.2 14 1.6
Fig. 2. The graph of Py(¢) for Example 2.

Example 3. Let f(f) = cos®(nt/3),1.5<¢<2.7 with interpolating knots at
t=1.5,2.1,2.7. It is obvious that f(¢) does not stay convex in the whole in-
terval [1.5,2.7). As in Examples 1 and 2, denote the C'-continuous interpo-
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Table 3
The values of P,(¢), H(¢) and f(¢) when f () = cos®(nt/3)

' 0 HO 10

1.50000 0.00000 0.00000 0.00000
1.56000 0.00002 -0.00077 0.00000
1.62000 0.00012 ~0.00256 0.00000
1.68000 0.00045 -0.00457 0.00004
1.74000 0.00116 -0.00603 0.00024
1.80000 0.00248 -0.00613 0.00087
1.86000 0.00477 -0.00409 0.00249
1.92000 0.00856 0.00088 0.00596
1.98000 0.01470 0.00956 0.01250
2.04000 0.02467 0.02275 0.02367
2.10000 0.04124 0.04124 0.04124
2.16000 0.08061 0.06998 0.06708
2.22000 0.13510 0.11230 0.10290
2.28000 0.19625 0.16652 0.15006
2.34000 0.26223 0.23100 0.20926
2.40000 0.33241 0.30407 0.28038
2.46000 0.40650 0.38406 0.36230
2.52000 0.48438 0.46931 0.45283
2.58000 0.56595 0.55816 0.54877
2.64000 0.65117 0.64895 0.64606
2.70000 0.74001 0.74001 0.74001

lating function by Py (¢). If Py(f) is required to be convex in [1.5,2.7], it could be
done just by choosing suitable parameters. For example, leta; = oy /f, = 3.2in
[1.5.2.1], and a, = 05/, = 0.1 in [2.1,2.7], then Pi(t) is convex in [1.5,2.7].
Table 3 gives the values of P, (f), H(¢) and f(#). Fig. 3 gives the graph of P;(¢) in
[1.5,2.7].

5. Approximation properties

When f(£) € C*[to,,], the error estimation of the interpolating function
defined by (1) is discussed in [30]. This section deals with the approximation
properties when the function f(#) being interpolated is f(f) € C3[to, 2] and will
derive the boundedness of the optimal error coefficient and its double sym-
metry with regard to parameters. When P(¢) is the rational cubic interpolating
function of f(¢) defined by (1) in [ti, ti1], it is known that the Peano-Kernel
Theorem can be used [31], thus

fivt
RV =10 PO =5 [ 7O@R{— 2 (1)

ti

where
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Fig. 3. The graph of P(r) for Example 3.
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(=2~ T {6°(1 — 0)[(0s + 28,) (t:1 — 1) — 2Bk
+ 0Bt — 1)}, H<T<L
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Following the analysis done in [31], it may be shown that
(1) When o;/(o; + ;) <01,

3
RIS A ~ POI< OO max oo ,6),

/(e +B;) <O L
where
wy (o, B, 0)
_ 00 = 1)°[(} + 2B, — auff} — B})6° — (60 + 20i7)0 — o B, + ]
- (o= B)6 = o) (o + )0 + )”
(2) When 0 0< 0/ (0 + B,),

IR[f]l<|lf(t)—P(t)il<g—illf‘”(f)ll max (%, B, 0),

0<O< o /(oi+h;)
where
(0 — 1821 — 0) + (o — B)((1 = O)ou + (2 = 0)B)’]
((1 = 0)o; + 0B)((1 = O)o; + (2 — 6)B,)°

(1)2(05,', Biﬁ H) =



Q. Duan et al. | Information Sciences 152 (2003) 181-194 193

It is easy to prove that
wl(o‘hﬂia 0) = wZ(ﬁia‘xia 1 - 9)’

and it follows that w; and w, are symmetric about the parameters ¢; and §;
and anti-symmetric about 6 in [t;, #4]. To sum up, w; and w, can be called
double symmetric about ¢;, f; and 8. This leads to the following theorem
about the approximation properties.

Theorem 6. If f(t) € C3[to,t,), 4:ty < t; < --- < t,, P(t) is the corresponding
rational cubic interpolating spline defined by (1), for the given o;, B;, when
t€ [t tin]

IR = 17) ~ PO < 2 10 e

where

; = max (o, f;,0) = max o, i, 0).
G 0<b<1 1( taﬁn ) ogaslwz( Hﬁn )
The following theorem- gives the bounds of the optimal error constant c; in The-
orem 6.

Theorem 7. For any given o; > 0 and f; > 0, the optimal error constant c; in
Theorem 6 is bounded with
1 4

<o < —.
16 S5 27

The proof of Theorem 7 is straightforward and is omitted.
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