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Abstract. Engineering design search and optimisation is the process whereby engineering 
modelling and analysis are exploited to yield improved designs. It is a computationally and 
data intensive process - an application domain well-suited to Grid technology. Many on-
going activities focus on utilising computing resources on the grid. However, it is equally 
important to manage efficiently the vast and varied amount of data produced by grid 
applications. In this paper we describe the tools we have implemented in the Geodise 
project to transparently integrate database technologies into engineering applications. The 
toolkit has been incorporated into Matlab which is popular in the engineering community 
for its ease of use and rich functionality. We adopt open standards and a service oriented 
approach to leverage existing database technologies. Databases are accessed through web 
services and Globus is used for file transfer and authentication. The Geodise data 
management architecture consists of flexible, modular components which can be utilized by 
higher level applications for managing data on the Grid. We demonstrate our toolkit in the 
context of an industrially relevant exemplar problem.  
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Matlab, engineering design search and optimisation. 

 

1. Introduction 
Engineering design search and 

optimisation (EDSO) is an application 
domain well suited to Grid technology, 
involving computationally and data 
intensive procedures to obtain improved 
engineering designs. Optimisation tools 
modify a design to increase, or reduce, 
some measure of merit (called the objective 
function) whilst satisfying various 
constraints. The objective function 
measures the quality of a particular design 
and is computed by an optimising algorithm 
which adjusts each of a selected set of 
design variables to determine how they 
affect the performance. This is coupled with 
an appropriate engineering analysis code, 
such as Computational Electromagnetics 
(CEM) or Computational Fluid Dynamics 
(CFD) code, to analyse the properties of a 
design, and seek a solution that optimises 
the objective.  

The EDSO process often involves a 
number of files and data parameters in 
addition to lengthy and repetitive 
calculations requiring access to significant 
computational resources. This makes the 
problem domain of EDSO using CEM/CFD 
well-suited to the applications of Grid 
technology [1] which allows the sharing of 
computing power, data resources and 
software applications over the Internet. By 
providing scalable, secure, high-
performance mechanisms for discovering 
and accessing remote resources, Grid 
technology makes scientific collaborations 
within a Virtual Organisation (VO) 
achievable in ways that were previously 
impossible. In Geodise [2] our goal is to 
develop sophisticated but easy-to-use 
toolkits to help engineers carry out their 
daily tasks efficiently by making use of the 
compute and data resources available on the 
Grid. 



While much ongoing Grid research is 
focused on the compute aspect of the Grid, 
it is equally important to manage efficiently 
the vast amount of data created by Grid 
applications, such as EDSO. Traditionally, 
data in many scientific and engineering 
disciplines has been organized in 
application-specific file structures, and a 
great deal of data accessed within current 
Grid environments still exists in this form 
[3]. When there are a large number of files 
it becomes difficult to find, compare and 
share the data. We solve this problem by 
allowing additional information (metadata)  
describing the nature of the files to be 
defined and stored in databases, so that files 
can be located easily by querying the 
metadata.  

The OGSA [1] Data Access and 
Integration (DAI) project [3] is tackling 
issues regarding to database integration 
with the Grid in general. Our focus is on 
providing database services in an 
environment that is familiar to engineers, to 
help them manage the large amount of data 
created by their grid applications. We have 
chosen Matlab [4] as such an environment, 
as it is popular with engineers for its ease of 
use and rich functionality. We adopt open 
standards and a service oriented approach 
[5] to develop a set of tools to extend the 
Matlab functionalities so that engineers can 
make use of grid computing and data 
management services easily. This set of 
tools consists of the Geodise computational 
toolkit [6], XML toolbox [7] and a database 
toolkit which is the focus of this paper. 
These toolkits can be adapted to work in 
other scripting environments, such as 
Jython [8]. 
As shown in Figure 1, the building blocks 
of the engineering problem domain, as well 
as the data management functionality 
provided by Geodise, are wrapped as 
Web/Grid services where appropriate, 
making use of Java and Grid technologies. 
A user accesses this functionality via 
Geodise provided functions which in turn 
call a client side Java API to communicate 
with the services. The knowledge service, 
as described in [9] provides intelligent 
support to the users through an ontology 

service and dynamic advice based on data 
stored in a database. 
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Figure 1 The Geodise architecture, where a 

scripting environment (e.g. Matlab) can be used 
to integrate grid-based compute, data and 
knowledge resources for engineering 
applications. 

