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SUMMARY

A new implementation of strip theory is proposed based on the strip theory by Salvesen, er al. [1] and early work by
Westlake and Wilson [2]. Compared with traditional strip theory, the main difference is that the calculation is carried
out in the time domain. This makes it possible to cope with relatively large-amplitude motions and non-constant forward

speed problems. At each time step, the exact underwater sections are extracted; the velocity potential is required to satisfy
this instantaneous body boundary condition, therefore the added mass, damping coefficients and exciting forces are time
variant, which produce a non-linearity. The diffraction force is added to work of Westlake and Wilson, and the results

show the effect of diffraction force is significant.

NOMENCLATURE

Ship’s centre of gravity in the calm wa-
ter with respect to the coordinate system

o(z, 1, 2)
(xg,ve,7c) Centre of gravity of the ship

(09 0, —HG)

é, ¢ Velocity potential with respect to coordi-
nate system &(%,%,%) and o(z,y,z) re-
spectively

5(%,7,2) Cartesian coordinate system fixed in space

) Amplitude of the incident wave

éx Two-dimensional velocity potentials

fig Two-dimensional generalised normal vec-
tor

A Incident wave length

) Angle between the mean direction of ship
motion and the direction of propagation of
the incident wave

wWos We Incident wave frequency, frequency of en-
counter

©0s P1 Source potential, dipole potential

P2m» Pom+1  Multipole potentials

a Displacement vector of a point on ship hull

iy 7t Unit normal vector pointing out of the fluid
domain in coordinate system &(Z, 7, Z) and
o(z, y, z) respectively

¢; ' Oscillatory motions of the ship

@, Gon, G2nt1 Conformal mapping coefficients

Three-, two-dimensional added mass coef-
ficients

Ajr 0k
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Bk bjx Three-, two-dimensional damping coeffi-
cients

Ff s FjD Incident wave forces, diffraction forces

.17 Sectional incident wave forces, sectional
diffraction forces

FR,F? Radiation forces, hydrostatic restoring
forces

Lix Moments of inertia of the ship

m Mass of the ship

M;x Generalised mass matrix for the ship

nj, mj Generalised normal vectors

o(z',y/,2')  Coordinate system fixed on the ship

o(z,y,2) Equilibrium coordinate system moving
with the ship

Peo, P,y Expansion coefficient for source potential
and dipole potential

P 2m» Piam+1 Expansion coefficients for multipole po-
tentials

U Ship forward speed

1 INTRODUCTION

One of the crucially important aspects of ship design is
the prediction of wave-induced ship motions and hydro-
dynamic loads in a realistic seaway.

Although the theoretical research can be traced as early as
the work done by Froude [3] and Kriloff [4), the significant
breakthrough was the strip theory developed by Korvin-
Kroukovsky [5), which was the first motion theory suitable
for numerical computations and had adequate accuracy for
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engineering applications. Unfortunately inconsistencies in
the mathematics were later found in this theory, particu-
larly it did not satisfy the Timman-Newman relationships
[6]. Modified versions of strip theory have since been pro-
posed, of which, that developed by Salvesen, Tuck and
Faltinsen [1] is mostly widely used in ship design. It pro-
vides satisfactory performance in the prediction of the mo-
tions of conventional ships as well as computational sim-
plicity.

Conventional strip theory is deficient for low frequencies
of encounter, and also for high ship speeds. Newman [7]
developed a unified slender-body theory which relieved
the frequency and speed restrictions that strip theory suf-
fers and was successfully applied to seakeeping of ships
(8). Sclavounos [9] then extended it to the diffraction
problem. This theory is further refined recently by Kashi-
wagi, et al. [10].

Since the the early 80’s, due to the evolutionary advent
of more powerful computers, scakeeping research on 2
complete three-dimensional numerical solution has blos-
somed. Unlike the two-dimensional theories (strip theory,

unified slender-body theory, etc.), the three-dimensional

methods can give detailed hydrodynamic pressure dis-
tributions over the hull surface, and can be applied to
large structures which are no longer slender in all dimen-
sions. Early efforts were contributed by Chang [11], and
Inglis and Price [12, 13] who proposed a Green Func-
tion Method. By assuming the motions to be small and
time harmonic, the numerical solution can be obtained by
distributing the time-harmonic forward-speed free-surface
Green function on the mean body surface and choosing
their strengths to satisfy the necessary boundary condi-
tions on this surface. Later developments are made by Wu
and Eatock Taylor [14], and Chen, et al. [15].

An alternative three-dimensional method is the Rankine
Panel Method which was initiated by Dawson [16]. In-
stead of using the Green function, Dawson distributed
Rankine sources on the body surface as well as on the
free surface which allows more general free surface con-
ditions to be used. Nakos and Sclavounos [17, 18] ap-
plied this method to the seakeeping problem. The Rank-

" ine Panel Method removes the complexity of computing

the free-surface Green function and the irregular frequency
problem in the Green Function Method. The drawback is
that it requires many more panels than the Green Function
Method and its stability is a major question.

