
Integrating Data Management into Engineering
Applications

Zhuoan Jiao, Jasmin Wason, Marc Molinari, Steven Johnston & Simon Cox

School of Engineering Sciences, University of Southampton, UK
{z.jiao, j.l.wason, m.molinari, s.j.johnston, sjc}@soton.ac.uk

Abstract. Engineering design search and optimisation is the process whereby engineering
modelling and analysis are exploited to yield improved designs. It is a computationally and
data intensive process - an application domain well-suited to Grid technology. Many on-
going activities focus on utilising computing resources on the grid. However, it is equally
important to manage efficiently the vast and varied amount of data produced by grid
applications. In this paper we describe the tools we have implemented in the Geodise
project to transparently integrate database technologies into engineering applications. The
toolkit has been incorporated into Matlab which is popular in the engineering community
for its ease of use and rich functionality. We adopt open standards and a service oriented
approach to leverage existing database technologies. Databases are accessed through web
services and Globus is used for file transfer and authentication. The Geodise data
management architecture consists of flexible, modular components which can be utilized by
higher level applications for managing data on the Grid. We demonstrate our toolkit in the
context of an industrially relevant exemplar problem.

Keywords: Database applications, Grid Computing, XML, XML Schema, Web services,
Matlab, engineering design search and optimisation.

1. Introduction
Engineering design search and

optimisation (EDSO) is an application
domain well suited to Grid technology,
involving computationally and data
intensive procedures to obtain improved
engineering designs. Optimisation tools
modify a design to increase, or reduce,
some measure of merit (called the objective
function) whilst satisfying various
constraints. The objective function
measures the quality of a particular design
and is computed by an optimising algorithm
which adjusts each of a selected set of
design variables to determine how they
affect the performance. This is coupled with
an appropriate engineering analysis code,
such as Computational Electromagnetics
(CEM) or Computational Fluid Dynamics
(CFD) code, to analyse the properties of a
design, and seek a solution that optimises
the objective.

The EDSO process often involves a
number of files and data parameters in
addition to lengthy and repetitive
calculations requiring access to significant
computational resources. This makes the
problem domain of EDSO using CEM/CFD
well-suited to the applications of Grid
technology [1] which allows the sharing of
computing power, data resources and
software applications over the Internet. By
providing scalable, secure, high-
performance mechanisms for discovering
and accessing remote resources, Grid
technology makes scientific collaborations
within a Virtual Organisation (VO)
achievable in ways that were previously
impossible. In Geodise [2] our goal is to
develop sophisticated but easy-to-use
toolkits to help engineers carry out their
daily tasks efficiently by making use of the
compute and data resources available on the
Grid.

While much ongoing Grid research is
focused on the compute aspect of the Grid,
it is equally important to manage efficiently
the vast amount of data created by Grid
applications, such as EDSO. Traditionally,
data in many scientific and engineering
disciplines has been organized in
application-specific file structures, and a
great deal of data accessed within current
Grid environments still exists in this form
[3]. When there are a large number of files
it becomes difficult to find, compare and
share the data. We solve this problem by
allowing additional information (metadata)
describing the nature of the files to be
defined and stored in databases, so that files
can be located easily by querying the
metadata.

The OGSA [1] Data Access and
Integration (DAI) project [3] is tackling
issues regarding to database integration
with the Grid in general. Our focus is on
providing database services in an
environment that is familiar to engineers, to
help them manage the large amount of data
created by their grid applications. We have
chosen Matlab [4] as such an environment,
as it is popular with engineers for its ease of
use and rich functionality. We adopt open
standards and a service oriented approach
[5] to develop a set of tools to extend the
Matlab functionalities so that engineers can
make use of grid computing and data
management services easily. This set of
tools consists of the Geodise computational
toolkit [6], XML toolbox [7] and a database
toolkit which is the focus of this paper.
These toolkits can be adapted to work in
other scripting environments, such as
Jython [8].
As shown in Figure 1, the building blocks
of the engineering problem domain, as well
as the data management functionality
provided by Geodise, are wrapped as
Web/Grid services where appropriate,
making use of Java and Grid technologies.
A user accesses this functionality via
Geodise provided functions which in turn
call a client side Java API to communicate
with the services. The knowledge service,
as described in [9] provides intelligent
support to the users through an ontology

service and dynamic advice based on data
stored in a database.