 
The remainder of this paper is organized 

as follows: section 2 describes the 
architecture of the Geodise database toolkit; 
section 3 explains the various service 
components and how they can be 
incorporated into the Matlab environment; 
an example is given in section 4, and 
section 5 presents conclusions and future 
work. 

2. Architecture 
A major aim of the Geodise data 

management architecture is to provide 
service components that can be utilised by 
higher level applications for managing data 
on the Grid. Another objective is to provide 
a simple, transparent way for engineering 
users in a VO to archive files along with 
additional metadata, without needing to 
know the underlying storage mechanism. 
Although files can be archived and 
retrieved based on unique identifiers, 
storing additional metadata in a database 
makes it possible to locate a file based on 
its characteristics (e.g. the values of 
variables it contains). An optimisation may 
take a long time to run and it is desirable to 
store important data for later re-use. It 
should also be possible for others to reuse 
the data, and, to encourage data sharing, 
users need a way to specify who else can 
discover and retrieve their data.  



To support these goals, we have 
implemented the Geodise database toolkit. 
It extends an engineering environment by 
using open standard technologies as shown 
in Figure 2. Files are stored in file systems 
while various types of technical and 
application specific metadata about files, 
their locations and access rights are stored 
in databases. 
                             

Geodise Database 
Web Services

Authorisation
Service

Location
Service

Metadata 
Archive & Query

Services 

Matlab
Functions

Java
clients

Globus ServerGlobus ServerGlobus Server
Geodise Database 

Toolkit

Metadata 
Database

Client Grid

CoG

Apache
SOAP SOAP

GridFTP

SOAP

GUI

 
Figure 2 A high level set of functions can be 
written on top of a client side Java API to 
provide a straightforward scripting interface to 
data management Web service functionality and 
secure file transfer. A user script may run 
locally as shown, or on a remote compute 
resource with the user's delegated authorisation 
credentials. 
 

To enable data sharing by users and 
applications at different locations in a VO, 
files need to be transported efficiently 
between sites. We use the platform 
independent Java CoG kit [10] to utilize the 
Grid Security Infrastructure (GSI) [11] for 
authentication and security, and GridFTP 
[12] for secure file transfer between user's 
local machine and the file stores. Files are 
archived on the file storage servers using 
generated UUIDs (Universally Unique 
IDentifiers) [13] as handles. 

Access to databases is provided through 
Web services [5], invoked using the Simple 
Object Access Protocol (SOAP) [14] which 
uses a combination of XML and HTTP to 
transfer data between the services 
regardless of their underlying programming 
language or platform. Client jobs running 
remotely on the Grid can also access these 
services to retrieve input files from and 
archive results to a repository. This 
provides a central location for applications 
running on the Grid to exchange data and 

allows the user to query and retrieve job 
results when convenient. 

In next section, we describe the various 
services provided by the Geodise database 
toolkit in detail, and show how they have 
been incorporated into the Matlab 
environment. 
 

3. Service Components 

3.1. Database Services 
The Geodise database toolkit consists of 

service components upon which higher 
level applications can be built, as shown in 
Figure 2. The file location service keeps a 
record of file handles and locations, in 
terms of host and directory, in a database so 
that a handle is all that is required to 
retrieve a file. The metadata archive service 
complements file archiving by allowing the 
storage of additional descriptive 
information detailing a combination of 
technical characteristics (e.g. size, format) 
and application domain specific metadata. 
Files that are related (e.g. all the files for 
one design optimisation) can be logically 
grouped together as a datagroup. Metadata 
can also be added at the datagroup level so 
that it describes the whole problem, rather 
than an individual file. The query service 
performs queries on the metadata database 
allowing data to be located without the need 
to remember file or datagroup handles. 