While deriving the above frequency-domain methods, it
was assumed that body motions were steady and sinu-
soidal in time. Therefore, those methods are not appli-
cable to unsteady transient problems. Based on the early
work of Finkelstein [19], Wehausen [20] provided the rig-
orous theoretical basis for the using time-domain Green
function to solve unsteady ship motion problems at zero
forward speed. Computations directly from this method
were presented by Yeung [21] and Newman [22] for two-
dimensions. Three-dimensional computations were then
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given by Beck and Liapis [23] for the zero speed radia-
tion problem, and by King, et al. [24] for the non-zero
forward speed seakeeping problem. The Time-Domain
Green Function Method is found much more effective than
the Frequency-Domain Green Function Method in the case
that the body’s forward speed is included. This is be-
cause the forward-speed frequency-domain Green func-
tion is very complicated and extremely difficult to calcu-
late, whilst the forward-speed time-domain Green func-
tion retains the same relatively simple form as zero-speed
frequency-domain Green function regardless of the body’s
velocity. The time-domain Rankine Panel Method was de-
veloped by Nakos, et al. [25].

A important advantage of time-domain methods is that
they could be extended to solve large-amplitude motions
by applying the exact body boundary condition on the in-
stantaneous wetted hull surface. If the free-surface bound-
ary condition remains linearised, this body-exact approach
is time variant linear. An example of Body-Exact Time-
Domain Green Function Method was given by Lin and
Yue [26]. Meanwhile, Kring, et al. [27], Sclavounos, et al.
[28], and Huang and Sclavounos [29] have given the exam-
ples of Body-Exact Time-Domain Rankine Panel Method.

The three-dimensional methods have been proved to give,
in general, better agreement with experimental data, how-
ever, strip theory is still the most popular theory. This
is because strip theory has distinctive benefits compared
with three-dimensional methods. Firstly, it is reliable and
requires much less numerical calculation than the three-
dimensional methods, whilst its accuracy is gquite reason-
able for engineering applications. Secondly, strip the-
ory just requires the offset data on ship sections, while
the three-dimensional methods need the three-dimensional
ship surface data. This makes strip theory more feasible
for the analysis of the seakeeping performance in the ini-
tial ship design stage.

In the last decade, strip theory seems to be neglected, all
the efforts have been focused on the development of time-
domain three-dimensional methods, yet few works on re-
fining strip theory can be found. Beck and Reed [30] esti-
mated that probably 80 percent of all the current calcula-
tions related to ships with forward speed are still made by
using strip theory. In this paper, the traditional strip theory
is extended to deal with large-amplitude ship motions and
pon-constant forward speed problems.

Generally the steady-state time-harmonic ship motions

(surge (1, sway (g, heave (3, roll (4, pitch (5, yaw (e)
can be described by a set of second order equations

6
d? d
: Z(Mj.k + Aj.k)'&t%‘ + Bj,k—(% +Cjlr = F;

=]
ji=12,...6,
where M is the generalised mass matrix, A and B are the

added-mass and damping coefficient matrix, C is the hy-
drostatic coefficient matrix and F is exciting force and
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moment vector. In the derivation of these equations us-
ing strip theory [1], it is assumed that motions are small.
Not only is the free-surface boundary condition linearised
about the undisturbed water surface, but also is the body
boundary condition expanded about the mean position.
For large-amplitude motions in the severe seas, the influ-
ence of the varying underwater part of the hull will be sig-
nificant, so this linearisation of body boundary condition
may not be justified. To rectify this weakness, a coupled
time and frequency domain method is presented in this pa-
per from the engineering practice point of view. A fully
time-domain method is not adopted, because it requires
the evaluation of convolution integrals over all previous
time steps. This may cause strip theory to loose its numer-
ical simplicity over other methods. At each time step, the
exact submerged part of each section is extracted, hydro-
dynamic coefficients and forces are then calculated based
on this instantaneous body boundary. Therefore, at each
time instant, the equations of ship motions still keep as
simple form as the above equations, but the Mj ., Ajx,
Bk, C; x and F; are varying.

2 THE BOUNDARY-VALUE PROBLEM

For a real ship in a seaway, the fluid domain is effectively
unbounded relative to the scale of the ship. Figure 1 de-
picts the geometry and coordinate system of this fluid do-
main used in the computation. V represents the fluid vol-
ume bounded above by the free surface Sy and body sur-
face S, below by the sea bed surface Sy, and at the infinity
by a enclosing contour Se.. 72 is the unit normal vector of
the boundary surface pointing out of the fluid domain. A
The Z, §-plane lies in the still water surface. The still wa-
ter surface is the average water surface level or surface of
the water if no wave were present; Z-axis is directed as the
ship mean forward speed; Z-axis points vertically down.

Figure 1: Boundary Value Problem

Suppose now a ship is moving horizontally with constant
forward speed U through a harmonic wave. Let o(z, y, 2)
be a right-handed coordinate system moving in the same
direction as the ship with speed U, with z, y-plane lying in
the still water surface, z pointing in the direction of ship
forward speed and z pointing vertically down as shown in

(©2004 The Royal Institution of Naval Architects

Figure 2. The third coordinate system o’ (z/, 3/, 2’) is fixed
to the ship and its origin is situated at the ship’s centre of
gravity. In the calm water, the ship’s centre of gravity is lo-
cated at (0,0, —Hg) with respect to the coordinate system
o(z,¥,z), ' is in the longitudinal forward direction, 3/ is
in the lateral starboard side direction, and 2z’ is vertically
down.

e e —————
——

af
/|
|
|

Figure 2: Coordinate System

Initially, the ofx,y,2z) coordinate system is coincident
with the earth fixed system &(Z, 7, Z), however after a time
At, it has moved a distance U At from & along the Z-axis.

