to a local hub-centered frame, rather than formation flying of multiple spacecraft relative
to the libration point.

Future work may involve the study of higher order contributions, such as terms which
are quadratic in the hub motion about Le, as well as deviations from the circular restricted
problem,
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RELATIVE TRAJECTORY ANALYSIS OF
DISSIMILAR FORMATION FLYING SPACECRAFT

Shankar K. Balaji and Adrian R. Tatnall’

This paper deals with the differential acceleration effects on spacecraft
formation flying. A mathematical mode! is developed to analyze relative
trajectory of spacecrafi in the presence of significant perturbative forces.
The equations of relative coordinates are derived as a precise solution to
the formation geometry problem and are valid for both close and long
distance formation patterns and for rendezvous anatysis, The coordinates
of motion are propagated forward in time for identical and dissimilar
spacecraft for different initial conditions, The results of this paper provide
a physical insight into the actual behaviour of satellites in a cluster with
differential drag-area.

Nomenclature

¢ — Semi-major axis
@~ acceleration along the position vector r
@ — acceleration in the velocity vector direction

a.— acceleration in the normal direction

a, — mean distance of the Earth from the sun

¢ — speed of light in vacuum

Cq4 - coefficient of drag

e — eccentricity

Z,— unit vector along the satellite orbit radius vector direction

Z,— unit vector along the local horizontal direction

Z, — unit vector along the orbit normal direction ™

F - solar energy flux at the spacecraft

h — angular momentum

i - inclination
J; — geo potential coefficient representing Earth’s Oblateness, J, = 1082.64 %107
m — mass of spacecraft

M - Mean anomaly

n ~ Mean motion

p — semilatus rectum
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R~ position vector of the satellite

r,— Radius of earth, 7, = 6371x10km,

¥, - distance of the satellite from the sun

S - projected area of the spacecraft in the direction of motion
r—time

[Twig],,, - transformation matrix from frame OXYZ  to OPQR

I:TQiu ] i transformation matrix from frame (oxyz)s to OXYZ

it — argument of latitude, u =6 + @

42 - right ascension

@ - argument of perigee

&— true anomaly

4t — gravitational earth constant, 4 = 3.986x10'm’ / s*
£ - obliquity of the ecliptic

Ay — ecliptic longitude of the sun

&— constant of surface reflection

Subscripts

d - refers to the deputy satellite
m — refers to the master satellite
0 - refers to the initial conditions

INTRODUCTION

Spacecraft flying in formation need not be necessarily identical. There is always a
possibility of some drag area difference due to technical requirements like antenna
pointing. Even a small difference in drag area will contribute to a significant secular
growth of distance between the satellites in a constellation. Some authors have even
considered this to be an advantage and have proposed special drag surfaces on
spacecraft to control or reconfigure a Formation pattern’.

There are now plans to use small inspector or Escort satellites to perform visual and
thermal imaging of a Chief-target satellite. This enables diagnosis for repair in the case
of a breakdown and anticipates any malfunctions for similar missions. The relative
trajectory of the escort satellite around the target would entirely depend on the
difference in drag area and the altitude of their orbits. :

In this paper, we will analyze the relative trajectory of formation flying spacecraft with
small differential drag-Area using a mathematical model developed in the following
sections. The relative coordinates of the spacecraft are derived by a series of
transformations and translations from the Earth-centred inertial frame to the spacecraft-
centred rotating frame, Dynamical force models like J;, atmospheric drag and solar
radiation pressure are then introduced into the equations in order to obtain a realistic
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simulation model. The coordinates of motion are then propagated forward in time with
different initial conditions. The Equations for the relative coordinates are derived as a
precise solution to the Formation geometry problem and, unlike the traditional
Clohessy-Wiltshire” equations for relative trajectory analysis, impose no restrictions on
eccentricity of the orbits of the spacecraft investigated. The equations are valid both for
close and long distance formation-flying patterns and for rendezvous analysis. The
results of this paper provide a physical insight into the actual behavicur of satellites in a
cluster with a differential drag-Area. The assessment of the relative trajectory is
imperative for selecting the actuators for station keeping, designing control laws and
deciding the configuration of the spacecraft. ‘

