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ABSTRACT

Most frequency estimation techniques exhibit larger estima-
tion errors in the ultra low frequency (ULF) region (0-10
Hz asymptotically) as compared to higher frequency ranges.
This paper examines this situation and proposes to model
the estimation errors through function approximation thereby
making a priori error estimates available for new signals fre-
quencies. The technique is shown to perform well on sim-
ulation data under varying noise conditions. Results show
that it is possible to estimate frequencies in the ULF region
with accuracies similar to those encountered in higher fre-
quency ranges.

1. INTRODUCTION

Frequencies between 0.01Hz to 10Hz fall in the ultra low
frequency (ULF) range. Such frequencies occur regularly
in earthquakes measurements, onshore wave ripples, elec-
tromagnetic waves [1] and structural building vibrations [2].
A frequency domain analysis of such phenomena often pro-
vides useful information which can be used for a variety
of purposes such as controlling excessive vibrations or fre-
quency pattern recognition. Inaccuracies in frequency mea-
surements can generally be attributed to: (i) numerical er-
rors in the computer, called finite wordlength effect, (ii) pre-
cision constraints on the frequency content in the Discrete
Fourier Transform (DFT) and (iii) noisy measurements of
the signals. Most analog measurement instruments do not
have these shortcomings as they are built upon transistors
and banks of parallel filters, performing calculations to dis-
play the spectrum in the frequency domain. Most modern
digital instruments are packaged with software programs to
facilitate the building of spectrum analyzers for frequency
analysis. Being solely mathematical in operation, they are
more stable, not prone to temperature and humidity drift,
demonstrate good performance-to-costratio and do not suf-
fer from manufacturing variations or aging. Therefore DSP-
based techniques have quickly replaced electronics-based
spectrum analyzers in recent times.

A general input signal can be characterized by sampling
its direct current (d.c.) content, amplitude, phase shift and

the noise sequence. For simplicity, we shall focus on single
(dominant) frequency sinusoidal signals, of the form:

yr = Asin(wot + @) +¢;, t=0,1,...,7—1 (1)

where, A denotes the amplitude of the sinusoid, wy its fre-
quency, ¢ its phase. The signal is sampled at T" equidistant
time instances and ¢; is a noise term, assumed drawn from
a stationary ergodic noise process.

In digital instruments, the input signal is typically trans-
formed into the frequency domain by means of a numerical
frequency estimation method, usually fast Fourier transform
(FFT). In practice, the spectrum analyst would usually read
the frequency off the monitor to get an estimate @ of the
true frequency content (wp) of the input signal. The differ-
ence between the estimated and the true frequencies , i.e.
9(&,wo) = & — wy, is the estimation error incurred in the
process. As discussed in the next section, the problem of
estimation errors becomes especially severe in the ULF re-
gion, our domain of interest. This paper addresses this issue
through the use of ideas from the function approximation
literature for finite data. In particular, we utilize simula-
tion data to generate an error model using the technique of
support vector regression (introduced later). A subsequent
application of this model generates a priori error estimates
for new (unknown) signal frequencies.

Perhaps the most important decision to be taken is the
choice of the frequency estimation technique itself. Some
of the most commonly used schemes are the nonparamet-
ric FFT, parametric minimum entropy, ARMA model based
schemes [3] and subspace methods such as multiple signal
classification (MUSIC) method [4]. Other techniques pro-
posed by Rife et. al. [5], Pisarenko [6] and Mackisack et. al.
[7] are either computationally intensive or low in estimation
accuracy. Figure 1 shows a comparison plot of estimation
errors for some of the common frequency estimation tech-
niques mentioned above, in the ULF region for a simulated
noise free time series data. While different frequency esti-
mation techniques produce quite different error profiles, all
of them can incur significant estimation errors (relative to
the true frequency) in this region.

It was shown that MUSIC [4], Rife [5] and Pisarenko [6]
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Figure 1: Different frequency estimation methods in the
ULF region.

methods have a standard error of 7'~'/2, while Mackisack’s
method [7] is accurate to the order of T~5/4. The Quinn
and Fernandes method (Q&F) [3] gives an improved level of
accuracy of the order 72 and is relatively computationally
efficient. The superior performance of this scheme is also
brought out in Figure 1. Accordingly, this technique shall
form the core estimation technique in this paper.