‘Within the coordinate system 8(Z, 7, Z), the incident har-
monic wave is defined to have a wavelength A, an ampli-
tude 779, and a heading angle of u relative to the Z-axis
{1 = 0 for following waves).

The ship is supposed to carry out oscillations around the
translating o(z, y, ) coordinate system, which may be de-
scribed by the translational motions surge ¢y, sway (s, and
heave (3, and rotational motions roll {4, pitch (s; and yaw

Ce-

Assuming that the fluid is inviscid, incompressible, the
fluid flow motion may be described using potential theory.
By defining a scalar fluid velocity potential ¢, the continu-
ity equation reduces to Laplace’s equation and the momen-
tum equations reduce to Bernoulli’s equation. Therefore,
the governing equations are,
V24(F,t) =0 eV, O
agz 1 \2 ﬁ = __ =
-b-t—+-§(V¢) +; gz2=0 ZeV. (2
with this formulation, the potential § and pressure J are
uncoupled. Typically a solution for ¢ is found by satisfy-
ing (1) along with appropriate boundary conditions. Then,
7 is easily computed using (2).

On the ship hull, the velocity potential ¢ must satisfy the
boundary condition,

az:‘ € Sp, (3)

where f’;(:fc’) is the velocity of the points on the ship hull.
On the sea bottom surface the boundary condition is,

e 5;. [C))

Il
htN]
Sy

1l
o]
31}
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Suppose the free sutface Sy is defined by its elevation 5 =
7i(Z, ¥, t), then on this surface, the velocity potential must

satisfy the boundary condition,
¢ ¢\ 1= -
T +2V8-V(5F) +5V8- V(VE- V)
% = Fe S (5

In addition, a radiation condition is required at infinity to
guarantee a unique solution of this boundary value prob-
lem.

It is ‘Gsually more convenient to carry out the calculation
in the steady-moving system o(z,y,z). By the Lorentz
transformation, Equation (1)-(5) can be written as,

V2(Z,t) =0 FeV, (6
_aa%s_ @+ (qu)2 -gz=0 ZeV, (O
a"’—w A=Ua+&@)-7  FeSH ®
_-gﬁ Vé-7=0 F€Sh ()
3"¢ %9 2626
@ Vo TV e
8¢ 0\ 9
+2V9- V(5 ~Ug,) ~ 95
+%V¢'V(V¢)2=O reb; (10)

where G(Z) is the oscillatory displacement of ship hull
relative to the coordinate system o{z, y, z) and &(Z) is the
oscillatory speed, 71 is the unit normal vector defined same
as 72 but related to the coordinate system o(z, 3, z) and free
surface Sy is defined by its elevation z = n(z, y, t).

Once the pressure of the fluid is obtained, the force and
moment acting on the ship hull can be calculated by inte-
grating the pressure over the ship hull surface S,

F = Ry, By, Fy] = f [ viics an
b

M = [Fy, o, Fs] = / / p(ExA)ds.  (12)
Sp

3 THE LINEARISED PROBLEM

To solve the velocity potential ¢ with the nonlinear bound-
ary conditions (8)-(10) is rather difficult. In most of the
cases, they must be linearised.

The wave potential ¢ is assumed to be the sum of the
steady wave potential component ¢s and the unsteady

component ¢,
#(Z,t) = ¢s(%) + ¢1r(Z,t) (13)

¢s is the steady state flow potential due to the ship’s for-
ward motion without the presence of incident waves, ¢r
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is unsteady flow potential associated with oscillatory mo-
tion of the ship in the incident waves. The geometry of
the hull is assumed to be such that the steady state poten-
tial g5 and its derivatives are small. The oscillatory mo-
tions of the ship are also assumed to be small, so that the
unsteady potential ¢ and its derivatives are small. Sub-
stituting ¢(%,t) and @g(Z) into (8) and (10) respectively
(hereafter, the water depth is assumed to be infinity, hence,
the boundary condition (9) is no longer necessary.), ne-
glecting the higher-order terms of ¢ and ¢, and apply-
ing Taylor expansions about the mean-huil position S, in
the hull boundary condition and about the undisturbed free
surface z = 0 in the free surface boundary condition, it can
be shown that ¢5 and ¢ must satisfy the following linear
boundary conditions:

for ¢5,
a R .
-b% =U8g £ € Sbs, (14)
B¢s  ¢s .
2————- —_ =
52~ 05 =0 Z€z=0, (15
for ¢,

6¢T ={a&+Vx[ax V(~Uz+¢g)]} -7
Z € Sps, (16)

Por Sy 86  Obp
52 Ve TV Bz ~95; =0
Fez=0. (@17

Boundary condition (16) was derived by Timman and
Newman [6), 7i is the unit normal vector of the hull sur-
face. Furthermore, with the restriction that the unsteady
motions are small and sinusoidal in time with the fre-
quency of encounter we, ¢r can be linearly decomposed
as [7],

