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Abstract

This paper presents an analysis of the dynamical behaviour of a non-symmetric oscillator with piecewise-linearity. The Chen-
Langford (C-L) method is used to obtain the averaged system of the oscillator. Using this method, the local bifurcation and the
stability of the steady-state solutions are studied. A Runge-Kutta method, Poincaré map and the largest Lyapunov’s exponent are used
to detect the complex dynamical phenomena of the system. It is found that the system with piecewise-linearity exhibits periodic os-
cillations, period-doubling, period-3 solution and then chaos. When chaos is found, it is detected by examining the phase piane, bi-
furcation diagram and the largest Lyapunov’s exponent. The results obtained in this paper show that the vibration system with
piecewise-linearity do exhibit quite similar dynamical behaviour to the discrete system given by the logistic map. © 2001 Elsevier
Science Ltd. All rights reserved.

1. Introduction

The dynamical behaviour of non-linear systems have been well investigated since Lorenz found the
strange attractor in 1963 (see for example [1,2]). The study of non-linear dynamical systems is still an in-
teresting field of research, and particularly the study of chaos in non-linear systems (see for instance [3,4]).
Methods used to detect chaos have been developed for non-linear systems; period-doubling and period-3
solution are familiar routes to chaos. Komatsu et al. [5], for example, studied the non-linear behaviour of
the Duffing system, and found period-doubling bifurcation and chaos, and Li and York theorem [6] showed
that period-3 implies chaos. The theorem of Li and York is often used to predict the chaotic motion of a
non-linear system, based on the Sharkovsky sequence [7] (the details of the proof can be found in [8]).

In recent years, much attention has been paid to the study of a system with piecewise-linearity (see
for instance, [9,10]). This oscillator is a typical non-linear system and is widely used in engineering
systems (for example, in rotor systems [11], relaxation oscillator systems [12], hysteresitic networks [13]
and circuit systems [14,15]). Studies show that systems with piecewise-linearity can exhibit complex
behaviour (see for instance, Freire et al. [9,16], who studied the transition of the system from steady state
to limit cycle).

The aim of this paper is to investigate the dynamical behaviour of a non-symmetric oscillator with
piecewise-linearity. The C-L method is used to obtain the averaged system of the oscillator for the study of
local bifurcation and the stability of the steady-state solutions. A Runge-Kutta method, Poincaré map and
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Lyapunov’s exponent are used to detect the chaotic motion of the system. It is found that a system with
piecewise-linearity exhibits rich dynamical phenomena such as periodic oscillation, bifurcation and chaotic
motion. The chaotic motion in the system can be predicted from the period-doubling, period-3 solution and
the largest Lyapunov’s exponent.

2. Model of the vibration system with a piecewise-linearity

Consider a vibration system with a piecewise-linearity shown in Fig. 1.

Fig. 1 is a model of a vibrating sieve with a distance d between the mass m and the spring k. When the
system vibrates, the contact/ separation of the spring and the mass form a non-symmetric non-linear vi-
bration system with piecewise-linearity. The parameters ki, k», fi, f» and dp —d in Fig. 1 refer to stiffness
of the springs, dampings and the distance of compression under the static state, respectively.

The equation of motion for this system can be written in the form

mi + F(x, %) + O(x) = Fysin (1), (1
where
F(X,).C) _ (fl *I'fz)X, x> —d,
flx, x< —d, (2)
_ { (ki + kp)x, x> —d,
Q) = kix+k(dy —d), x< —d.

3. Chen-Langford (C-L) method and local bifurcation

In this section, the C-L method is used to obtain the averaged equation of the system. Using this av-
eraged system, the local bifurcation, the stability of the steady-state solutions and the phase portrait of the
system are discussed.

3.1. Averaged system

Eq. (1) will be rewritten in the form

y+y=[(,p)+ Fsin (&), )
where
[ —Ky—2(4+B)y, y> -1,
fon9) = {Ky—sz, y< -1,

X k1 .fl fz k2 Fo \/ﬁ
== — s 4=t B=—— K=, F=,— and Q=aw/—.
Y= T Nme 2/mk; 2/mk; e knd i

In Eq. (3), the parameters 4, B, K and F are assumed to be small and of order & (>0). i
Let y = acos(Qt + @), with @ = 1, be a solution of Eq. (3). Substituting this solution into Eg. (3) leads

to
da __1 an( cos®, —asin®)sin® dP — F cos®
&= ), TR o Rt
do 1 [ F @
A :1~Q——% A f(acos(b,—asincb)cosq§d<15+1+Qsin@.
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Fig. 1. Vibration system with piecewise-linearity.
Fig. 2. The transition set and the bifurcation diagram for ¢ = 1.0.