Section 2 provides the relevant theoretical background
for frequency estimation beginning with a brief description
of the Q&F method. This is followed by an overview of the
support vector technique for regression in section 3. Section
4 explores how these two schemes can be brought together
to reduce estimation errors in the ULF region, while sec-
tion 5 presents experimental investigations using the scheme
proposed in this work. Finally, section 6 concludes the pa-
per by summarizing the research presented in this work and
discussing some directions of future research.

2. RELEVANT BACKGROUND

Autoregressive moving average models (ARMA) have been
traditionally used to model time series observational data
arising in many areas [8]. They also provide a convenient
tool for estimating frequencies of sinusoidal time series data.
LetY; = Zﬁ:l y; and Uy = 2231 €;, then the ARMA
model corresponding to the sinusoid in Equation 1 is con-
veniently written as:

Y; — (2coswp)Yi1 4 Yica = Us — (2coswo)Us—1 + Uy 2

@)
Following Quinn and Fernandes [3], we can iteratively de-
termine wy from this model in an efficient fashion. In gen-
eral, their scheme (henceforth Q&F) involves iteratively es-
timating the parameters « and 3 of a second order ARMA
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Figure 2: ULF response for Q&F frequency estimation
method.

model of the following form:
z(t)=Bz(t—1)+z(t—2) = &(t)—ae(t—1)+e(t-2), 3)

subject to the condition o = f. For our case (see Equa-
tion 2), determining « (5) this way is tantamount to finding
an estimate of the true frequency. The iteration begins by
setting oy = 2cos ;\1, where 5\1 is an initial estimator of
wo. The corresponding § is estimated as a regression co-
efficient of £(t) + &(t — 2) on £(t — 1) as follows, where
) =y(t) + a8t —1) —&(t-2),j 2 1:

T 2§t~ 1)
Yo £(t-1)

Pi=a; + “)

If the unsigned difference | 5; — ;| is suitably small, the
iteration is terminated, otherwise, we set a1 = B35, and
estimate ;41 according to Equation 4. If the scheme ter-
minates at the nth iteration, the estimated frequency, @r, is
given by cos~!(8,/2). Figure 2 shows the result of apply-
ing the Q&F technique to simulated noise free time series
datasets generated from various sinusoids in the ultra low
frequency region. Once again, we note that the estimation
errors at lower frequencies are relatively larger than those
at higher frequencies. Finally, we have observed the Q&F
method to be more appropriate than the other techniques
mentioned earlier for low signal to noise ratio (SNR) with a
fixed sampling period 7.

2.1. Noiseless case

For the case of no noise (¢; = 0), the estimation problem
in the ARMA model in Equation 2 is reduced to a one—



dimensional minimization problem, viz.,
T—1
Mlmmlze (1/7) Z Y; —2aY;, + Y 0)?  (5)
=0

whence the frequency estimate is given by &p = cos~1(a*),
where o* denotes the optimal solution to the minimization
problem 5. In practice however, one rarely encounters noise
free datasets. It is therefore more desirable to build models
which can accommodate varying noise levels in the data.
It is for this reason that we shall be more interested in the
noisy case (discussed below) in this work and shall not pur-
sue the noiseless scenario any further.

2.2. Noisy case

In practice, the presence of noise in the data (or signal) is
almost inevitable thus making it necessary to accommodate
its effects in the design of estimation techniques. As men-
tioned earlier, the problem of estimating wq in Equation 2
can then be solved according to the recipe in [3], which is
known to converge to the true solution in the limiting case
(T — 00). The following result [3] relates the limiting dis-
tribution of estimation errors to the spectral density of the
noise process:

Theorem. 1 (Quinn and Fernandes(1991)) If & is the T
sample estimate of the true frequency wo, then T3/?(Gr —
wo) has a distribution converging to the normal distribution
with mean zero and variance 487 fo(wo) /A%, where f.(-)
denotes the spectral density of the noise process.

It is known that the Q&F estimation technique in [3] amounts
to finding a local maximizer of a smoothed periodogram of
the form kr(w) = [ I, (M) pr(w — X)dA, where I, () =

2/ Zt o y(t) exp —zt/\lg, is the periodogram, and p1(z)
denotes a smoothing function with the property that it is
roughly of the order of log T for x of order T~ and tends
to zero otherwise. A consequence of this fact is that the
Q&F technique (despite its excellent convergence proper-
ties) is not adequate for low frequency estimation, more so
in the presence of noise. This is because the assumption
that the smoothed periodogram is maximized in an O(T!)
neighborhood of wy, need no longer hold. !