6
¢T = 32[¢06w‘t + ¢76w¢,t + Zgj¢jewet], (18)

=t

where the ¢o is the incident wave potential, ¢7 is the
diffraction wave potential, and ¢; (j = 1,2,...6) are the
radiation potentials due to motions of the ship in each of
the six degrees of freedom. The potentials must satisfy the

following boundary conditions,
O 0 ~
-%%% =0 ZeS, 9
9¢;

—— = wenj + Um;

€85, i=1,2...6, (20

(-2 -2 =0

£€2=0,j=0,1,...7. (1)
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Neglecting the steady wave potential ¢ in (16), the gen-
eralised normal n; and m; are defined by,

[ny,n2,n3] = 7, (22)
[nayns,ngl =Ex i Z € Spsy 23
[y, ma,ma] = 0, @4
[ma,ms, mg] = [0, 13, —na}. 25

From equation (20), the radiation potentials ¢; (j =
1,2,...6) can be further linearly separated into a speed-
independent part ¢J and a speed-dependent part &7,

U .
¢i=¢3+-—¢7 i=12..6. (6
wWe

¢ and ¢} satisfy the boundary conditions (21) on the free
surface, and on the ship hull surface, they must satisfy the

boundary conditions,
8¢? . '
— = WJeNj J=1,2,n-.6,‘ (27)
o¢% .
i = W Mm; i=12,...6, (28)

which show the potentials ¢} = 0 (j = 1,2,3,4), 9 =
¢§ and g = —¢5, thus,

¢j = ¢2 J = 112:3’41 (29
U

b5 =8+ 45, (30)
U

g6 =98 — - 42 @1

Neglecting the high-order terms in the Bernoulli’s equa-
tion, now the force aid moment exerted on the ship hull
surface (11) and (12) can be evaluated as,

o 9 9% _ o\
Fi=-r /js,,.(at bz gz)nyds (2)
=REF+FP +FE+F}) j=12,...6,
where,
9o
I . _ pptet = T e .
,F; = —pe / L . (zweqSo U 5 )n,ds, (33)
il
D __ o twet N § it ol -
FP = —pe / fs ’ (w,¢7 U Ynds, (39

6
B¢
R __ et § : e [J e Y11
I’} e pe ‘/v[Sbc k=1 Ck (wc¢k U oz )njds’
(35

FP =pg f/ zn;ds. (36)
5
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4 RADIATION FORCES

The detail of calculating hydrodynamics force Fj* can be
found in Salvesen, et al. [1]. In summary, it can be ex-
pressed as,

FF =§6_: Cretet [—P / /s 5 (We¢k - U%bf)"jds]

k=1

6
=) Greet [—-wep f / prn;ds
k=1 Sts

+Up / / ¢rmjds —Up f ¢kn,-dl]
Sba Lca

6
=3 (w2 Ak — weBjx)0ee
k=1
E7)

where L., refers to the underwater girth of the aftermost
cross section C, of the ship, A; and Bjx are given by,

i forj=1,2,3,4
U.,
Aip= | ajpde——5bix k=1,2,3,4, (38)
Ly we

Bj = / birdz +Ud}y k=1,2,3,4, (39
L,

U
AJ"5 = - /L, xa_.,-,adx - ;2- ./1-,, bjysdﬂ?

U U?
+ oz %ebia 25 (40)
Bjs=-— / zbjadz +U f aj3dz
L, L,
. U3
- U-’Eaaj’:; - —‘i‘b;’a, (41)
we
A; —/ Ta; d:n-}--g—/ b;odx
1’6 - L' 312 wg L 12
U U?
- gatebiat % “2)
B;s = / zbjodz—U / aj2dz
L, L,
U2
+Uza.052 + —zbjas 43
we
ii. forj=5,6
A / zas xdz + v / bs rdx
k= k — &
5 L, 3 wg L. 3
U ..
+—5Tab3r k= 1,2,3,4, 44
w2 ’
Bs,k = —/ mba,kdfﬂ -U a3,kd$
L, Ls
—Uzaa3), k= 1,2,3,4, (45)
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U2
A5,5=‘/ a:2a3,3d:c+ "—2-/ a3 3dx
L, We Jr,

U U?
- Fngg,s + —L;-z-:z:aag,s, 46)
e e
Byss= / by sdn+ L / bs sdz
L,
U?
+ Ux 03 3 + $ab3 33 (47)
A ——/:ca dx—g—/a dz
5,6 = L, 3,2 wg L. 3,2
o U U?
~3T5b82 = —5%a05 2, (48)
e e
U2
B5,6 = —/ $2ba’2d.’l7— —2/ b3’2d$
L, we JI,
2 u?
-— Uzaag’g - anbg'g, (49)
&
U
Asr= | zagrdz—— | bordz
¥y L‘ ¥ wg L' ¥
U ..
- 'u';'gxab2,k k= 11 2: 3147 (50)
<
Ber= | zbpdr+U / az rdz
L, L,
+Uzqa3, k=1,2,3,4, 51
U2
A5’5 = ——/ Zzag,gdz— -—2/ az,3d$
L, we L,
U U2
+ 573858 — —5%a05 3, (52)
e e
U2
BG,S = -—f $2b2,3d$— -—2/ b2,3d9:
L, We Ji,
2 v?
—UzZag s — anbg,a, (53)

e

as ,gdx

U2
As6 =/ #Pazadz + —
L, (J.) L,

2
_U e U
5

"y
Bog = / 2Py pdz + o / bypde
i3 we L,

$a02 2 (60

U2xa 2 9. (55)