Integrating Eq. (4), the averaged equation for system (1) can be obtained as follows:

da 1 . F
it [2an(4 + B) — 2aB®, + aBsin2d,| — 70 cos P, .
do 1 sin @ . F .
— =1-Q—-—|Kaln— Py — 2K sin @ ————sin®
P Zan[ a(n 0 > )—l— sin 0}+a(1+9)sm )
where @, = arccos (1/a).
Expanding @, and sin®, in terms of Taylor series, leads to
1 n 1 1 1
©O_arccos;—-2-—(—l——6a—3-+0(‘—lg) (6)
and
ind; =1 : +0 1 (7N
=Tz at)’
Substituting (6) and (7) into Eq. (5), leads to
da _ 2B 24+3B n 2B F cos®
& w2 T 1re &)
o _ 1 ~Q+E+£~——Ig—+———F——sind§
dr 4 an 6ma® a(l+Q) '

3.2. Local bifurcations for the steady states

By letting the right-hand side of Eq. (8) be 0, the frequency response of the system is given by the
following equation:

24+B 28 2B\ K kK K\, F\? k
Z_2 —o—+ 2 2 ) e=(—=). 9
( A 3na2> +<1 2 6na3”“ 110 ®)

The local bifurcation of the steady state can be investigated by unfolding the steady state.
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Writing
1 B K F
Z”‘E? O"‘";) ﬁ“ﬁ and V"’Z,
the bifurcation equation is given by
3 2
z 2 2 3
G(ZvnvalvaZ): |:<Z__6—> +77} +O(1 —*pOClZ+O(22, ; (10)

where

11— (1+o)na 0 \2 7\? 8 24
7’]—2': ﬁ +TC:[, O€1——————4—E, 062—(-5(1(1) —(B>, p———m and 0'=-§-.

It can be shown that G(z,n,a1,%) is a two-parameter, o, and o, unfolding of the germ
g=[z—37)+ n)* (see [16]). From the physical point of view, «, represents damping and o, represents
external force.

The transition set of G is

S =BUHUD, B=B'UBUPB, (11)

where:
(a) the bifurcation point set is

2 (1 — 2 _ 2 2
Bl = {OC[ = O}a B2 = {OLZ = B—O(%}, B3 = {062 = (l 4'0“ ):t 1 16¢ +8p0( },

4 8

(b) the hysteresis set is

\/07224 + o + (1 - %22)2]2 —cy & /5 — 4cics
H=<0u = + , Oy = 3 )

(pz = 1)z
where

Clzﬁ

2’

1-p2)(2 -2 2-2)
czz(———pi)zi————)—kpzz—%g(—-z-zz—z)—%—k(lﬂpz),
_2(1 - pz) 1.\ p 1)
o3 = —— (-1+§zz> +53 1+222,

(c) the double limit point set is D = § (empty).

The transition set = of G divides the parameter plane, o;~0, plane, into several regions, in each of which
the diagrams of G are persistent, otherwise inpersistent on the transition set X. The transition set and the
bifurcation diagrams are shown in Fig. 2 for ¢ = 1.0, and Fig. 3 shows the transition set for ¢ = 10.0.

From the physical point of view, only the persistent diagrams in regions 1, 2 and 3 and the inpersistent
diagrams on H and B* are valid when ¢ = 1.0. From Fig. 3, it can be seen that the jumping and the
hysteresis phenomena appear in regions 2 and 3.

3.3. Stability of the steady states

As shown in Fig. 2, the jumping and the hysteresitic phenomena, see for instance [1], appear in region 2
with multiple solutions of the system. In order to see clearly, an amplified diagram of Fig. 2 is shown in
Fig. 4. It can be shown that the points P, P, and P; in Fig. 4 are stable, unstable and stable steady, states
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Fig. 3. The transition set for ¢ = 10.0.
Fig. 4. Multiple steady-state solution.

when Q = 1.27 and the amplitudes: 3.6486, 1.5665 and 1.1070, respectively. It can also be shown that the
points M and N are the turning points with vertical tangent line.
Next, the stability of the multiple solution points P;, P, and P; and the turning points M and N are

studied.
Introducing the transformation

2 2 _ 2
X{+x,=a’,

¢ = arctg(?) (12)

2

into Eq. (9), the following equations can be obtained:

I e T T
. K K 4 Fsin® Fcos®
="\ e 2dtn 21+ Q) TTTTa

P (2A+B 2B ) Fsin®
1=

The characteristic equation of (13) is A*> + P4+ Q = 0 with the discriminant 4 = P? — 40, where

P=2A—i-B'~I-%]—g-I-—~B3 >0,
an  3a’m
0= 24+ B 2+B(2A+B) B(24 +B) 4B* 4B
N 2 an 6a’n 3a2n?  18abm?
K\' (1-Q+1k) (1-Q+iK) K2 K2
+<1—Q+Z) + an 6a’n 3a2n?  18afm?’