Authorisation is implemented as a 
service interface to a database of registered 
users, keeping track of permissions on data 
and mapping between user IDs in the VO 
and Globus Distinguished Names (DN), 
which are globally unique identifiers 
representing individuals. The authorisation 
service filters query results and only returns 
metadata about files the user owns and files 
others have granted them access to. 
Authentication is achieved with GSI which 
uses Public Key Infrastructure (PKI) [15] 
and Secure Sockets Layer (SSL) [16] to 
provide secure communication over the 
Grid. Every user must have a private key 
and a certificate, containing their DN and 
public key, which is signed by a Certificate 
Authority. 



Java client tools are responsible for 
transferring files between the local machine 
and remote file servers using GridFTP. The 
client side toolkit also calls the web 
services using SOAP to exchange automatic 
and user-provided metadata with the 
databases.  

3.2. XML Metadata and XML Schemas 
 
Metadata with a standard, fixed structure 

such as automatically generated technical 
file information can be stored in relational 
database tables. However, user defined 
application specific metadata is often 
complex, nested and dynamic in nature, 
preventing it from being specified by 
predefined database schemas. We have 
found that such engineering data can be 
better represented in XML than in the 
relational data model. To efficiently 
manage this non-structured data along side 
structured data, we have chosen Oracle9i 
[17], a commercial relational database 
management system with XML capabilities. 
User defined metadata is sent to the archive 
service as XML and stored in an XMLType 
column. The query service translates 
queries it receives into a combination of 
SQL and XPath [18] to be executed on the 
database. Results are returned from the 
service as a collection of XML documents 
containing a specified subset of elements. 

Although user-defined metadata may not 
conform to a predefined XML Schema, 
they may share some common 
characteristics within a particular 
engineering design and hence a schema 
may be derived from them.  The benefits of 
having an XML Schema for a collection of 
user-defined metadata include the ability to 
create graphical query interfaces, identify 
similar data and perform categorisation, and 
provide a better storage strategy for 
improved query performance. 

We generate XML Schemas from XML 
documents using a modified version of the 
XMLInstance2Schema tool provided by 
Castor [19], an open source project for data 
binding between Java, XML and SQL. The 
XML Schemas describe the structure of 
some user-defined XML metadata which 
may be similar to previously stored 

metadata. If this is the case a single XML 
Schema can be used to describe the set of 
metadata instances, which we shall refer to 
as a collection. Metadata is added to a 
collection based on the results of the 
SchemaEvolver utility, which is still under 
development. This utility analyses the 
existing collections in two stages; the first 
stage compares the new Schema with all 
currently stored XML Schemas and 
depending on the structure they describe, 
assigns a similarity rating. The second stage 
allocates the new metadata to a collection 
depending on its similarity rating. If there is 
an exact match then the metadata is 
assigned to that collection and if there is no 
similar match then the new XML Schema is 
added to the database and associated with 
the metadata, to start a new collection. If 
there is a similar XML Schema in the 
database then that XML Schema is 
modified to describe the structure of both 
the metadata in the existing collection and 
the new user-defined metadata. This 
evolved schema is then added to the 
database and associated with the collection 
and the user-defined metadata is added to 
the collection.  

The SchemaEvolver utility currently 
concentrates on comparing XML Schemas 
and producing a similarity weighting, the 
next stage is to produce an evolved schema 
from two similar schemas so that all 
versions of the metadata conform to it.  

3.3. Application Interfaces 
To incorporate the core services we have 

described into the Matlab environment, we 
have implemented a range of Matlab 
functions on top of them so that they can be 
used programmatically in scripts. Matlab is 
a powerful scripting environment con-
taining a large number of toolboxes tailored 
to the needs of scientists and engineers. Its 
database toolbox [20] uses JDBC to enable 
insertion and retrieval of data between 
Matlab and relational databases. This is a 
helpful tool for those users who already 
administer a relational database and know 
how to maintain the schema when their data 
structures change. However, it is less 
suitable for engineers who wish to store a 
variety of data structures that will change 



over time, but are not concerned with the 
underlying database storage schema. Our 
toolkit allows users to focus on what is 
stored rather than how it is stored.  