C

+Ua:2a22+

It is worth writing out the critical ‘strip theory® assump-
tions which are used while deriving the radiation forces
(37). Firstly, the ship is assumed to be long and slender, so
that the surface integrals of ¢2 implicitly included in (37)
can be evaluated as,

—po. [[ Snsds= [ (-apo. [ dinsar)as,
Sy L, Lex

(56)
where L, is the ship length, L., is the underwater girth
of the cross section C. Secondly, if the ship is long and
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slender, in the neighbourhood region of the hull, it can be
found that 8/8y > 8/6z, 8/8z >> 8/O8x and na >> ny,
na > ni. This means the three-dimensional generalised
normal n; (§ = 2,3,4) on the right hand side of (56) can
be replaced by the two-dimensional generalised normal 735
(7 = 2,3,4) in the y, z-plane of the cross section, mean-
while n; = 0, n5 & —zf3, and ng = ziiz. Finally, the
frequency of encounter limitation is assumed to be defined
by w 3> U(8/8x). This requires that the wave length is
approximately of the same order as the ship beam. Under
these assumptions the Laplace equation and the boundary
conditions (20) and (27) to be satisfied by ¢ (k = 2, 3,4)
reduce to the two-dimensional problem at each given cross
section Cy. Let goe®et, daetet, and dye*“et be the two-
dimensional potentials due to the unit motion of sway,
heave, and roll, respectively, of a cylinder with cross sec-
tion C, oscﬂlatmg with the frequency w. in the free sur-
face. Therefore, ¢9 =~ 0, ¢{ = ¢ (k = 2,3,4), and from
the boundary condition (27), ¢3 ~ —zds, 42 ~ zda.
éx(v,2) (k = 2,3,4) must satisfy the Laplace equation
and the boundary conditions as follows,

8¢

Ek = w i (,2) € Leg, k=2,3,4, (5T)
Wi +g ¢’°—0 (v,2) € 2=0,k=2,3,4, (58)
%‘f”‘iw% =0 y— too,k=234. (59

It is now clear that the radiation forces (37) eventually is
the function of the integrals,

webix Jk=2,3,4,

(60)
which exactly are the two-dimensional hydrodynamic
forces on the cross section Cy, thus a;x and b; ;. are the
corresponding two-dimensional added mass and damping
coefficients. a7, and b7, refer to the added mass and
damping coefficients of the aftermost section Cj.

—Wep ¢kn] di=

Lc=

(rJ e Qi —

5 EXCITING FORCES

Using linear gravity-wave theory, the potential for a inci-
dent plane-progressive wave of amplitude 7 satisfying the
boundary condition (58) is given by,

do = me—Ko(z+t2 cos p—ty sin p) , ()
Wo
where p is the heading angle, Ko = 2rx/A is the wave
number, A is the wave length, and wy = /gKp is the wave
frequency, which is related to the frequency of encounter
we by,
we = wo — Kol cos p. (62)

The exciting forces FI and FD can be calculated in the
similar way as that of the radxanon forces [1]. Using the

(©2004 The Royal Institution of Naval Architects
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same ‘strip theory’ assumptions, from (33), (34), (61), and
the boundary condition (19), the total exciting forces F:,E
are given by,

E _ ol D
FE = Fl + F]
U
1wt I D Da
pmoe [/L’(f,+f, Yo+ 77|
: Ji=2,8,4,

U
| /L ERvarl Y

U .
- + -u;e'mafsva] i=5,

' 1w U a
proeest[ [ @ff+aff + -t

.

U % T
+E’$af2D ] ji=6,

where f] is the sectional incident wave force, f{ is the
sectional diffraction force, and given by,

ij =ge—:zKocosp/ ﬁjeKo(tysinp-z)dl’ (64)

fJD = woe—:xKocos#/ (215,3 — fig sinp)
x efolysinp=2)g.41.  (65)

Here, fP* refers to fP evaluated at the aftermost section
C..

6 TWO DIMENSIONAL HYDRODYNAMIC
FORCES

Ursell [31, 32] derived a potential flow solution, which
satisfies the boundary conditions (57)(59), for a circular
cylinder oscillating harmonically with arbitrary frequency
in the free surface. Eatock and Hu [33] gave a generalised
version of Ursell’s solution, which can be applied to both
floating and submerged bodies. For a cylinder with ar-
bitrary cross section, the potential solution can be got by
conformal transformation techniques.

Westlike and Wilson [34] developed a conformal mapping
which can transform an arbitrary section in the physical
v, 2-plane to a unit circle in the reference plane,

y=Y(r,9)
=afrsing+ nz—%(-—n" [9?2 cos2nf  (66)
+ 222t sin(2n + 1)6] |,
z=2(r,6)
= a{rcoso+ ;_0( )" [Z2sin2ns (g7
— 232 cos(2n +1)6 }.

