
H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 412–416, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Delivering Data Management for Engineers on the Grid
1

Jasmin Wason, Marc Molinari, Zhuoan Jiao, and Simon J. Cox

School of Engineering Sciences, University of Southampton, UK
{j.l.wason, m.molinari, z.jiao, sjc}@soton.ac.uk

Abstract. We describe the design and implementation of a database toolkit for
engineers, which has been incorporated into the Matlab environment, to help
manage the large amount of data created in distributed applications. The toolkit
is built using Grid and Web services technologies, and exchanges XML
metadata between heterogeneous Web services, databases and clients using
open standards. We show an application exemplar of how this toolkit may be
used in a grid-enabled Computational Electromagnetics design search.

1 Introduction

Engineering design search and optimization (EDSO) is the process whereby
engineering modelling and analysis are exploited to yield improved designs. This may
involve lengthy and repetitive calculations requiring access to significant
computational resources. This requirement makes the problem domain well-suited to
the applications of Grid technology which enable large-scale resource sharing and
coordinated problem solving within a virtual organisation (VO) [1]. Grid technology
provides scalable, secure, high-performance mechanisms for utilizing remote
resources, such as computing power, data and software applications over the Internet.

While compute power may be easily linked into applications using grid computing
middleware, there has been less focus on database integration, and even less still on
providing it in an environment familiar to engineers. Traditionally, data in many
scientific and engineering disciplines have been organized in application-specific file
structures, and a great deal of data accessed within current Grid environments still
exists in this form [2]. When there are a large number of files it becomes difficult to
find, compare and share the data. If database technologies are used to store additional
information (metadata) describing the files, they can be located more easily using
metadata queries. The Storage Resource Broker (SRB) [3] uses its Metadata Catalog
(MCAT) for dataset access based on attributes rather than names or physical
locations. However, MCAT has limited support for application specific metadata
which is often essential in assisting engineers to locate data specific to their problems.
In Geodise [4] our goal is to develop sophisticated but easy-to-use toolkits to help
engineers make use of grid resources from environments they use daily, such as
Matlab [5] and Jython [6]. These consist of the Geodise computational toolkit [7],
XML toolbox [8] and a database toolkit, the focus of this paper, in which we adopt an
open standards and service oriented approach to leverage existing database
technologies and make them accessible to engineers and suitable for their problems.

1 The full paper is available at [4]. This work is supported by the Geodise e-Science pilot

project (UK EPSRC GR/R67705/01) and the DTI-funded GEM project.

Delivering Data Management for Engineers on the Grid 413

2 Architecture

A major aim of the Geodise data management architecture is to bring together
flexible, modular components for managing data on the Grid which can be utilized by
higher level applications. Another objective is to provide a simple, transparent way
for engineering users to archive files in a repository along with metadata. Various
technical and application specific metadata about files, their locations and access
rights are stored in databases. Files are stored in file systems and transported using the
Globus Toolkit [9] which provides middleware for building computational grids and
their applications. We use the platform independent Java CoG kit [10] to utilize the
Grid Security Infrastructure (GSI) [11] for authentication, and GridFTP [12] for
secure file transfer. As shown in Fig. 1, client side tools initiate file transfer and call
Web services [13] for metadata storage, query, authorisation and file location.

.NET

Authorisation
Service

Location
Service

.NET

Authorisation
Service

Location
Service

Java

Metadata
Archive & Query

Services

Java

Metadata
Archive & Query

Services

Matlab
Functions

Java
clients

Globus ServerGlobus ServerGlobus Server
Geodise Database

Toolkit

Metadata
Database

Browser

Client Grid

Authorisation
Database

CoG

Apache
SOAP

Location
Database

Refers
to

SOAP

SOAP

GridFTP

Fig. 1. A high level set of scripting functions sits on top of a client side Java API to provide an
interface to data management Web service functionality and secure file transfer.