MATHEMATICAL MODELLING OF RELATIVE MOTION

The equations for the relative coordinates are derived as a precise solution to the
formation geometry problem with the definition of orbital frames and orbital elements
as shown in Figure 1. We will hereafter denote the reference satellite as the master
satellite (subscript m) and the satellite to be observed as the deputy (subscript d). It
should be noted that there could be many deputy spacecraft for a specific mission. But
in our case we will assume that the formation consists of only two spacecraft namely the
master and the deputy.

vernal equinox \

Figure | — Orbital Frames and elements

The origin of the spacecraft centered co-ordinate system is assumed to be at the master
satellite’s centre of mass. The origin of the coordinate system OXYZ is at the center of
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the earth with the XY plane coinciding with the Earth’s equatorial plane and X-axis
pointing in the direction of vernal eqinox ¥ The Z-axis points in the direction of the
North Pole and the Y-axis is normal to the XZ plane and completes the right-handed
frame of system. The origin of the system OPQR also lies at the center of the earth with
the P axis pointing in the direction of the master satellite’s Centre-of-Mass. The unit
vector of P is defined as

o (m
B

where t is the radius vector of the spacecraft. The Q-axis points in the direction of the
angular velocity of the orbital plane (normal to the orbit) and R-axis completes the
right-handed frame of system. The origin of the oxyz system lies at the master satellite’s
center of mass and its unit vectors are

P=

x=P y=0Q, z=R (2)

Frame XYZ axes can be transformed to frame POR axes by 3 successive rotations that
. are as follows:
1. Rotation about the Z axis by + £2
2. Rotation about the X axis by +i
1, Rotation about the Z axis by + # (4= @+ &)

The new coordinates can now be represented as

P X
Y =[7111'Q]m Y )
R A
Where
cosuy, sindy 0|1 0 0 cosQ,, sinf,y, 0
[Tuig]m =| —sinuy cosuy OO cosiy  sinipy 4| —sin Q coslyy O
0 ] 1130 —siniy, cosiy 0 0 1
4
The coordinates of the deputy spacecraft (from Eq.(3)) in the OPQR system are
7 Xd
Q“' = [TmQ :|n1 Yd (5)
R
d Z 4
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The Coordinates X ;, ¥;, Z, can also be represented by the Matrix as given below

Xa Rq
v, 1= [Tam |4] © ©6)
Z; 0
Where
cos £ 4 —sinQ.d 0ll1 o 0 CoSH —sinu 0
[T.Qiu]d = sinQd cost Ol 0 cosid —sinid . sinud cosU 0
0 0 1{{0 sini 4 o8 i P 0 0 1
M
Substituting Eq.(6) in Eq.(5),we get the Coordinates X,. Y, Z; inthe OPQR frame as
P Rd
% [T ], {T0u s g ®

Now shifting the origin of the OPQR frame to the master satellite’s Centre-of-mass
gives us the relative coordinates of the deputy spacecraft with respect to the master
spacecraft in the oxyz frame.

x Rd Ry
y =[Tui9],,,'[TQiu]d' 01~ 0 ©)
z 0 0

Combining the two transformations in to one then gives

x Rd Ry ,
yl=[A]| 0 -} O (10)
z 0 0

A A2 A

where (A]=[Tu ] {Taue )y ™ [A)=|An 42 42
Ay Mg A

The elements of matrix A are given in the appendix 1 of this paper.
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After evaluating the Left hand side terms of Eq.(10), we get the coordinates ‘of the
deputy spacecraft relative to the master spacectaft in xyz frame, at any time , as

X(0) = (e, (0)- 082, (), () -en, (1) — cu, (1) €2, (1) 5, (1) iy (£) - 50, (F)
—~ste, (£)-ci (1)-582 (t)-C.Q.d(t)-cud(r)+sum(t)-cim(t)-sQ.,,,(r)-st(I)-cid(f)-sud(t)

m m mn

Feu, (£)-58,, () 52, (1) et (1) + e, (£} 582, (1) 2y (1) -1, (1) - 508, F)

" W

s, (1) - €h, () - €82, (1) 582, (0) - cugy (1) + 500, (1) - €4, (1) €82, (1) - e, () -l (£) - s1,(8)

m

g1, (1)« 53, (1) - 58, (8)  s1e, ()} Ry (6) — R,
w(e) = (=512, (1) €, (1) CQ{t) - Cuty (1} + 510, (1) €82, (8) - 582, () €Ey (1) - 514, (1)
—cu,, (t}-ci, {r)- $&2