Data Management

Database FilesDatabase

Java

Java / C# / .NET

Fortran Code

Building Blocks

Matlab
Code .EXE

Grid

Client

Integration & Scripting

Matlab Jythonor

Web Services
Grid Services
Web Services
Grid Services

Knowledge
Service

Intelligent Support
Ontology
Service

Data Management

Database FilesDatabase

Java

Java / C# / .NET

Fortran Code

Building Blocks

Matlab
Code .EXE

Grid

Client

Integration & Scripting

Matlab Jythonor

Web Services
Grid Services
Web Services
Grid Services

Knowledge
Service

Intelligent Support
Ontology
Service

Figure 1 The Geodise architecture, where a

scripting environment (e.g. Matlab) can be used
to integrate grid-based compute, data and
knowledge resources for engineering
applications.

The remainder of this paper is organized

as follows: section 2 describes the
architecture of the Geodise database toolkit;
section 3 explains the various service
components and how they can be
incorporated into the Matlab environment;
an example is given in section 4, and
section 5 presents conclusions and future
work.

2. Architecture
A major aim of the Geodise data

management architecture is to provide
service components that can be utilised by
higher level applications for managing data
on the Grid. Another objective is to provide
a simple, transparent way for engineering
users in a VO to archive files along with
additional metadata, without needing to
know the underlying storage mechanism.
Although files can be archived and
retrieved based on unique identifiers,
storing additional metadata in a database
makes it possible to locate a file based on
its characteristics (e.g. the values of
variables it contains). An optimisation may
take a long time to run and it is desirable to
store important data for later re-use. It
should also be possible for others to reuse
the data, and, to encourage data sharing,
users need a way to specify who else can
discover and retrieve their data.

To support these goals, we have
implemented the Geodise database toolkit.
It extends an engineering environment by
using open standard technologies as shown
in Figure 2. Files are stored in file systems
while various types of technical and
application specific metadata about files,
their locations and access rights are stored
in databases.

Geodise Database
Web Services

Authorisation
Service

Location
Service

Metadata
Archive & Query

Services

Matlab
Functions

Java
clients

Globus ServerGlobus ServerGlobus Server
Geodise Database

Toolkit

Metadata
Database

Client Grid

CoG

Apache
SOAP SOAP

GridFTP

SOAP

GUI

Figure 2 A high level set of functions can be
written on top of a client side Java API to
provide a straightforward scripting interface to
data management Web service functionality and
secure file transfer. A user script may run
locally as shown, or on a remote compute
resource with the user's delegated authorisation
credentials.

To enable data sharing by users and
applications at different locations in a VO,
files need to be transported efficiently
between sites. We use the platform
independent Java CoG kit [10] to utilize the
Grid Security Infrastructure (GSI) [11] for
authentication and security, and GridFTP
[12] for secure file transfer between user's
local machine and the file stores. Files are
archived on the file storage servers using
generated UUIDs (Universally Unique
IDentifiers) [13] as handles.

Access to databases is provided through
Web services [5], invoked using the Simple
Object Access Protocol (SOAP) [14] which
uses a combination of XML and HTTP to
transfer data between the services
regardless of their underlying programming
language or platform. Client jobs running
remotely on the Grid can also access these
services to retrieve input files from and
archive results to a repository. This
provides a central location for applications
running on the Grid to exchange data and

allows the user to query and retrieve job
results when convenient.

In next section, we describe the various
services provided by the Geodise database
toolkit in detail, and show how they have
been incorporated into the Matlab
environment.