Access to databases is provided through Web services, which may be invoked
using the Simple Object Access Protocol (SOAP) [14], to transfer data between
programs on heterogeneous platforms. For example, our Java client code running on
Linux or Windows can communicate with .NET Web services on a Windows server
and Java Web services on a Linux server.

A unique handle is all that is required to locate and retrieve a file, as the file
location service keeps a record of where it is stored. The metadata archive service
allows the storage of additional descriptive information detailing a combination of
technical characteristics (e.g. size, format) and user defined application domain
specific metadata. The metadata query service provides a facility for engineers to find
the data required without the need to remember the file names and handles.

We use relational tables for structured data and XML for more flexible storage of
complex, deeply nested engineering specific metadata. We require a set of services
that allow us to access and interrogate both types of data storage in a standard way.
We currently provide APIs to specific databases with tailored Web services and will
use these on top of implementations compliant with proposed standards from the Data
Access and Integration Services Working Group [15] of the GGF [16].

The authorisation service uses a database of registered users, containing data
access permissions mapping between VO user IDs and authenticated Globus

414 J. Wason et al.

Distinguished Names, globally unique identifiers representing individuals. Query
results are filtered and only metadata about files the user has access to are returned.

3 Problem Solving Environment and Application Example

The basic tasks (Fig. 2) for an engineer to undertake to manage and share their data
are to (A) generate the data using standard engineering tools, (B) store it in the re-
pository, (C) search for data of interest, and (D) retrieve results to the local file sys-
tem. The wrapping of the core services enabling these tasks is straightforward as
much of the logic of the client side components is written in Java, which can be di-
rectly exposed to Matlab or other high-level scripting environments, such as Jython
[6]. Matlab contains a large number of toolboxes tailored to scientists and engineers,
and makes it easy for them to quickly generate, analyse and visualize their data. We
have implemented a range of Matlab functions on top of our core database services so
that they can be incorporated programmatically into the user’s scripts in a way con-
sistent with the behaviour and syntax of the Matlab environment.

structure

(C) Query

(B) Archive

(A) Generate file(A) Generate file

(D) Retrieve

File archiveMatlab

filehandle

local file path

local file path

query string

filehandle

Metadata
database

Data file

Data file

XML

XMLXMLXML
XMLXMLXML

filehandle

structure

Fig. 2. Data flow of files and metadata: (A) file generation, (B) archive of file and user meta-
data, (C) querying of metadata, and (D) file retrieval.

We have applied the Geodise database toolkit in a real world example of design
search in Computational Electromagnetics (CEM). The GEM project [16] is devel-
oping software for industrial use to improve the design of optical components for next
generation integrated photonic devices. A specific device is the photonic crystal with
certain light transmission and reflection properties which depend on the size and dis-
tribution of structures drilled into a slab of dielectric material. To investigate the char-
acteristic photonic bandgap (PBG) of the crystal, an engineer samples a range of pa-
rameters (e.g. radius radius and spacing d of the holes) with each sample point giving
rise to a different value of the objective function (the bandgap). Initially a large num-
ber of designs are explored which yield many solutions and large amounts of data. All
of these solutions, whether good or poor, may yield valuable information for future
simulations or devices and need to be preserved.

Fig. 3 shows two scripts, one to create data and archive it, the other for query and
retrieval of data. The first stage (a) involves the user creating a certificate proxy so
they can be authenticated and then generating data files and defining custom metadata
about the geometry parameters and resulting bandgap as a Matlab structure, m. Then

Delivering Data Management for Engineers on the Grid 415

the spectrum results file is stored using the gd_archive function (b), along with the
metadata structure, which is converted into XML by our XML Toolbox for Matlab
[8]. gd_archive then transports the file to a server and the metadata to the metadata
service for storage in an XML database.

a gd_createproxy;

m.model = ’pgb_design’; m.param.d = […]; m.param.radius = […];
...
compute_pgb(m.param, infile, outfile);

m.result.bandgap = postprocs_pbg(outfile);

b gd_archive(outfile, m);

...

c Q = gd_query('model = pbg_design & result.bandgap < 99.7');

Q: 4x1 struct array with fields standard, model, param, result

d gd_retrieve({Q.standard.fileID}, '/home/Eng007/pbg_files/');

visualise_pbg_landscape ('/home/Eng007/pbg_files/*');

Fig. 3. Example scripts to generate, archive, query, retrieve and post-process data.

