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Introduction

e Al-Zn-Mg-Cu alloys are important in structural applications, esp. where
high specific strength is required.

e Al-Zn-Mg-Cu alloys are mainly used in overaged condition

Aims:

Construct a model for the yield strength of overaged Al-Zn-Mg-Cu alloys
that includes:

- Microstructure development / precipitation / coarsening

- Solution strengthening (Zn,Cu,Mq)

- Precipitation strengthening

- Computationally simple description of influence of Mg/Zn/Cu on
strength

- Both for Zr or Cr grain refiner additions

» Part of continuing effort on modelling of properties of a range of heat
treatable Al based alloys.

University
. Materials Research Group fs ﬂ; of Seuthampton




Contents

« Model structure

* Model detalls

« Modelling results

e Verification of the model
« Conclusions

of Southampton

. Materials Research Group fs




Previous work

» Some recent work on evolution of precipitates uses Kampman-
Wagner type iterative procedures

dr X -X,(r) D

dt X, =Xi(r) r

» allows calculation of evolution of precipitate size distribution
evolution on rapid heating

» at present only applied for spherical precipitates

A. Deschamps and Y. Brechet, Acta Mater. 47, 1998
M. Nicolas, A. Deschamps, Acta Mater, 2003
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Model structure

Microstructure development: Microstructure-strengthening

precipitation / coarsening model model

= equilibrium state predicted / » increments in critical resolved

approximated using effective shear strength (CRSS) of grains
solute content due to precipitation and solution
= effectively one strengthening hardening

precipitate phase present in » precipitates are non-shearable
overaged condition discs

= composition of precipitate = texture is included

dependent on alloy composition;
but independent of ageing time

= precipitation / coarsening
approximated by novel simplified
approach encompassing JMAK
type and LSW type approaches: no
iterative schemes
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Calibrating model parameters strength Al-Zn-Mg-Cu
= model contains ~30 equations, ~30 parameters
E.gQ.

1I2(t) =1 =k (T)t (LSW coarsening law)

= all parameters are either - physical quantities, or
- related to physical quantities

= most parameters can be determined directly from microstructural
analysis or literature data

= parameters that are not accurately known (4) can be calibrated by
fitting to the yield strength data

= validation of model is achieved by
» predicting strength of ‘unseen data’ in a train and test procedure
= comparing the calibrated parameters with physical understanding
= comparing predictions on precipitate size with TEM data
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Example of model output

—— Al-5Zn-2Mg-2Cu 172°C —— Al-6Zn-2Mg-2Cu 172°C

| ——AI-7Zn-2Mg-2Cu 172°C — - = Al-5Zn-2Mg-2Cu 130°C
— - =Al-6Zn-2Mg-2Cu 130°C — - =Al-7Zn-2Mg-2Cu 130°C

| | |

o) 10 20 30
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The Model: Metastable Equilibrium

« Literature data indicates that composition of strengthening
precipitate is closely linked to alloy composition.

* We consider an effective amount of atoms forming a precipitate:
Co = X, +BgXg + B X +...efC

* And take solvus to be approximated by

Qs (1 1
o =5 eXp{‘Ff(T‘T H
S,R
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The Model: Precipitation Kinetics

« Transformed fraction «(T,t), the amount of precipitate x(t) and the

solute concentration c(t): o fraction transformed,
) _n ) Impingement exponent,
a(T t)=1- [K(T)t] 1 n: reaction exponent / Avrami exponent
’ 7, K(T): rate constant for precipitation,
depends on alloy content
k.(T.f): rate constant for coarsening
. : l: initial average size of the precipitate
Average precipitate size: 0 J precip
> The average size of the precipitate Iin _ -y
nucleation and growth stages: |, (t) =l,a”®
> The average size of the precipitate in _, _,
coarsening stage: .°(t) =1," +k (T, f)t

- rate constant dependent on volume of precipitates

> The average size throughout the _ _ _ _
nucleation-growth-coarsening process: 1(t) =1, (t)+1.(t) -1,
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The Model: Strengthening Model

« CRSS increment due to solution strengthening: Az, =C,c*"

SS

« CRSS increment due to precipitation strengthening by non-shearable
discs lying parallel to {111} planes:

1/2
At =0.12G b {f”%o.m('lf’] f+0.12{'0jf3’2}|n0'079'0

prec 1/2
(IDIt) t t I

cut

shear modulus

Burgers vector

solute concentrations in matrix
volume fraction of precipitates
4 diameter of the precipitate

«  thickness of the precipitate

M. Taylor factor

o4 grain boundary strengthening)
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e Superposition of the strengthening:

T tot (t) — Az-0 + Az-ss + Az-d&ppt

= QT o

e Yield strength:

o, = Aagb +M 7,




The Model: Texture

» Texture of 13 representative alloys determined using EBSD
« Schmidt factors calculated

M taken as average M for activation of 3 or 4 slip planes (self
consistent model)
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Calibrating model parameters

= Most parameters can be calibrated from microstructural data
» Published 3DAP data -> aspect ratio discs

» Published time to peak hardness data -> k

= Data on extensive overageing 7050 provides solution strengthening
factor C,

Further parameter calibration using database on strength:

« Total 20 Al-Zn-Mg-Cu alloys with compositions spread over main 7xxx
alloys 7x50, 7449, 7010, 7x75; tested in rolling direction.

e 15 Zr containing alloys
5 Cr containing alloys
» selected alloys studied by DSC, TEM, EBSD
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Model calibration: Microstructural Analysis
0.1
1
DSC curves of
Al-6.1Zn-2.3Mg-
S0 2.6Cu-0.1Zr
I 1 alloy aged at
= i 172°C
ke :
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» Ts ~290°C
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Verification /
validation of the

model " TEM micrographs

w44 Al-6.1Zn-2.35Mg-
88 0.1Zr 700 h at

|. Precipitate sizes 160°C.

r (a) Undeformed

literature data available material

(b)

(b) material
predeformed 10%.

TEM from

Deschamps, Livet and
Bréchet, Acta Materialia, 47,

1998, 281-292
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Predicted vs. measured diameter of precipitates

Alloy Ageing Diameter Diameter
(Wt%) treatment Measured* Predicted
(nm) (nm)
Al-6.1Zn-2.35Mg-0.1Zr 50h/160°C 16 21
Al-6.1Zn-2.35Mg-0.1Zr 700h/160°C 5245 49
Al-5.5Zn-1.2Mg-0.16Zr 7h/170°C 20 14
Al-5.5Zn-1.2Mg-0.16Zr 7h/150°C 11 9
Al-6.1Zn-2.3Mg-2.6Cu-0.1Zr 16h/172°C 1943 20
Al-6.7Zn-2.9Mg-1.9Cu-0.1Zr 16h/172°C 20+5 20
7475 (~ Al-5.7Zn-2.3Mg-1.6Cu-0.2Cr) | 1320h//160°C 59 61

» Predictions correspond well with measured precipitate sizes

* TEM data from:

Deschamps, Livet, Brechet, Acta Mater. 1999; 47: 281
Werenskiold, Deschamps, Bréchet, Mater. Sci. Eng. A 2000; 293: 267

Poole, Shercliff, Castillo, Mater. Sci. Techn. 1997; 13: 897

Li, Starink, Proc of 15t Symp Modeling Al alloys, Pittsburgh, 2003
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Model capabilities: inverse predictions
80 7
Zn:Mg:Cu (at%) = /. _ .
o 0125:2:0.7 [ 1507C
Ageing time
required to obtain a 60 1
yield strength of A
500 MPa for alloys = *°
with 39% S w0
recystallisation. 2
g 30
20 -
10 1
0
4
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Conclusions

» Derived / assembled physically based model for predicting yield
strength of Al-Zn-Mg-Cu alloys; ~30 equations, ~30 parameters.

 Model characteristics
* NO iterative schemes used
* influence Zn, Mg, Cu on strength through linear combination

o strengthening due to disc-shaped non shearable particles with
composition depending on alloy composition

» temperature and composition dependent formation rates of the
particles

 volume fraction dependent coarsening of precipitates
« solution strengthening
o texture influence
e Accuracy of model on predicting strength unseen data: 14 MPa

» Verification of model by analysis published data on precipitate sizes
in overaged 7xxx alloys

University
. Materials Research Group fﬁ ﬂ; of Seuthampton




Continuing / future work

« Composition dependency of coarsening rate

* Integrate all published approaches into one model, e.g. Wagner-
Kampmann iterative scheme into present model.

« Variation in precipitate shape with ageing
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