It can be shown that M and N are two separatrix points between the stable and unstable solutions.
Both M and N are saddle-node bifurcation points. In the same way, it can be shown that the points
P,, P, and P, are a stable node, a saddle point and a stable spiral-point, respectively, for the averaged
Eq. (8). .

The phase diagram of Eq. (8) is given in Fig. 5 showing the co-existence of the three solutions. In Fig. 5,
W and W} are the unstable manifolds of the saddle point 7, and W} and ;' are unstable manifolds of the
saddle point P, which divide the phase plane into two regions, each of which is attracted by the stable points

P, and P;.
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Fig. 5. Multiple solutions of the averaged system.

4. Period-doubling and chaos

In this section, the parameter k; is taken as the bifurcation parameter. The other parameters are taken as
m =400, Fy =78 x 10°, o = 34.56, d =5x107%, fi =50, f, =500 and &k, =9 x 10°.
By letting = y in Eq. (3), the following system can be obtained:

x=y,
y = [——Q()C) '«F(xay) —FbSinwt]/m5 ()C,y, 0) € R2 X Sa (14)
=1, (fmod2n/w).

Section X = {(x,,6) |0 = 0} is taken to establish Poincaré map: 2 — Z. :

Next, a fourth-order Runge-Kutta method and Poincaré section are used to find the periodic points,
bifurcation phenomena and the phase portrait. The largest Lyapunov exponent of the system is used to
detect chaos.

From Figs. 6-8, it can be seen that periodic solutions are obtained when k; = 30.0 x 10°, period-2 so-
lution (1 x 2-cycle) when k; = 20.0 x 10°, and period-4 solution (2 x 2-cycle) when 5.0 x 10°, respectively.

Period-doubling for 2 x 2-cycle, 4 x 2-cycle, 8 x 2-cycle and 16 x 2-cycle are shown in Figs. 9-12 when
ky = 2.0 x 103, 1.0 x 103, 0.7 x 10° and 0.697 x 10%, respectively. The areas (rectangular boxes) shown in
Fig. 12 are the local amplification near the period points.

In the same way, period-doubling can occur from period-3 solutions for certain value of the parameter
k. The period-3 solution is shown in Fig. 13 when & = 4.0 x 103; 3 x 2-cycle and 6 x 2-cycle are shown in

Figs. 14 and 15 when k; = 2.0 x 10° and 1.5x10°, respectively.
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Fig. 6. Period-1 solution.
Fig. 7. Period-2 solution.
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Fig. 8. Period-4 solution.
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Fig. 9. Period-4 solution.
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Fig. 10. Period-8 solution.
Fig. 11. Period-16 solution.

From the above figures, it can be seen that system (1) exhibits period-doubling, period-3 bifurcation and
then chaos. It can also be verified that k; = 4.0 x 10% is the threshold to chaos.

It is worth noticing that both period-4 and -6 attractors (Figs. 9 and 14) obtained when k; = 2.0 x 103
for the system with piecewise-linearity, depend on the initial conditions taken. In other words, the



1924 Q. Cao et al. | Chaos, Solitons and Fractals 12 (2001) 1917-1927

-0.5/-{ §

~3.01

-5.5|
L

1 L L 1ax
~0.800 -0.600 ~0.400 -0.200 0.000

Fig. 12. Period-32 solution.
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Fig. 13. Period-3 solution.
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Fig. 14. Period-6 solution.
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Fig. 15. Period-12 solution.
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Fig. 16. Chaotic motion of the piecewise-linearity vibration system.
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Fig. 17. Phase portait of the piecewise-linearity vibration system.

co-existence of different attractors can be found in the same system for the same values of the parameters.
The attracting field of each attractor can be determined by means of cell-map.
Figs. 16 and 17 show the chaotic attractor and the phase portrait for k; = 0.1 x 10%.
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Fig. 18. Period-doubling and period-3 bifurcation to chaos for the piecewise-linearity vibration system.

Fig. 18 shows the bifurcation diagram for 4 over [30,0]. From this figure, it can be seen that the system
exhibits period-doubling, period-3 solution and then chaos.

5. Conclusion

In this paper, bifurcation behaviour for a class of vibration system with piecewise-linearity has been
studied numerically. Local bifurcation and the stability of the steady-state solutions of the system have been
studied using C—L method (which is used to obtain the averaged system of the oscillator). Poincaré map
was introduced to find periodic solutions, period-doubling and period-3 bifurcations. The route to chaos
from period-doubling bifurcation has been investigated by examining the phase plane, bifurcation diagram
and the largest Lyapunov exponent. From the results obtained, it is found that the piecewise linear system
exhibits complex dynamical behaviour. )
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