AUVs: Designing and operating next generation vehicles

Gwyn Griffiths Southampton Oceanography Centre, UK
Ian Edwards Subsea7, UK
Conclusions

Challenges in designing and operating next generation AUVs fall:

- **80% to the Business Model**
 - Paying customers with well-stated requirements
 - Affordable solutions
 - Partnerships to develop the capability

- **20% to Technological Advance**
 - Cost-efficient energy; Lower through-life costs
 - Appropriate sensors; Docking; Data to networks
EuroGOOS: Customer-led Strategy

“Foresee rapid growth in the demand for operational services for paying customers”

Main growth areas:
- Offshore Energy
- Shipping
- Coastal Protection
- Managing Pollution
- Health
- Climate Prediction

What can we learn from other sectors?

<table>
<thead>
<tr>
<th>Sector Size in Europe</th>
<th>AUV adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore Energy</td>
<td>€41bn</td>
</tr>
<tr>
<td>Marine Tourism</td>
<td>€41bn</td>
</tr>
<tr>
<td></td>
<td>Emerging, operational</td>
</tr>
<tr>
<td></td>
<td>None known</td>
</tr>
<tr>
<td>Of which ~97% is holidays</td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
</tr>
<tr>
<td>Fisheries</td>
<td>€9bn</td>
</tr>
<tr>
<td>Navy (data for UK & France only)</td>
<td>€6bn</td>
</tr>
<tr>
<td></td>
<td>Research</td>
</tr>
<tr>
<td>R&D and Education</td>
<td>€0.9bn</td>
</tr>
<tr>
<td></td>
<td>R&D, operational analysis</td>
</tr>
</tbody>
</table>

Broad context business models

Marine Environment
Oceans 2020

Impacts on Society
Concerns of Society

Two key areas:
Climate Change
Ecosystems

Offshore Industry

Competitiveness
Profitability

Drivers

Look to Suppliers
for solutions

Increased need for
measurement

Need for cost-effective
measurement, fit
for purpose

Degree of commonality

3rd EuroGOOS Conference, Athens, Dec. 2002
Offshore Energy: Benefits of AUVs

Conclusions from the Shell ‘Gamechanger’ project

Customer-assessed benefits …

“We estimate that operational cost savings of over $30M and increased leverage of over $75M are in prospect within 5 years. Key elements of this are:

Investment in the Hybrid ROV/AUV will yield operational cost savings of about $22M.

Investment in the Survey Class AUV will yield operational cost savings of about $9M, and significantly increased leverage from the data of over $50M.

Marginal investments in oceanographic and geochemical applications will yield significantly increased leverage from the data in excess of $25M.

Further spin-off benefits can also be expected, which are not elaborated here.”

Chris Graham, Shell - June 1999
Supporting Offshore Energy

- Example: A European-based Global Support Company
 - 4,000 staff
 - Capital intensive: 112 ROVs & 23 ships
 - 3rd Quarter 2002 revenues of €224m (EBITDA €29m)
 - Strongly focused on subsea field development and robotic intervention

- Significant annual investment in technology & R&D
- Key to realising the savings for the customer
AUV use: Diamond extraction

Drivers:
- Most gem quality diamonds not present in mines on land
- But, on beaches and offshore Southern Africa
- Estimated up to 10 billion carats of diamonds released this way.
- Over 90% found in the coastal region are gem quality.

Need for Operational Information: 60 km² per year, in 60 days

Sonar image off Namibia

Courtesy Paul Nicholson, De Beers Marine PTY

Charlie Heyes, Diamond Fields International

3rd EuroGOOS Conference, Athens, Dec. 2002
AUV use: Geophysical survey

“AUVs - there’s no going back”

‘Using the AUV technology, the survey was completed in one-fifth the usual time (three days vs. 15 days before), and at roughly one-third to one-half the usual cost associated with traditional techniques, says Andy Hill, BP's geohazards team leader. "The beauty of the AUV is that it allows us to be able to do the types of surveys that we've never been able to do in deeper water before, except at exorbitantly high cost," says Hill’ (Business Week On-line 16 August 2001)