3. Service Components

3.1. Database Services
The Geodise database toolkit consists of

service components upon which higher
level applications can be built, as shown in
Figure 2. The file location service keeps a
record of file handles and locations, in
terms of host and directory, in a database so
that a handle is all that is required to
retrieve a file. The metadata archive service
complements file archiving by allowing the
storage of additional descriptive
information detailing a combination of
technical characteristics (e.g. size, format)
and application domain specific metadata.
Files that are related (e.g. all the files for
one design optimisation) can be logically
grouped together as a datagroup. Metadata
can also be added at the datagroup level so
that it describes the whole problem, rather
than an individual file. The query service
performs queries on the metadata database
allowing data to be located without the need
to remember file or datagroup handles.

Authorisation is implemented as a
service interface to a database of registered
users, keeping track of permissions on data
and mapping between user IDs in the VO
and Globus Distinguished Names (DN),
which are globally unique identifiers
representing individuals. The authorisation
service filters query results and only returns
metadata about files the user owns and files
others have granted them access to.
Authentication is achieved with GSI which
uses Public Key Infrastructure (PKI) [15]
and Secure Sockets Layer (SSL) [16] to
provide secure communication over the
Grid. Every user must have a private key
and a certificate, containing their DN and
public key, which is signed by a Certificate
Authority.

Java client tools are responsible for
transferring files between the local machine
and remote file servers using GridFTP. The
client side toolkit also calls the web
services using SOAP to exchange automatic
and user-provided metadata with the
databases.

3.2. XML Metadata and XML Schemas

Metadata with a standard, fixed structure

such as automatically generated technical
file information can be stored in relational
database tables. However, user defined
application specific metadata is often
complex, nested and dynamic in nature,
preventing it from being specified by
predefined database schemas. We have
found that such engineering data can be
better represented in XML than in the
relational data model. To efficiently
manage this non-structured data along side
structured data, we have chosen Oracle9i
[17], a commercial relational database
management system with XML capabilities.
User defined metadata is sent to the archive
service as XML and stored in an XMLType
column. The query service translates
queries it receives into a combination of
SQL and XPath [18] to be executed on the
database. Results are returned from the
service as a collection of XML documents
containing a specified subset of elements.

Although user-defined metadata may not
conform to a predefined XML Schema,
they may share some common
characteristics within a particular
engineering design and hence a schema
may be derived from them. The benefits of
having an XML Schema for a collection of
user-defined metadata include the ability to
create graphical query interfaces, identify
similar data and perform categorisation, and
provide a better storage strategy for
improved query performance.

We generate XML Schemas from XML
documents using a modified version of the
XMLInstance2Schema tool provided by
Castor [19], an open source project for data
binding between Java, XML and SQL. The
XML Schemas describe the structure of
some user-defined XML metadata which
may be similar to previously stored

metadata. If this is the case a single XML
Schema can be used to describe the set of
metadata instances, which we shall refer to
as a collection. Metadata is added to a
collection based on the results of the
SchemaEvolver utility, which is still under
development. This utility analyses the
existing collections in two stages; the first
stage compares the new Schema with all
currently stored XML Schemas and
depending on the structure they describe,
assigns a similarity rating. The second stage
allocates the new metadata to a collection
depending on its similarity rating. If there is
an exact match then the metadata is
assigned to that collection and if there is no
similar match then the new XML Schema is
added to the database and associated with
the metadata, to start a new collection. If
there is a similar XML Schema in the
database then that XML Schema is
modified to describe the structure of both
the metadata in the existing collection and
the new user-defined metadata. This
evolved schema is then added to the
database and associated with the collection
and the user-defined metadata is added to
the collection.

The SchemaEvolver utility currently
concentrates on comparing XML Schemas
and producing a similarity weighting, the
next stage is to produce an evolved schema
from two similar schemas so that all
versions of the metadata conform to it.