" Nl

=5, (1) 882, (6} $82, (1) - cu (£} -~ su,,, {8) -85, (1) €8, (1) iy (£) Su, (1)

M

deu, ()¢l (1) c8,

m m Hi

e, (£) - s, (0 81, (1) 51, (1)) R, (2

"

2(0) = (86, (1) 9, () € (1)« Crt (8 = 81, () 582, (£ 882, {8) - iy (1) - 5144 (1)
—si, (1) €82, (1) s€ (1) cue, (1) — 84, (2) - 82, (1) 8 (1) ciy () 51, (1) (11)

" m

s, (0) SE (0 -8, (D) Ry (8)

@, (1) (e, ©)) _ 4, (1) (1-€, (1))
1+e, (t)-cosd (1) and £ (1) L+e,(t)-cosd, )

m m

where R, (1) =

¢ and s in Eq.(11) represent cosine and sine functions respectively.

Since Eq.(11) has all the orbital properties of both the master and deputy satellites, it
can be used to analyze any type of formation pattern with any number of satellites
acting as the deputy.

At any time t, the value of any orbital element under the influence of perturbative forces
can be found out from the following equations.

e(t) =e(ty)+ ' d—e-dr

a(t) = alt,) + J%-dt =
I Io

odi
() =i(t, )+ |—-dt
i) = ity) ,.,Idr

Q1) = Q)+ j%-dr w(t) = ot,) + Id_‘” dt

“dM
N=M({t)+ |——-dt
— M) =M{,) 1;[dr

(12)

Eq.(12), when substituted in Eq.(11) with respective subscripts m and d, portray the
relative trajectory of any deputy satellite as seen from the master satellite.
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(£) €2, (1) cu, (1) +cn,, (8)- L, (1) 52, (1) 582, (t) iy (1) - s14, ()

(t)- 582, (1) cu (1) +cu,, (8- ¢i, () cQ,, (1) 8 (1) ey (8) sty (1)

£

Gauss equafions can be used to find the rate of change of orbital elements in Eqn.(12).
The Gauss perturbation equations are a group of equations that describe the change of
all orbital elements with time in the presence of perturbations. They are well suited to
study long-term evolution of orbital elements under perturbation influence’. The Gauss
perturbation equations are given as;

da 2esind 2ax
—= a, +—a,
dt nx nr

de xsind x [a*x®
- a,+— —ria
dt na na’e

di _reosu
dt na’x
daQ rsiny
— T ————
dt  na’xsini

40 _xcos0 P Sing(H 1 ]ar_rcotzqsmuaz
dt nae eh l+ecosd 2

nax

5 3 2

ﬂ=M—L[—r—-x—-cosf?]a,,——ir——[lnLL,]sinﬁ'a, (13)
dt na e nae ax”

where x=+l-¢*,u=w+6, p=all-¢*),h= Jup

The overall rate of change of orbital elements due to perturbing accelerations like
Atmospheric drag, Solar radiation pressure and J; can be found by introducing their
acceleration components in the gauss equations.

MODELLING OF EXTERNAL FORCES

The following perturbing accelerations are modeled in the simulation,
Drag: The magnitude of acceleration induced by atmospheric drag depends on the
altitude of the satellite orbit and to a great extent depends on the satellite’s surface area
and mass. The drag deceleration can be written as

W = C,Spv?
g 2m

Unlike other perturbative forces, drag force has acceleration component only along the
negative velocity vector direction, :

(14)

Solar radiation pressure: The perturbing acceleration of an earth sateiiite due to solar
radiation pressure effects can be computed with the following equation.