The main motivation of the current work is to rectify this
situation and make low frequency estimation more accurate.
In particular, we wish to identify frequency estimation er-
rors through the use of a popular function approximation
technique (viz., SVM), while still retaining Quinn and Fer-
nandes’s recipe as the core estimation technique. In other

I'We mention that working with the unsmoothed periodogram is in-
convenient in any case because of the presence of multiple local maxima
within the ©(T~1) neighborhood of wo, and the persistence of sidelobes
asymptotically.

words, we train SVMs to indirectly estimate the noise spec-
tral density f.(-) at wo and hence suggest corrections to the
Q&F estimate accordingly.

3. SUPPORT VECTOR MACHINES FOR
REGRESSION

The Support Vector Machine (SVM) [9], derived from Vap-
nik’s statistical learning theory has become a popular tech-
nique for learning models from data. These algorithms cre-
ate a sparse decision function expansion by choosing only
a select number of training points, the so-called ‘support
vectors’. Through the use of the so called ‘kernel trick’,
linear function approximation algorithms involving explicit
inner products between data points in an input space can be
conveniently and efficiently transformed into their nonlinear
generalizations. SVMs approximately implement Vapnik’s
structural risk minimization principle through a balanced
tradeoff between empirical error (risk) and model complex-
ity (measured through the VC dimension).

We consider the problem of SVM regression modeling
given observational data of the form (z;,y;)f_, where z; €
RP, denotes a p dimensional input vector and y; € R, is a
real valued target. We seek to model the relationship be-
tween the inputs and the output. Assume that the functional
form we seek is the familiar linear function, f(z,w,b) =
(w,z) + b, where w € RP, denotes a p dimensional vec-
tor of unknown coefficients and b € R is an unknown but
constant bias term. Then we aspire to find w, b so as to
minimize the empirical errors while keeping a check on the
Ly norm of the weight vector w € RP for model capac-
ity control. Formally, we pose the following basic convex
programming problem :

Minimize (1/2)(w, w) (6)
subject to the constraints

{ y,-—(w,m,)—b €;

= 7
(wyz;) +b—y; < ¢ )

Since a feasible solution may not exist satisfying the
above optimization problem (or we may want to tolerate
some noise), we need to introduce slack variables &;,7 =
1,...,1 to relax the constraints in the original optimization
problem. An equivalent optimization problem with quadratic
penalization on ¢;s can be formulated as follows:

L

Minimize F(¢) = (1/2)(w,w) + (C/2) Y (&)* ®)
=1
subject to the constraints:
yi((w,zs) +0) 2 1-§
{ & > 0 ®



The desired weight vector has the form: w = Zf(ai -

af)z;, where a4, o are non-negative Lagrange multipliers
required to solve the above optimization problem. The pa-
rameter C' measure a frade—off between empirical error and
model complexity and is usually set a priori (through cross
validation, for example). A nonlinear generalization is ef-
fected by simply noting that the resulting solution f(z) can
be explicitly written in terms of inner products between data
points; these inner products are then replaced by a Mercer
kernel k(z, ;) and the resulting solution has the form

L

f@) = (o = af)k(z,m:) + b (10)

=1

4. ERROR CORRECTION OF FREQUENCY
ESTIMATES

The frequency estimation error function would seem to de-
pend on the amplitude (A), the true frequency (wg) and sam-
pling period (T') of the signal. Of these, the sampling period
T is usually predetermined and known to the analyst. Fur-
ther, since the true frequency is unknown, we can only use
the Q&F estimate as its replacement. Hence the estimation
error can be written as :

9=9(4,0r,T)+n (1D

where 7) is a stationary noise process used to account for
anomalies in the data. To establish a suitable error model
of the form in Equation 11, we tabulate estimation errors
at various signal frequencies (ULF), sampling periods and
noise intensities and then apply the SVM regression tech-
nique discussed in section 3 to generate an appropriate map-
ping. Once ready, such a model can be used to generate er-
ror estimates for a new signal (with unknown ultra low fre-
quency) which in turn can be used to improve the estimate
obtained by the Q&F method.