3.3. Application Interfaces
To incorporate the core services we have

described into the Matlab environment, we
have implemented a range of Matlab
functions on top of them so that they can be
used programmatically in scripts. Matlab is
a powerful scripting environment con-
taining a large number of toolboxes tailored
to the needs of scientists and engineers. Its
database toolbox [20] uses JDBC to enable
insertion and retrieval of data between
Matlab and relational databases. This is a
helpful tool for those users who already
administer a relational database and know
how to maintain the schema when their data
structures change. However, it is less
suitable for engineers who wish to store a
variety of data structures that will change

over time, but are not concerned with the
underlying database storage schema. Our
toolkit allows users to focus on what is
stored rather than how it is stored.

Using the Geodise database toolkit, the
basic tasks an engineer needs to undertake
to manage and share their data are to
generate the data using their standard
engineering tools, store it in the repository
using gd_archive function, search for
data of interest using the gd_query
command, and retrieve results to their local
file system by gd_retrieve function. The
wrapping of the core services that enable
these tasks is straightforward because much
of the logic of the client side components is
written in Java, which can be exposed to the
Matlab environment using thin Matlab
language wrappers. These Java components
may be exposed to other high-level
scripting environments as required. For
example it has been proven straightforward
to write wrappers to expose the client side
functionality of the Geodise computational
toolkit to Jython [8], a pure Java
implementation of the Python interpretive
scripting environment.

The gd_archive function stores a
given file in a repository for an
authenticated user. The function is able to
generate automatically standard metadata
for the file, such as its local name, size and
format. The user may add additional
metadata using Matlab structures and
variables, for example custom application
specific information, and a list of users who
may access the file. The function then
transports the file to a server and converts
the metadata into XML using our XML
Toolbox for Matlab [7] before sending it to
the metadata service for storage. The
gd_archive function returns a unique
handle which can be used to retrieve the file
at a later date. The locations of databases
and file servers can be set in a configuration
file by an administrator of the system. The
gd_retrieve function will locate a file
based on a given file handle and return it to
a local directory.
The metadata can be queried by an
authorised user with the gd_query
command, to discover files that have certain

characteristics and obtain information about
them, such as their handle for retrieval.
Users specify the queries in their scripts
using a combination of named metadata
variables and comparison operators. For
example,
gd_query ('file.archiveDate >
2003-02-01 & param.radius = 2.3',
'file.ID')
will return the IDs (handles) of files which
were archived on 2003-02-01 and have
variable param.radius equal to 2.3. An
interactive, graphical query interface is also
provided in which selection criteria are
specified in a Java GUI generated from
standard metadata. When a script based
query is performed the XML metadata
results are converted back into a Matlab
structure before returning them to the user.
The bi-directional conversion routines are
provided by our XML Toolbox for Matlab.
The toolbox includes functions
xml_format and xml_parse to convert
Matlab variables into XML and vice versa.
We use the XML toolbox as an underlying
tool that the user does not see when calling
our database functions. As far as the user is
concerned they are archiving, querying and
working with Matlab structures, not XML.

4. Application Example
The framework described above to

utilize database capabilities from within
Matlab has initially been developed for
Computational Fluid Dynamics
applications, however, we demonstrate with
a specific example that it can be as easily
applied to a Computational
Electromagnetics problem.

The specific application we are
interested in from the GEM project [21] is
the search for good photonic crystal (PC)
designs. A PC consists of a periodic micro-
structure of holes drilled into a slab of
dielectric material. The size and density of
the holes determine the transmission and
reflection properties for light through the
crystal. To investigate the characteristic
photonic bandgap (PBG) of the crystal, an
engineer samples a range of parameters (e.g.
the radius r and spacing d of the holes) with
each sample point giving rise to a different

value of the objective function (the
bandgap).

Initially, a large number of designs is
explored which yields many solutions and
large amounts of data. All of these solutions
yield valuable information and need to be
preserved in a way that allows for easy
searching and retrieval of data and related
files.

Figure 3 shows sections of Matlab
scripts used for (a) file generation, (b)
archiving of files, (c) querying of metadata,
and (d) data and file retrieval using the
implemented database functionality. The
first stage involves the user creating a
certificate proxy so they can be
authenticated and then generating data files
and defining custom metadata about the
geometry parameters and resulting bandgap
as a Matlab structure, m.