2
A 7]
gy = 4’};3’“’(?’} (15)

I

Where SRP=F/c¢
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T 9
The components of Solar-radiation pressure can be expressed as °.

j 2 . g £]cos
& | cost Loos? £452 (/lowu—Q)—sin‘ismz—{-—}(/lo—u+£2)
2 sin 2 2

e 2 sin

]
L. .. cos cos
_EsmzsmeH-S-{-n—}(ﬂoo—£¢)~{E}(—-ﬂo—u):|

i L €&]|cos 40, . £]|cos
—sin®—cos® ={ =2 b (=4, —u+ ) ~cos’ —sin’ =4 —— r(-A, —u—-8)
R Z{Sin}( o mu+E) 008y 2{sin}( ©

e, :sinicoszgsin(ﬂo —Q)—sinisinlgsin(ﬂ@ +Q)—cosisin gsin A, (16)

The quantities £, A, and ag/r; (in Eq.(16)) can be computed with sufficient accuracy
from the following expressions'”
d = MJD -15019.5, Modified Julian Day (MJD) = Julian day - 2400000.5

e=23.44

M, =35848+ 0°.98560027d

Ay =279"70+0°.9856473d +1"92sin M,

¢, /v, =[1+0.01672cos(M,, +1"92sin M ,)]/0.99972

Oblateness of earth: J, is related to Barth equatorial oblateness through earth rotation,
and the estimated difference between the polar radius and equatorial radius is 22 km.
The zonal harmonic I, is responsible for the secular rates of the right ascension of the
ascending node Q, the argument of perigee ®, and a small correction to the mean
motion of the orbit. J; induced accelerations can be given in the spherical coordinate

system as’.

4
a = —M[E,_(O.S—I.Ss;in" isin®u)+2 sin’isinucosu +2 sinicosisinu] (17
r

SIMULATION AND RESULTS

Based on the mathematical model developed in the previous sections, numerical
simulations of relative motion are presented for different test cases of the Leader-
Follower formation pattern. As the name implies, the Leader-Follower configuration
has satellites lying on the same orbital plane and separated only by mean anomaly.
Simulations are conducted for the leader-follower pattern at 600 km and 800 km near-
circular, polar orbits. The separation distance of the spacecraft for all the test cases is
initialised to 1000 meters. Test cases are simulated with 0%, 5% and 10% more drag
area for the deputy satellite than the master satellite. In order to isolate the effect of
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various forces, simulations are carried out with and without solar radiation pressure and
Ja. In all the test cases, atmospheric drag is considered to be the principal perturbing
factor, The differential solar radiation pressure effects are also modelled in the
simulations. In the calculations for drag and solar radiation pressure the normal drag-
area of the satellites is assumied to be 0.1225 m® and the drag coefficient C,; =2.2. The
summary of initial conditions used for simulation is given below

Epoch: 1 January 2004
Orbit altitude: 600 km and 800 km
Type: Circular and Polar

Perturbations: Atmospheric drag, Solar radiation pressure, J;
Atmosphere: Jacchia Roberts

Numerical method:  Rung-Kutta Fehlberg 8" order

Initial step size: 1 second

Propagation duration: 1 orbit

" Physical properties:  Mass=25 kg, Cq =2.2, Surface-area=0.1225 m?

Initial separation: 1000 metres

Figure 2 portrays the relative motion of the identical spacecraft in the xy plane with all
perturbing factors including drag, solar radiation pressure and J; for one complete orbit.
It can be seen that the relative motion is a 2 x I ellipse with the ellipse spiraling inwards
with time. The cause of oscillations in the radial, along-track and cross-track directions
can be attributed to J, The amplitude of the oscillations is in the order of few meters for
the along-track and radial directions and a few millimeters for the cross-track direction.
Iy also induces a minor drift of a few centimeters/orbit in both the along track and radial
directions. Due to the spacecraft being identical in cross-section area, there is no drift
caused by atmospheric drag and this was verified by disengaging J> from the simulation.
The blue solid line in figures 3-6 is the trajectory of the deputy satellite in the xy plane
with 5% more differential drag area than the master satellite, The red dotted lines in the
figures represent the trajectory for 10% more differential drag area, Figures 3 and 5
illustrate the relative motion in the presence of solar radiation pressure and drag with no
I effects for 600 km and 800 km altitudes respectively for 1 complete orbit, The 5%
differential area caused a net secular drift of 19 cm/orbit, in the along-track direction,
for the 600 km altitude and 0.75 cm/orbit for the 800 km altitude, The total drifts
doubled in magnitude with the doubling of the differential drag area. Figures 4 and 6
represent the trajectory simulated only with atmospheric drag for 1 complete orbit, It
can be seen that the net drift in the along-track direction for such a test case is 22
crivorbit for the 600 km altitude and 2.5 cm/orbit for the 800 km altitude. The values
doubled for 10% differential drag area.