5. EXPERIMENTAL INVESTIGATIONS

To investigate the veracity of the proposed system, we tested
it on a range of ultra low frequencies (varying between 0—
10 Hz) and over various noise intensity levels. In our ex-
periments, we used the e-SVR regression machine from the
LIBSVM library [10] of support vector machine techniques.
The tradeoff parameter in the SVM regression scheme which
reflects the balance between model complexity and empiri-
cal errors was set by 10-fold cross validation for each noise
level. The data itself was generated from sinusoids with am-
plitude (A), frequency (wo) and sampling period (T') set ac-
cording to the latin hypercube sampling scheme. For each
such set of parameters, a time series (of 1) samples was
generated and corrupted with a Gaussian noise, A (0,0?).

Error +—Noise Level (o)—>
Measure 0.25 0.5 1.5
g 0.01 0.02 0.02
Jo 0.020 0.05 0.04
MSE 259 x 1072 6.12x 1072 3.57x 1072
R? 0.03 0.86 0.86

Table 1: Various test set statistics measuring the perfor-
mance of the proposed scheme under varying noise condi-
tions; refer text for details.

This data was used to generate a frequency estimate W us-
ing the Q&F technique discussed in section 2. For each
noise level (o), 3000 instances were created to train the
SVM regression model and another 2000 instances kept aside
for testing, where each instance had the following form:

(z ={A,0r,T},g(z)).

Table 5 presents various test set statistics to measure
the performance of the estimation error modeling scheme
proposed above, under various noise conditions. The first
block presents a comparison of the mean absolute values of
the SVM outputs ( i.e., predicted estimation errors) over the
testing data given by § = Zfi‘i" |g(x;)|, w.r.t the bench-
mark estimation error of go = 2?220 lg(z;)], where z;’s
belong to the test set. The second block presents the conven-
tional mean square error (MSE) performance measure along
with the associated square correlation coefficient (R?).

The results in the first block show that mean estimation
error predictions of the model on the test set are fairly close
to the true values. Similarly, the MSE values are low over
all the noise levels considered in our experiments, indicat-
ing good overall performance. However, the squared cor-
relation coefficient (R?) values are significantly low for the
low noise case. This indicates that it might not be a good
idea to use our error prediction model for the low noise case
(or noiseless case). Indeed, as pointed out in section 2.1,
in such a case, one would be better off solving the one di-
mensional least squares problem in Equation 5 instead of
using the Q& F' technique for estimating the true frequency.
Finally, we note that the high R? values (close to 1.0) for
noise levels of o = 0.5, 1.5 indicate the good quality of our
error models under noisy scenarios. Thus we have demon-
strated that it is possible to build effective error correction
models which can complement frequency estimation tech-
niques in the ULF region for noisy time series data.



6. CONCLUDING REMARKS

Most frequency estimation techniques incur relatively large
errors in the ultra low frequency (ULF) range as compared
to higher frequency ranges, especially in the presence of
noise. This can generally be attributed to the failure of some
underlying assumption(s) for the particular technique, thus
reducing the efficiency of the corresponding estimator. This
article proposed an error modeling approach for accurate
ULF prediction to complement a core frequency estimation
algorithm of choice (here the Q&F technique). The power-
ful function approximation technique of support vector re-
gression was utilized to create a suitable predictive model
for frequency error estimation. Given a new signal of un-
known frequency, this model can supply an a priori error
estimate which can be used to improve the frequency es-
timate obtained using the Q&F technique. Simulation re-
sults under various noise conditions show that the proposed
scheme has merit and deserves further investigation.

While the present work was aimed at building frequency
error estimation models for a signal, a case of more general
interest is that of completely characterizing an unknown sig-
nal belonging to a given class of signals (e.g sinusoidal).
Since any signal can be represented as a sum of sinusoids,
it seems worthwhile to investigate such a characterization
for this important class of signals. In particular, besides es-
timating the frequency, one needs to estimate the phase ¢
of the signal. As in the present case, one may proceed to
use any reliable phase estimation technique and then build
an estimation error model for it. From a modeling point
of view, it would seem sensible to build a single model for
predicting errors in both frequency and phase estimation.
This might require examining the possible coupling effects
between these two kinds of errors. While this issue has
been ignored in the present article, it could play a dominant
role in building integrated error models for a more complete
characterization of sinusoidal signals.
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