This script is run a number of times with different parameters. After the
computations have finished and the design results are available in the database, the
Engineer can check the results with a simple query (c). The query can be formed
using a combination of named metadata variables and comparison operators or
alternatively through a graphical interface. Q is a vector of structures containing the
metadata of all PBG designs with a bandgap less than 99.7. In this case, four designs
match the query. For further investigation or visualization, the Engineer can retrieve
files associated with the above four designs to the local file system (d).

Fig. 4 shows typical data we can obtain for the various design parameters. The
simulation results form an objective function landscape of the photonic bandgap from
which a full design search and optimization may be performed. The storage of the
results in a database as well as the transfer of files to a file store on the Grid
additionally allows data re-use by engineers.

Fig. 4. Example of CEM design search using Geodise database technology. Shown are design
geometries, the computed frequency spectrum with the bandgap, and representative data for the
objective function landscape (dots indicate sample points in parameter space).

416 J. Wason et al.

5 Conclusions and Future Work

We have described a framework which allows the use of databases on the Grid in an
engineer-friendly environment. We have implemented a suite of services which
combine a commercial PSE (Matlab) with a core framework of open standards and
service oriented technologies. We have shown how design search in electromagnetics
can be supported by the Geodise database toolkit. The transparent integration of
database tools into the engineering software environment constitutes a starting point
for database applications in EDSO, and is only one of many potential applications in
the engineering domain (CFD, CEM, etc.). The functions we have implemented to
extend the Matlab environment allow engineers to share and re-use data conveniently.
The automatic generation of standard metadata and support for user-defined metadata
allows queries to be formed that represent the Engineer’s view of the data.

Future work will involve providing tools to generate, compare and merge XML
Schemas describing users' custom metadata. We will also evolve our Web service
based components to GGF DAIS-WG compliant Grid services.

References

[1] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration, Open Grid Service Infra-
structure WG, Global Grid Forum, June 22, 2002.

[2] M.P. Atkinson, V. Dialani, L. Guy, I. Narang, N.W. Paton, D. Pearson, T. Storey and P.
Watson. Grid Database Access and Integration: Requirements and Functionalities. UK e-
Science Programme Technical Report
http://www.cs.man.ac.uk/grid-db/papers/DAIS:RF.pdf

[3] The Storage Resource Broker, http://www.npaci.edu/DICE/SRB/
[4] Geodise Project http://www.geodise.org/
[5] Matlab 6.5. http://www.mathworks.com
[6] J. Hugunin. Python and Java: The Best of Both Worlds. 6th International Python Confer-

ence. San Jose, California, USA, 1997.
[7] G. Pound, H. Eres, J. Wason, Z. Jiao, A. J. Keane, and S.J. Cox, A Grid-enabled Problem

Solving Environment (PSE) For Design Optimization Within Matlab. IPDPS-2003, April
22–26, 2003, Nice, France.

[8] M. Molinari. XML Toolbox for Matlab. http://www.soton.ac.uk/~gridem
[9] The Globus Project. http://www.globus.org/
[10] Commodity Grid Kits. http://www.globus.org/cog/
[11] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and V. Welch. Na-

tional-Scale Authentication Infrastructure, IEEE Computer, 33(12):60–66, 2000.
[12] GridFTP, http://www.globus.org/datagrid/gridftp.html
[13] Web Services Activity, http://www.w3.org/2002/ws
[14] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H.F. Nielsen. SOAP Version 1.2,

W3C Candidate Recommendation, 2002
[15] Global Grid Forum, http://www.ggf.org/
[16] The GEM project, http://www.soton.ac.uk/~gridem

	1 Introduction
	2 Architecture
	3 Problem Solving Environment and Application Example
	5 Conclusions and Future Work
	References

