The University of Southampton
University of Southampton Institutional Repository

Design search and optimisation using radial basis functions with regression capabilities

Keane, A.J. (2004) Design search and optimisation using radial basis functions with regression capabilities In, Parmee, I.C. (eds.) Adaptive computing in design and manufacture VI. Springer pp. 39-49.

Record type: Book Section

Abstract

Modern design search and optimisation (DSO) processes that involve the use of expensive computer simulations commonly use surrogate modelling techniques, where data is collected from planned experiments on the expensive codes and then used to build meta-models. Such models (often termed response surface models or RSMs) can be built using many methods that have a variety of capabilities. For example, simple polynomial (often linear or quadratic ) regression curves have been used in this way for many years. These lack the ability to model complex shapes and so are not very useful in constructing global RSM's for non-linear codes such as the Navier Stokes solvers used in CFS - they are, however, easy to build. By contrast Kriging and Gaussian Process models can be much more sophisticated but are often difficult and time consuming to set up and tune. At an intermediate lvel radial basis function (RBF) models using simple spline functions offer rapid modelling capabilities with some ability to fit complex data. However, as normally used such RBF RSM's strictly interpolate the available computational data and while acceptable in some cases, when used with codes that are iteratively converged, they find it difficult to deal with the numerical noise inevitably present. This paper describes a modification to the basic RBF scheme that allows a systematic variation of the degree of regression from a pure linear regression line to a fully interpolating cubic radial basis function model. The ideas presented are illustrated with data from the field of aerospace design.

PDF kean_04.pdf - Accepted Manuscript
Download (7MB)

More information

Published date: 2004
Additional Information: Out of print

Identifiers

Local EPrints ID: 22793
URI: http://eprints.soton.ac.uk/id/eprint/22793
ISBN: 1852338296
PURE UUID: 4355cb8a-ebfb-4b82-b9b2-099a24577f40

Catalogue record

Date deposited: 29 Mar 2006
Last modified: 17 Jul 2017 16:20

Export record

Contributors

Author: A.J. Keane
Editor: I.C. Parmee

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×