Then the spectrum results file is stored
using the gd_archive function along with
the metadata structure, which is
transparently converted into XML.
gd_archive then transfers the file to a
server and the metadata to the metadata
service for storage in a database.

a gd_createproxy;

 m.model = 'pgb_design';
m.param.d = […];
m.param.radius = […];
...

 compute_pgb(m.param, infile, outfile);

 m.result.bandgap = postprocs_pbg(outfile);

b gd_archive(outfile, m);

 ...

c Q = gd_query('model = pbg_design &
result.bandgap < 99.7');

 Q: 4x1 struct array with fields standard,
model, param, result

d gd_retrieve({Q.file.ID},
'/home/Eng007/pbg_files/');

 visualise_pbg_landscape
('/home/Eng007/pbg_files/*');

Figure 3 Example scripts to generate,
archive, query, retrieve and post-process data.

This script is run a number of times with
different parameters. After the
computations have finished and the design
results are available in the database, the
engineer can check the results with a simple
query (c). The query is formed using a
combination of named variables and
comparison operators or alternatively
through a graphical interface. The returned

data Q is a vector of structures containing
the metadata of all PBG designs which
correspond to a bandgap less than 99.7 nm.
In this case, four designs match the query
and the engineer can retrieve the associated
files to the local file system with the
gd_retrieve command (d).

param.radius

pa
ra

m
.dr = 0.01

d = 0.10
r = 0.02
d = 0.10

r = 0.03
d = 0.10

r = 0.01
d = 0.05

r = 0.02
d = 0.15

r = 0.005
d = 0.02

Frequency spectrum & bandgap (indicated by thick line):

Design parameters & geometry:

b=11b=20 b=40b=12b=17b=4

Figure 4 Example of CEM design search

using Geodise database technology. Shown are
design geometries, the computed frequency
spectrum with the bandgap, and representative
data for the objective function landscape (dots
indicate sample points in parameter space).

Figure 4 shows typical data we obtained
for various design parameters. The
simulation results from varying r and d
form a landscape of the objective function
of the photonic bandgap from which a
further design optimisation may be
performed. As the data and files are kept
‘on the Grid’, later re-use of the results by
the engineer from other locations is also
possible.

5. Conclusions and Future Work
In this paper we have described a

framework which provides engineers with
access to databases on the Grid from within
a familiar working environment. We have
implemented a suite of services using an
architecture which combines a commercial
problem solving environment (Matlab) with
a core framework of open standards and
service oriented technologies, namely Grid
computing, Web services, XML and
databases. The functions we have
implemented to extend the Matlab
environment allow engineers to share and
re-use data conveniently from existing
scripts. The automatic generation of
standard metadata and support for user-
defined metadata allows queries to be
formed that represent the engineer’s view
of the data.

With a specific example we have shown
how design search in electromagnetics can

be supported by the Geodise database
toolkit. The transparent integration of
database tools into the engineering software
environment constitutes a starting point for
database applications in engineering design
optimisation, and is only one of many
potential applications in the engineering
domain (CFD, CEM, Civil Engineering,
etc.). The toolkit has also been recently
used by the GENIE [22] climate modelling
project, where data was archived from a
Java program then queried, retrieved and
visualized in Matlab.

We shall continue our work on
generating and evolving XML Schemas.
There are some cases when an appropriate
schema change cannot be derived by the
code and user interaction is required. We
intend to incorporate a GUI that has been
written for this purpose into our toolkit. The
next stage will be to use the XML Schemas
to improve query performance and generate
query GUIs for custom metadata. We will
also investigate how we can reference
concepts from our EDSO ontologies to
semantically enrich the metadata.

Geodise will provide a graphical user
interface to help engineers constructing
their workflows, which will need to interact
with databases to provide users with up-to-
date information. We plan to extend our
existing database toolkit to support the
workflow construction interface. We will
also evolve our Web service based
components to OGSA-DAI compliant Grid
services, which are a combination of Web
services and Grid technology described in
the Open Grid Services Architecture
(OGSA) [1], the next generation of the
Globus Toolkit.