Using the Geodise database toolkit, the 
basic tasks an engineer needs to undertake 
to manage and share their data are to 
generate the data using their standard 
engineering tools, store it in the repository 
using gd_archive function, search for 
data of interest using the gd_query 
command, and retrieve results to their local 
file system by gd_retrieve function. The 
wrapping of the core services that enable 
these tasks is straightforward because much 
of the logic of the client side components is 
written in Java, which can be exposed to the 
Matlab environment using thin Matlab 
language wrappers. These Java components 
may be exposed to other high-level 
scripting environments as required. For 
example it has been proven straightforward 
to write wrappers to expose the client side 
functionality of the Geodise computational 
toolkit to Jython [8], a pure Java 
implementation of the Python interpretive 
scripting environment. 

The gd_archive function stores a 
given file in a repository for an 
authenticated user. The function is able to 
generate automatically standard metadata 
for the file, such as its local name, size and 
format. The user may add additional 
metadata using Matlab structures and 
variables, for example custom application 
specific information, and a list of users who 
may access the file. The function then 
transports the file to a server and converts 
the metadata into XML using our XML 
Toolbox for Matlab [7] before sending it to 
the metadata service for storage. The 
gd_archive function returns a unique 
handle which can be used to retrieve the file 
at a later date. The locations of databases 
and file servers can be set in a configuration 
file by an administrator of the system. The 
gd_retrieve function will locate a file 
based on a given file handle and return it to 
a local directory. 
The metadata can be queried by an 
authorised user with the gd_query 
command, to discover files that have certain 

characteristics and obtain information about 
them, such as their handle for retrieval. 
Users specify the queries in their scripts 
using a combination of named metadata 
variables and comparison operators. For 
example,  
gd_query ('file.archiveDate > 
2003-02-01 & param.radius = 2.3', 
'file.ID')  
will return the IDs (handles) of files which 
were archived on 2003-02-01 and have 
variable param.radius equal to 2.3. An 
interactive, graphical query interface is also 
provided in which selection criteria are 
specified in a Java GUI generated from 
standard metadata. When a script based 
query is performed the XML metadata 
results are converted back into a Matlab 
structure before returning them to the user. 
The bi-directional conversion routines are 
provided by our XML Toolbox for Matlab. 
The toolbox includes functions 
xml_format and xml_parse to convert 
Matlab variables into XML and vice versa. 
We use the XML toolbox as an underlying 
tool that the user does not see when calling 
our database functions. As far as the user is 
concerned they are archiving, querying and 
working with Matlab structures, not XML. 

4. Application Example 
The framework described above to 

utilize database capabilities from within 
Matlab has initially been developed for 
Computational Fluid Dynamics 
applications, however, we demonstrate with 
a specific example that it can be as easily 
applied to a Computational 
Electromagnetics problem. 

The specific application we are 
interested in from the GEM project [21] is 
the search for good photonic crystal (PC) 
designs. A PC consists of a periodic micro-
structure of holes drilled into a slab of 
dielectric material. The size and density of 
the holes determine the transmission and 
reflection properties for light through the 
crystal. To investigate the characteristic 
photonic bandgap (PBG) of the crystal, an 
engineer samples a range of parameters (e.g. 
the radius r and spacing d of the holes) with 
each sample point giving rise to a different 



value of the objective function (the 
bandgap). 

Initially, a large number of designs is 
explored which yields many solutions and 
large amounts of data. All of these solutions 
yield valuable information and need to be 
preserved in a way that allows for easy 
searching and retrieval of data and related 
files. 

Figure 3 shows sections of Matlab 
scripts used for (a) file generation, (b) 
archiving of files, (c) querying of metadata, 
and (d) data and file retrieval using the 
implemented database functionality. The 
first stage involves the user creating a 
certificate proxy so they can be 
authenticated and then generating data files 
and defining custom metadata about the 
geometry parameters and resulting bandgap 
as a Matlab structure, m. 