(©2004 The Royal Institution of Naval Architects

The coefficients a, asn, Gont1 are determined by,

= a{sm9 + Z( 1)*[agn cos 2n8,

n=0 (68)
+ a1 5in(2n+ 1))},
zp=a{cosbp+ Y (—1)*[aznsin2nf,
{ ’ nz=; 69)
— Ggn41 cos(2n + 1)9,,]},

where (yp,2p) (p = 1,2,...,Np) are the offset points
representing the boundary of the section in y, z-plane, and
(1,6p) are the corresponding mapped points in the refer-
ence plane. Therefore, the boundary conditions (57)-(59)
are transformed to,

%'—Wenk
or T T 0)
r=1,0€ [—— —],k =2,3,4,
oz ¢ _
(66)0 i"’¢k+ 69 =0 (71)
9=:i:~'—,k= 2,3,4,
5¢k 5
w, ( )r:ioo(ﬁk =0 (72)

r— o0,k =2,3,4.

Similar to the method Ursell used for a semi-immersed
circular cylinder, the velocity potential for the case of an
arbitrary cross section is also composed of a source po-
tential, a dipole potential and a series of linear multipole
potentials,

ér = Prowo + Pr1p1

+ Z (P, 2m902m + Pram+19P2m+1)y (73)

m=1

where,

o0 = —/; K, sin(BZ) — B cos(BZ) ~Al¥lgg

K3+ 62 (74)
+ zwe'K‘(Z""lyD
0 K+p (5)
“KzblD . 3 ys
i we + Ke(‘dz + Zz) y < 01
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__ cos(2m#) cos[(2m — 1)4)
2m = T om + aK’{ (2m — 1)r2m=1

N ) . on)0
=3 (-1 [2naz é‘;lff’;”n;zﬁlﬁn a6

n=0
cos[(2m 4 2n 4+ 1)6]
~ (2n+1)azn41 Gm+on+ 1),.2m+2n+1]

sin[(2m + 1)4] [ sin(2m6)
Pami1 = — ooy +aKey S

N n cos[(2m + 2n + 1)4)
+ Z("l) [2na2,, (@m + 2n + 1)r2m+antl a7

- n=0
sinf(2m + 2n + 2)4] }
(2m + 2n + 2)r2m+2n+2
All the potentials satisfy the Laplace’s equation, and the
boundary conditions (71)(72, the unknown constants Py g,
Pr1, Pi2ms Pi,2m+1 are chosen in the way such that the
boundary condition (70) is satisfied.

+ (2n -+ 1)0.2,-..1.1

7 SHIP MOTION EQUATIONS

If the ship is considered as a rigid bedy, with respect to
the coordinate system o(x,y, z), its motion now can be
determined by,

6
Z[M‘,k(t) + A ()= d;f; + B;, k(t) d(k

=F{(#)+FF(t)+ Ff(t) i=1,2,...6, (78)
where M; r. is the generalised mass matrix for the ship,
M=

m 0 0 0 mzg —myc

0 m 0 —-mzq 0 mzg
0 0 m myg -mzg 0
0 -mzg MYc I Iz Itz
mzg 0 —MnMrqg 121 I22 I23
-mye mrg 0 I I I3

(79)

Ff =0,0,mg, mgyc, ~mgzc,0), (80)

where m is the mass of the ship, (vg,yg, zg) is the loca-
tion of centre of gravity at each time step, J;,x are the mo-
ments of inertia, and FJ-G are the forces and moments due
to the ship’s weight. It should be noticed that the Sp, used
to derive the strip theory refers to the wetted hull surface
at the mean position. However, in the present method, the
definition of mean position is different from the conven-
tional strip theory, it refers to the instantaneous wetted hull
surface at each time step. Hence, F; can be calculated on
the surface Sj,, instead of S), in the equation (36).

8 NUMERICAL CALCULATION & RESULTS

The hull form chosen to test this numerical model was a
frigate, which has already been used by Westlake and Wil-
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son [2]. The main particulars are shown in Table (1) and
the rationalised twenty-one equally spaced body plans are
presented in Figure (3). In order to simplify the calcula-

Particulars Data

Length 130.0 m
Mass Displacement 4248.0 tonnes
Draught 4722 m
Beam 8.10m

LCG (aft of the stem head) 75.5m

VCG (above the baseline) 6.05m

Trim Angle (at 15 knots) 1.029 degree

Table 1: Frigate Main Particulars

tion, the sections are extrapolated to the maximum depth
of the ship, and the phantom offsets above the deck are
added. The number of waterlines must be enough to secure
the accuracy when calculating the wetted sections. In the
present calculation fifty waterlines are used (ten of them
are shown in Figure (3)). The waterlines are not equally
spaced, but closer to the keel are more concentrated.

////

///

| ////////

(NN [/ / 7 ////
AN / [/

Figure 3: Hull Form

It is found that the number of conformal mapping param-
eters greatly affects computation time. The time taken to
finish mapping one section almost doubles when the pa-
rameter number increases 30%. For some complicated
sections, such as the section with bilge keels and the sec-
tion with shaft brackets, the parameters may be as many as
40~50 [34]. The number of conformal mapping parame-
ters is set to be 20 in the present computation, because this
frigate hull form is relatively simple. Twenty parameters
already can give sufficient accuracy, one sample is shown
in Figure (4).