6. Acknowledgements
This work is supported by the Geodise

e-Science pilot project (UK EPSRC
GR/R67705/01) and the GEM [21] DTI-
funded project. The authors are grateful for
many helpful discussions with researchers
on the Geodise, GEM and GENIE [22]
projects. We acknowledge ongoing support
from Microsoft, Intel and Oracle.

7. References
[1] I. Foster, C. Kesselman, J. Nick, and S.

Tuecke. The Physiology of the Grid: An
Open Grid Services Architecture for
Distributed Systems Integration, Open Grid
Service Infrastructure WG, Global Grid
Forum, June 22, 2002.

[2] Geodise Project - Grid Enabled
Optimisation and Design Search for
Engineering, http://www.geodise.org/

[3] M.P. Atkinson, V. Dialani, L. Guy, I.
Narang, N.W. Paton, D. Pearson, T. Storey
and P. Watson. Grid Database Access and
Integration: Requirements and
Functionalities. UK e-Science Programme
Technical Report
http://www.cs.man.ac.uk/grid-
db/papers/DAIS:RF.pdf

[4] Matlab 6.5. http://www.mathworks.com
[5] Web Services Activity,

http://www.w3.org/2002/ws/
[6] G. Pound, H. Eres, J. Wason, Z. Jiao, A. J.

Keane, and S. J. Cox, A Grid-enabled
Problem Solving Environment (PSE) For
Design Optimisation Within Matlab. To
appear in - IPDPS-2003, April 22-26,
2003, Nice, France

[7] M. Molinari. XML Toolbox for Matlab,
GEM/Geodise, 2002
http://www.soton.ac.uk/~gridem/Pages/xml
toolbox.htm

[8] J. Hugunin. Python and Java: The Best of
Both Worlds. 6th International Python
Conference. San Jose, California, USA,
1997.

[9] L. Chen, N. R. Shadbolt, F. Tao, S. J. Cox,
A. J. Keane, C. Goble, A. Roberts, P.
Smart. Engineering Knowledge for
Engineering Grid Applications, Euroweb
2002, p12-24, 2002.

[10] Commodity Grid Kits.
http://www.globus.org/cog/

[11] R. Butler, D. Engert, I. Foster, C.
Kesselman, S. Tuecke, J. Volmer, and V.
Welch. National-Scale Authentication
Infrastructure, IEEE Computer, 33(12):60-
66, 2000.

[12] GridFTP,
http://www.globus.org/datagrid/gridftp.htm
l

[13] M. Mealling, P. J. Leach and R. Salz. A
UUID URN Namespace, IETF, October
2002. http://www.ietf.org/internet-
drafts/draft-mealling-uuid-urn-00.txt

[14] M. Gudgin, M. Hadley, N. Mendelsohn, J.
Moreau, and H.F. Nielsen. SOAP Version
1.2, W3C Candidate Recommendation,
2002

[15] IETF PKIX Working Group.
http://www.imc.org/ietf-pkix/

[16] A. O. Freier, P. Karlton, and P. C. Kocher.
The SSL protocol version 3.0, November
1996.

[17] Oracle9i Database,
http://otn.oracle.com/products/oracle9i/

[18] J. Clark & S De Rose, XML Path Language
(XPath) Version 1.0, W3C
Recommendation, 1999
http://www.w3.org/TR/xpath/

[19] The Castor Project, http://castor.exolab.org
[20] Matlab Database Toolbox,

http://www.mathworks.com/products/datab
ase/

[21] GEM project - Grid Enabled
electroMagnetic optimisation,
http://www.soton.ac.uk/~gridem

[22] GENIE project - Grid ENabled Integrated
Earth system model,
http://www.genie.ac.uk

	Introduction
	Architecture
	Service Components
	Database Services
	XML Metadata and XML Schemas
	Application Interfaces

	Application Example
	Conclusions and Future Work
	Acknowledgements
	References