Then the spectrum results file is stored 
using the gd_archive function along with 
the metadata structure, which is 
transparently converted into XML. 
gd_archive then transfers the file to a 
server and the metadata to the metadata 
service for storage in a database. 

 
a gd_createproxy;

 m.model = 'pgb_design';  
m.param.d = […];  
m.param.radius = […]; 
... 

 compute_pgb(m.param, infile, outfile); 

 m.result.bandgap = postprocs_pbg(outfile);  

b gd_archive(outfile, m);  

 ... 

c Q = gd_query('model = pbg_design & 
result.bandgap < 99.7'); 

 Q: 4x1 struct array with fields standard, 
model, param, result 
 

d gd_retrieve({Q.file.ID}, 
'/home/Eng007/pbg_files/' ); 
 

 visualise_pbg_landscape 
('/home/Eng007/pbg_files/*' ); 

Figure 3 Example scripts to generate, 
archive, query, retrieve and post-process data. 

This script is run a number of times with 
different parameters. After the 
computations have finished and the design 
results are available in the database, the 
engineer can check the results with a simple 
query (c). The query is formed using a 
combination of named variables and 
comparison operators or alternatively 
through a graphical interface. The returned 

data Q is a vector of structures containing 
the metadata of all PBG designs which 
correspond to a bandgap less than 99.7 nm. 
In this case, four designs match the query 
and the engineer can retrieve the associated 
files to the local file system with the 
gd_retrieve command (d). 
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Figure 4 Example of CEM design search 

using Geodise database technology. Shown are 
design geometries, the computed frequency 
spectrum with the bandgap, and representative 
data for the objective function landscape (dots 
indicate sample points in parameter space). 

Figure 4 shows typical data we obtained 
for various design parameters. The 
simulation results from varying r and d 
form a landscape of the objective function 
of the photonic bandgap from which a 
further design optimisation may be 
performed. As the data and files are kept 
‘on the Grid’, later re-use of the results by 
the engineer from other locations is also 
possible. 

5. Conclusions and Future Work 
In this paper we have described a 

framework which provides engineers with 
access to databases on the Grid from within 
a familiar working environment. We have 
implemented a suite of services using an 
architecture which combines a commercial 
problem solving environment (Matlab) with 
a core framework of open standards and 
service oriented technologies, namely Grid 
computing, Web services, XML and 
databases. The functions we have 
implemented to extend the Matlab 
environment allow engineers to share and 
re-use data conveniently from existing 
scripts. The automatic generation of 
standard metadata and support for user-
defined metadata allows queries to be 
formed that represent the engineer’s view 
of the data.  

With a specific example we have shown 
how design search in electromagnetics can 



be supported by the Geodise database 
toolkit. The transparent integration of 
database tools into the engineering software 
environment constitutes a starting point for 
database applications in engineering design 
optimisation, and is only one of many 
potential applications in the engineering 
domain (CFD, CEM, Civil Engineering, 
etc.). The toolkit has also been recently 
used by the GENIE [22] climate modelling 
project, where data was archived from a 
Java program then queried, retrieved and 
visualized in Matlab.  

We shall continue our work on 
generating and evolving XML Schemas. 
There are some cases when an appropriate 
schema change cannot be derived by the 
code and user interaction is required. We 
intend to incorporate a GUI that has been 
written for this purpose into our toolkit. The 
next stage will be to use the XML Schemas 
to improve query performance and generate 
query GUIs for custom metadata. We will 
also investigate how we can reference 
concepts from our EDSO ontologies to 
semantically enrich the metadata. 

Geodise will provide a graphical user 
interface to help engineers constructing 
their workflows, which will need to interact 
with databases to provide users with up-to-
date information. We plan to extend our 
existing database toolkit to support the 
workflow construction interface. We will 
also evolve our Web service based 
components to OGSA-DAI compliant Grid 
services, which are a combination of Web 
services and Grid technology described in 
the Open Grid Services Architecture 
(OGSA) [1], the next generation of the 
Globus Toolkit. 
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