The equations of motions (78) are solved using the New-
mark (3 time stepping method. The time step At is 1 sec-
ond. Initially, the ship is assumed to be advancing with
steady speed U, and the pitch, roll, and yaw angle are all
0°. Westlake and Wilson [2] have given some numerical

(©2004 The Royal Institution of Naval Architects
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results, which have been compared with the results pro-
vided by a seakeeping suite PAT. PAT was developed by
DERA and has been tested by the model scale experiments
in oblique regular waves. In their work, the force due to
the diffraction wave potential was omitted, but it now is
included. Therefore, the comparison with PAT will not be
repeated here, only the comparisons with the results pro-
duced by Westlake and Wilson are presented.

| X _saction definition ——confonmal mapping |

X (m)
4 8 7 6 5 4 3 2 41 0 1 2 3 4 &5 6 7 8 9

Y{m)
© B N @ B AW N o B

(a) A Fine Section at 0°
[ swcion seariion — comarmat mepping |

X(m)
0 6 8 7 B8 S 4 I3 24 0 1T 2 3 4 5 8 7 8 8 10

Y{(m)

10
(b) A Fine Section at 15°

Figure 4: Sample of Conformal Mapping with 20 Param-
eters

8.1 SYMMETRIC MOTIONS

Figure (5) and (6) show the heave and pitch motion his-
tory in head sea and oblique sea (& = 15°) respectively.
The results are non-dimensionalised using the wave slope
amplitude. Cubic splines are used to fit adjacent points, so
that the phase relationships between displacement, veloc-
ity, and acceleration can be clearly displayed. A wave with
length A of 150 metres and steepness H/\ of 0.00667 is
selected for the calculation. The ship’s speed is assumed
to be 10 knots. The predictions of heave and pitch motion
are quite good in terms of the phasing of the motions. The
acceleration leads the velocity about /2, whilst the dis-
placement lags the velocity about /2. It seems that the
transient period is short, the motions reach the steady os-
cillatory state after one and half cycle. The reason may be

(©2004 The Royal Institution of Naval Architects

because the time convolution term is omitted in the equa-
tions of motions, so that the initial condition can not effec-
tively affect the motions afterwards.

Um10 knots, =160, A= 150m H=1m

heave motion (m, m/s, m/s%)
.5 b o © o
[ - R

S
EY

(a) Head Sea

Us 10knots, p=15’, Ra150m Ha 1 m

H

heave motion {m, nvs, n:/s"")

Figure 5: Heave Motion in Head Sea and Oblique Sea

The change of ship advance speed directly results in the
change of frequency of encounter w,. Figure (7) and (8)
show the comparison of displacement, velocity and accel-
eration of heave motion at speed 10, 15, and 20 knots in
the head sea, Wave length A is still 150 metres and wave
amplitude H is 1 metre. The frequencies w, of encounter,
therefore, are 0.86 rad/s, 0.96 rad/s, and 1.07 rad/s respec-
tively. The corresponding periods T are 7.3 s, 6.5 s, and
5.9 s, which are depicted very accurately in the graph. This
also further proves that the time stepping scheme is cor-
rect. It can be found that the amplitude of the heave motion
decreases as the ship speed increases, while the tendency
of pitch amplitude is not very clear. The same fact can be
found in the results produced by program PAT in the range
we = 0.8 ~ 1.2 rad/s [2].

8.2 ANTI-SYMMETRIC MOTIONS

The predictions of anti-symmetric motions in the time do-
main seem quite problematic. One of the important rea-
sons is the lack of restoring forces for the sway and yaw
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motions. Small perturbations in these motions will result
in the ship being deviated from its original course. For a
ship advancing in oblique sea (heading angle u = 15°),
this process is clearly illustrated in Figure (9). The dis-
placements of both sway and yaw tend to diverge quickly,
however the velocity and acceleration still can keep rela-
tively stable. The drift of yaw motion result in the change
of heading angle. If there are no means to correct this
false action, the program eventually will malfunction. Ap-
plication of a virtual rudder moment might be a effective
method, and is currently being researched.

U=10dnots, = 180", A=15Cm Hetm
0.03 T r T Y v .

o
8

[=d
[=]
=

pltch motion (rad, rads, rad/s?)

.
s
F-lespliy

LN
-
ol

i
-o.oao 5 1 15 20 30 35 40
time (s)
(a) Head Sea
U= 10kots, p=15, Le150m H=1m
0.02 , r - .
‘\z; 0.015H]
E 0.04
§ 0.005F -5
L
g
E-O.OOS
g I, Y01 ] SCRERTRXS CIRTTENEE S3F SCRTETER TR FYRRTER, 7Y SECPRETE T ERPre
-0.015
-0‘02 i 1 i i ; 1 i
10 20 30 40 50 80 70 80
time (s)
(b) Oblique Sea

Figure 6: Pitch Motion in Head Sea and Oblique Sea

Salvesen, et al [1] pointed out that, in the case of sway,
yaw and roll motion, the added-mass and damping coeffi-
cients are significantly affected by viscosity, especially the
roll-damping coefficient By 4 even in the ahsence of bilge
keels. Hence, the necessary correction of roll-damping
coefficient must be made to take account for the viscous
effect. However, it needs an iterative computational pro-
cess which is difficult to implement in the time stepping
scheme. So the roll motion shown in the Figure (10) is
computed with un-corrected roll-damping coefficient. Un-
doubtedly, the prediction does not agree well with the real
fact and can not reach steady oscillatory state. In addition,
it is also deteriorated by yaw drift, in other words, by the
accumulation of heading angle change.