Bathymetry of the Sigsbee escarpment in the Gulf of Mexico (top) with a, high-resolution view of mega-furrows (left)

Courtesy C&C Technologies and BP Americas Inc.
Next Steps for AUVs in Offshore Energy

- Move from wide area survey to pipeline survey
- Move from 3 degree of freedom to 6 degree of freedom AUVs
- Move to riser surveys
- Field abandonment environmental studies
- Move from survey to intervention
Broad context business models

Marine Environment
Oceans 2020

Impacts on Society
Concerns of Society

Two key areas:
Climate Change
Ecosystems

Offshore Industry

Competitiveness
Profitability

Drivers

Look to Suppliers
for solutions

Increased need for
measurement

Need for cost-effective
measurement, fit
for purpose

Degree of commonality

3rd EuroGOOS Conference, Athens, Dec. 2002
The Scientific Context

- ‘Undersampling is the main limitation on our understanding and modeling of problems such as global climate change… variability in biomass, fish abundance and regime shifts …’
 Dickey, Oceans 2020, p209

- ‘There is no single dominant customer for marine environmental data … with dozens of customers requiring dozens of different variables in dozens of different combinations’
Understanding through Process Studies

Where scientific AUVs have made an impact

- Ecosystem studies of Antarctic krill in relation to sea ice

- Physical measurements in coastal seas

Voulgaris et al., 2002
Large AUVs for Research are Affordable

With thanks to Geraint West, UKORS

3rd EuroGOOS Conference, Athens, Dec. 2002
AUV use: Offshore Industry vs. Science

Comparing one vehicle in each case

European-built AUV working for a US company

Autosub

Year

Cumulative Track km

Closing the Gap

- Work with potential customers to define operational requirements in the context of complete information delivery …

- Analyse, then demonstrate cost and scientific effectiveness of pre-operational AUV environmental applications, e.g.
 - Repeat (enhanced) hydrographic sections;
 - Ecosystem surveys (fisheries, habitats, …);
 - Responsive mode: post-incident assessment
Oceanic Micro-AUVs

Buoyancy driven

Propeller driven

Transect of the California Current by a glider

CONSTRUCTION:
- Anodized aluminium alloy, plastic
- SIZE length 1.68 m, diameter 0.2 m
- WEIGHT 50 kg in air
- OPERATIONAL DEPTH: 2000 m
- SURVEY SPEED: 1.5 to 2.0 m/s
- TURNING RADIUS: 3 m
- BOTTOM TRACKING: Minimum height 1 m
- BATTERY TECHNOLOGY: NiMH, Lilon or Lithium primary
- OPERATIONAL CYCLE: 7 hr to several days depending on speed, equipment use and power modules
- RANGE (typical): 40 km @ 1.0 to 2.0 m/s

Courtesy C. Eriksen, U. Washington

Courtesy Hafmynd

100km

3rd EuroGOOS Conference, Athens, Dec. 2002
Coastal Micro-AUVs

Length 215 cm, dia. 21 cm, mass 52 kg, payload 5 kg
Wing span 120 cm swept 45°
Alkaline power pack 260 C cells, energy 8 MJ at 21°C
Buoyancy change 0.52 litres, efficiency 50%
RF LAN, 5.7 kb/s, 3 J/Mb, 30 km range, GPS navigation
Max P 200 dbar, Max U 0.40 m s⁻¹
U=0.25 m s⁻¹, 20° glide, range 2,300 km (est)
Construction 50,000, Refuelling 800

Courtesy Webb Research Corp.

3rd EuroGOOS Conference, Athens, Dec. 2002
Technology challenges

- Energy storage
 - Target 1000 Wh kg⁻¹
- Sensors
 - Stable, self-calibrating, biological & chemical as well as physical
- Intelligent behaviours
- Communications
 - Speed, energy & cost per bit
 - Subsurface communications
 - Integration into data networks

• Docking standards
• Navigation accuracy
Observations

It is not technology that is holding back the widespread adoption of Autonomous Underwater Vehicles as components of sustained ocean observing systems.

The technology is proven in many areas of ocean research, in commercial ocean survey and, increasingly, in defence applications.

For those charged with defining Operational Requirements - AUVs are ready, willing and able to contribute.