It is also interesting to note that the inclusion of differential solar radiation pressure
effects in the model actually reduces the total drift caused by differential drag by a few
centimeters. Solar radiation pressure causes the spacecraft to accelerate or decelerate
depending upon whether the spacecraft is moving towards or away from the sun. This
effect when combined with the differential area effects causes a decrease in the net
secular drift. The solar radiation pressure effects also vary for different types of orbits,
for different altitudes and for different periods of the year. The comparison of figures 3
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and 5 shows that solar radiation pressure has significant effects on the satellite relative
motion at higher altitudes. Although in the figures 2-6, the along track displacement
seems to increase with the progress of the orbit, it actually decreases and the value
shown in the figures are just an absolute value of the original value. Due to the reason
that the deputy spacecraft has more drag area than the master spacecraft, it dissipates
more kinetic energy into heat through drag than the master. The decrease in the orbital
velocity of the deputy satellite sfows it and makes it enter an elliptic inward spiral. As it
looses height, it starts to accelerate and tries to catch up with the master spacecraft if its
motion is not controlled. Based on the simulation values, the AV required to compensate
for the secular drifts in the along-track and radial directions are 0.5 m/sec/year for 5%
drag area difference for the 600 km altitude and 0.08 m/sec/year for 5% drag area
difference for the 800 km altitude. The values are twice the values of 5% for 10% drag

area difference. It should be noted that these values are just a rough conservative
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estimate of the AV requirements only to compensate the differential drag effect.
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Figure 2 Relative motion of the deputy spacecraft with respect to the master
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b ) °
.}\ . . - i- S
.‘\ - -ooTFEa
et
=i racEogT
- - -0 osoe
ﬂ S - - ~acrias
: ~acaaia
a1 o.2 .3 o.4 0.5

— 5% difference

Along Track Displacement, m
Figure 3. Relative motion of the deputy spacecraft with respect to the master
spacecraft in the xy plane with 5% and 10% differential drag area with

atmospheric drag and solar radiation pressure and ignoring J; for 600 km altitude

540

---L 1 0% difference

Along Track Displacerment, m

-G Ca 154

o.5

- 1026 difference

Figure 4. Relative motion of the deputy spacecraft with respect to the master
spacecraft in the xy plane with 5% and 10% differential drag area with

atmospheric drag and ignoring solar radiatien pressure and J; for 600

km altitude

t ’ P STt M

- -
el . "~

P N

aouge

e2

oatrim

oooxiay

R S Ak
. "~ #
- ®, -
_ .
.~ "
E el -
..... R T Ll -anaars
[e) c.ot1s18 ©. 02655 ©.03853 o.osz27 0.06588
— 5245 difference -~ 10%% difference

Adong Track Displacement, m

Figure 5. Relative motion of the deputy spacecraft with respect to the master
spacecraft in the xy plane with 5% and 10% differential drag area with
atmospheric drag and solar radiation pressure and ignoring J; for 800 km altitude

waran0te

i "~ — - L
.
3. St »
ﬂ +

e - [P

rei Tt
el ~ao)ins

(=3 Q.O0T0a7 Q. 02094 (= Me chF -ty OO 1 88 O.OSZ34
— 5% difference === 1024 differance

Along Track Displacement, m

Figure 6. Relative motion of the deputy spacecraft with respect to the master
spacecraft in the xy plane with 5% and 10% differential drag area with
atmospheric drag and solar radiation pressure and ignoring J; for 800 km altitude

541




CONCLUSION

In this paper, we develop a precise mathematical model to analyze the relative
trajectory of formation flying spacecraft. The equations for relative motion are derived
using the geometry of the formation-flying problem. Based on the mathematical model,
the relative trajectory is simulated for the leader follower formation pattern for two
different altitudes and for two different differential drag values. Spacecraft relative
motion is compated and analyzed for different force conditions. Finally, the AV
requirements are estimated for the secular drifts induced by the differential drag effects.
The mathematical developed in this paper can be used to analyze the relative trajectory
of any type of formation configuration with any number of spacecraft.
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where s and ¢ represent sine and cosine functions respectively.
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