42

ux180, i=150m Halm

&

8

s _ o
- 82 &

5
B 22

displacement of lrava motion (m}
&

5
B

(a) Displacement of Heave Motion

=180, Am150m Heim

velocity of haave motion (m/s)
-
0 = o

&
(73

(b) Velocity of Heave Motion

=160, Re150m Heim
05 T T 7 t o

accelertion of heave motion (n/s?)

(¢) Acceleration of Heave Motion

Figure 7: Comparison of Heave Motions with Different
Speeds
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Figure 8: Comparison of Pitch Motions with Different

Speeds
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Figure 9: Sway and Yaw Motion in Oblique Sea
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Figure 10: Roll Motion in Oblique Sea
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8.3 EFFECT OF DIFFRACTION FORCE

Comparisons of displacement, velocity, and acceleration
for the heave and pitch motion in head sea between the
cases with and without diffraction force are shown in Fig-
ure (11) and (12). The amplitudes of both heave and pitch
motion are increased about 25% when the diffraction is
added. Therefore, the effect of diffraction force is signif-
icant and should not be neglected. Adding the diffraction
has no influence on the phasing of the motions and tran-
sient process which is still relatively short.
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(c) Acceleration of Heave Motion

Figure 11: Effect of Diffraction Force on Heave Motion

84 COMPARISON WITH SERIES 60 HULL ECPER-
IMENTAL DATA
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Figure 12: Effect of Diffraction Force on Pitch Motion

Here the series 60 hull form is chosen to validate this
time domain method, because it has been extensively stud-
ied numerically and experimentally and a large amount of
data is available. Since the the anti-symmetric motions
are not well predicted at this moment, as pointed out in
last section, only the validations of heave and pitch mo-
tions are presented hereafter. Figure (13(a)) and Figure
(13(b)) show the comparisons of pitch and heave motion
RAOs of a Series 60 (Cp = 0.70) ship model travelling at
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a Froude number of 0.2 in regular head waves. The exper-
imental data were given by Gerritsma and Beukelman[35].
The computational results of three-dimensional frequency

2

-o-ﬁm'e-doma!ns;npﬂmry
—s— calculation of Geritsma

(a) Heave Motion

—e— time~domain strip theory
i+ —a= calculation of Genitsma [
I | —a— greon function method
-] o SXperiment n=L/100
A @xperiment n,=1/80

....................

(b) Pitch Motion

Figure 13: Comparison of Heave and Pitch Motion
(mo = 0.01016, Fn = 0.2)

domain Green function method [36] using 510 panels are
also illustrated. w} is the non-dimensionalised frequency
of encounter, w? = w, * \/gL, where L is the ship length
between perpendiculars. Comparisons show that theoret-
ical results and experimental data are in reasonable close
agreement. It is clear that the three dimensijonal Green
function method always over-predicts around the resonant
frequency. However, Strip theory tends to under-predict,
especially for pitch motion. The results of time domain
strip theory method (1 = L/300) are very close to the
computational results given by Gerritsma and Beukelman
[35].

As the incident wave amplitude 7 increases, slight differ-
ence near resonance frequency appears in both heave and
pitch motion RAOs, which can be seen in Figure (14(a))
and Figure (14(b)). The difference is not significant, but it
clearly shows the non-linear effect of varying underwater
surface, and it is believed this phenomenon will be more
significant as the wave amplitude increases more.

(©2004 The Royal Institution of Naval Architects

9 CONCLUSIONS

This paper is complementary to the work by Westlake and
Wilson [2] who developed the basic frame of this time-
domain non-linear strip theory. The diffraction force omit-
ted by Westlake and Wilson now has been added, and its
influence has been demonstrated in this paper. The results
show that the diffraction force have an important effect.
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(b} Pitch Motion

Figure 14: Effect of Wave Amplitude (¥, = 0.2)

The feasibility of extending linear strip theory to deal with
large-amplitude motions by encompassing the changing
shape of the wetted hull has been tested again. The hy-
drodynamic coefficients and forces are not entirely linear
because the wetted hull surface varies with time. The re-
sults obtained so far are quite encouraging in the sense of
comparison with the results from linear strip theory pro-
gram,

However, the predictions of anti-symmetric motions in
oblique seas are not yet effective. The methods for in-
hibiting sway and yaw drift need to be developed, as well
as the methods for correcting the roll-damping coefficient
in time domain. In addition, since the eventual aim of this
work is to predict the large-amplitude motions of a ship in
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large seaway, the free surface elevation might not be neg-
ligible. The influence of free surface elevation on wetted
surface now is being investigated.
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