The University of Southampton
University of Southampton Institutional Repository

Aerodynamics of a double-element wing in ground effect

Aerodynamics of a double-element wing in ground effect
Aerodynamics of a double-element wing in ground effect
A study was performed of a cambered, double-element, high-lift wing operating in ground effect. The effect of ground proximity and flap setting has been quantified in terms of aerodynamic performance and off-surface flowfield characteristics. Measurements include surface pressure taps, force, surface streaklines, and laser doppler anemometry (LDA). It was found from the Haw visualization that the flow is three-dimensional (3D) towards the wing tip with the main element generating most of the downforce, but retains quasi-2D features near the centre of the wing. However, at large heights the downforce increases asymptotically with a reduction in height, Then there is either a plateau, in the case of a low flap angle, or a reduction in down-force, in the case of a large flap angle. The downforce then increases again until it reaches a maximum, and then reduces at a height near the ground. The maximum downforce is dictated by gains in downforce from lower surface suction increases and losses in downforce due to upper surface pressure losses and lower surface suction losses, with a reduction in height. For the high flap angle, there is a sharp reduction just beyond the maximum, due to the boundary layer separating, and a resultant loss of circulation on. the main element.
0001-1452
1007-1016
Zhang, Xin
3056a795-80f7-4bbd-9c75-ecbc93085421
Zerihan, Jonathan
c71e1585-69bf-4085-8d62-8826452cfc7d
Zhang, Xin
3056a795-80f7-4bbd-9c75-ecbc93085421
Zerihan, Jonathan
c71e1585-69bf-4085-8d62-8826452cfc7d

Zhang, Xin and Zerihan, Jonathan (2003) Aerodynamics of a double-element wing in ground effect. AIAA Journal, 41 (6), 1007-1016.

Record type: Article

Abstract

A study was performed of a cambered, double-element, high-lift wing operating in ground effect. The effect of ground proximity and flap setting has been quantified in terms of aerodynamic performance and off-surface flowfield characteristics. Measurements include surface pressure taps, force, surface streaklines, and laser doppler anemometry (LDA). It was found from the Haw visualization that the flow is three-dimensional (3D) towards the wing tip with the main element generating most of the downforce, but retains quasi-2D features near the centre of the wing. However, at large heights the downforce increases asymptotically with a reduction in height, Then there is either a plateau, in the case of a low flap angle, or a reduction in down-force, in the case of a large flap angle. The downforce then increases again until it reaches a maximum, and then reduces at a height near the ground. The maximum downforce is dictated by gains in downforce from lower surface suction increases and losses in downforce due to upper surface pressure losses and lower surface suction losses, with a reduction in height. For the high flap angle, there is a sharp reduction just beyond the maximum, due to the boundary layer separating, and a resultant loss of circulation on. the main element.

Text
AIAA-2057-653.pdf - Version of Record
Download (547kB)

More information

Published date: June 2003

Identifiers

Local EPrints ID: 22605
URI: http://eprints.soton.ac.uk/id/eprint/22605
ISSN: 0001-1452
PURE UUID: ed2c76a2-62de-4bf7-a555-bf242c9599f4

Catalogue record

Date deposited: 28 Mar 2006
Last modified: 15 Mar 2024 06:39

Export record

Contributors

Author: Xin Zhang
Author: Jonathan Zerihan

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×